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Resilient Off-grid Microgrids: Capacity Planning and N-1 Security
Sreenath Chalil Madathil, Harsha Nagarajan, Emre Yamangil, Arthur Barnes,

Russell Bent, Salman Mashayekh, Scott Backhaus, Michael Stadler, Scott Mason Abstract: LA-UR-16-24708

Abstract

Despite the long distance power transmission capabili-
ties, there are some remote communities in Alaska and
Hawaii that are not connected to these systems. These
communities rely on small, disconnected distribution sys-
tems, i.e., microgrids to deliver power. More importantly,
perhaps, there is a general trend to support microgrid
development within large transmission systems for eco-
nomic, environmental, and reliability reasons. However,
microgrids are not held to same reliability standards as
transmission grids and can place many communities at
risk for extended black-outs. To address this issue, we
develop an optimization model and algorithm for capac-
ity planning and operations of microgrids that includes
N-1 security and other modeling features. The effective-
ness of the approach is demonstrated using the IEEE 13
node test feeder and a model of the Nome, Alaska distri-
bution system.

Off-grid Microgrids
A network of distributed energy resources (DER) that consist
of small power generating devices like diesel generators, small
hydro-electric power stations, wind turbines and/or power
storing devices (e.g. batteries) that supply and store power
to remote communities and are not connected to the national
grid are known as off-grid microgrids.

Source: http://energy.gildemeister.com/en/utilise/off-gridsolutions

Research Methods

• Formulate matahematical formulation for planning and
operation of remote offgrid microgrids

• Develop relaxations, approximations and algorithms to
solve problem faster

• Test the model on standard IEEE-13 node test feeder
• Implement the model on a real network
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• Capital costs of building / 
placing technology
üBattery
üGenerator
ü Inverter

• Investment of technology to 
nodes

• Capacity Constraints

• Economic measure
üQuadratic operating cost

• Power flow physics
• Thermal limits
• Voltage limits
• Generator limits
• (N - 1) security constraints
• Post-contingency ramping 

constraints 
• Energy efficiency curves

• Minimum amount of up 
time and down time

• Battery state of charge at 
time t-1

• Ramp-up and ramp-down 
constraints for generators

Relaxation, Approximation and Algorithm

Thermal Limit Constraints
f (P,Q) = (Pij,t)2 + (Qij,t)2 − (T̃ij)2 ≤ 0 ∀ ij ∈ E , t ∈ T

The above quadratic constraints are applied in a lazy
fashion using Lazy Callbacks

Lazy Cuts

P

Q

for all solver iterations, i, with value Pi and Qi

if f (Pi, Qi)
(T̃i)2 ≥ tolerance

f (Pi, Qi) + (P − Pi)(f
′(Pi)) + (Q−Qi)(f

′(Qi)) = 0
end if

end

Piecewise Linearization for Efficiency Curves
for all k ∈ number of pieces

Pout ≤ fk(Pin, L0)
end
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Schematic Representation of Scenario Based Decomposition (SBD)
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Results

• Tested using IEEE 13 node test feeder
• With contingency, an extra generator is installed at node
652

• SBD using Lazy callback seems to be an efficient
algorithm
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Using SBD Algorithm and Lazy Cuts

Alaskan Microgrids
Solution
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Using SBD Algorithm and Lazy Cuts
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Using SBD Algorithm
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Complete v/s SBD v/s SBD + Lazy

Distflow v/s
LinDistflow
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Future Work

• To solve multiple days problem
• Implement receding horizon
• Implement fixed boundary conditions
• Enhance using benders decomposition

• Consider uncertainty in wind speed and irradiance
• Enhance model to include network topology design
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