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Outline

 The BRL Shaped-Charge Geometry in PAGOSA
 Mesh Refinement Study

« Surrogate Modeling using a Radial Basis Function Network
(RBFN)

* Ruling out parameters using Sensitivity Analysis

e Equation of State Study
» Design of Experiments
» Accuracy Study for Minimizing Prediction Error
« Sensitivity Analysis using the Fourier Amplitude Sensitivity Test (FAST)

 Uncertainty Quantification (UQ) Methodology
 Forward Propagation Using Monte Carlo Simple Random Sampling

 Sensitivity Analysis (SA) Methodology

* Fourier Amplitude Sensitivity Test (FAST) for First Order Sensitivity
Indices



Materials of the BRL Shaped-Charge

Material Strength Model Equation of

State
Modified
Copper Steinberg-Guinan Us- Uy
: Modified
Stainless Steel Steinberg-Guinan Us - Up
Composition Jones-Wilkins-
B Lee
Tetryl e Jones-Wilkins-

Lee

LA-UR-16-25183

The BRL Shaped-Charge Geometry and Materials

t=0us t=15pus t =30 us

Cu Liner

SS Case

Comp B

Tetryl

» To decrease simulation time, the problem is constructed as 2-D with symmetry

about the z-axis

 Since this a shaped-charge with a projectile, the jet tip velocity was chosen as the

output metric-of-interest
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Mesh Refinement Study



Comparing Simulations

 For Uncertainty and Sensitivity Analyses,
results must be within a numerically stable

solution region to reduce the influences of
mesh size and numerical noise.

* The effect of mesh size was investigated at
1000 pm, 600 pm, 200 pm, 100 pm.

* A simulated Photon Doppler Velocimeter
(PDV) positioned parallel to the z-axis at a
0.5 mm offset was used to quantify the jet tip
velocity and compare simulations.

LA-UR-16-25183
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Results of the Mesh Refinement Study

e Simulations at 1000 um and
600 um ejected a small 10 48U TIp Velocity with Changing Mesh Size
particle near the PDV axis : ‘
while at 200 um and 100 um os|
the jet tip forked. -

0.0
0 5 10 15 20 25 30

Time (us)

1000/600 um 200/100 um

extract_pdv.py
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Surrogate Modeling using a
Radial Basis Function Network
(RBFN)
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Surrogate Modeling of PAGOSA Simulations

* For both Uncertainty and Sensitivity
Analyses, thousands of computations

are necessary and Is not feasible for
large-scale simulations of complex
processes.

e Surrogate models allow for the
approximation of simulation output
with a much lower computational cost
with the trade-off of less accuracy.

A Radial Basis Function Network
(RBEN) was used for the shaped-charge
data due to its ability to model nonlinear
responses [1].

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective

Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005.

Time (Days)

Total Time for 10,000

Simulations
1 Node, 16 Processors, 200 um mesh

416 + 208

0.014
[

Nas
Qé O

QS’ P>
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Surrogate Modeling of PAGOSA Simulations

» For both Uncertainty and Sensitivity Average Curve
Analyses, thousands of computations Accuracy (1-Error)
are necessary and is not feasible for 100 %
large-scale simulations of complex
processes.

e Surrogate models allow for the
approximation of simulation output
with a much lower computational cost
with the trade-off of less accuracy.

A Radial Basis Function Network
(RBEN) was used for the shaped-charge
data due to its ability to model nonlinear & &
responses [1]. & Q}G

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective
Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005.

70 %

Accuracy (%)
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Radial Basis Function Network (RBFN) Theory

 Model is approximated with the function [1,2]:

fror(x) = ) Me(llx—x]) = ) No(n)

Where, =1 =1

* x IS the vector of sample points

e x; is the vector of design points at the it" sampling point

. Hg — x;|| is the Euclidean distance of the sample point from the

esign point (radius, r; )

e A; IS the unknown weighting factor for each design point at each
sampling point

* ¢ IS a user-defined basis function

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective

Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005.
[2] Mai-Duy, N., Tran-Cong, T., “Approximation of Function and its Derivatives using Radial Basis Function Networks,” Applied

Mathematical Modeling, 27, pp197-220, 2003.



Radial Basis Function Network (RBFN) Basig* """+

Functions
 Thin Plate: ¢ (r) = r%log(cr?)

e Gaussian: @(r) = e=cr’

« Multiquadric: ¢(r) = Vr2 — ¢2
: . 1
 Inverse Multiquadric: ¢(r) = N

* Where:
r = ||x — x;|| is the Euclidean distance (vector magnitude)

c 1S an RBFN constant that can be tuned to minimize error



Computing the Lambda Matrix for the Radiat?*>>¢
Basis Function Network (RBFN)

 The RBFN formula is solved for A using a simple matrix inversion:
fi = @ijAi
A = @i fi

 This calculation is performed at each time step, producing a set
of weighting factors for each training data set (f;).

e If the phi matrix is singular, the Moore-Penrose Pseudoinverse
IS used.

— -1
‘Pijl ~ ‘PiTj(fpiﬂPiTj)
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Training the Radial Basis Function Network (RBFN)

 In order to use the surrogate model, data to train the RBEN
are needed.

 The number of simulations to fully describe the model
behavior scales as Levels™Parameters. (2 Levels, 8
Parameters = 256 Simulations)

* To reduce the number of needed simulations, the
parameter space is explored systematically using a Design
of Experiments (DOE) methodology.

A Fractional Factorial design method is employed In
Matlab using the script Fractional.m.

e The method reduced the number to 12 simulations for the
Equation of State study instead of 256.
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Ruling Out Strength Model Parameters

e For afirst pass, a simple
On/Off anaIySiS was Used Jet po,\{e,@:'t}’,“f"?h .St.”.an.gt.h Il\fllqde!sl Eqab!qd/[?mabled
determine overall effect on jet _
tip velocity.

e 4 Simulations: Both On, Cu
Off, SS Off, Both Off

 The copper liner
overwhelmingly controlled

o
(s3]
T T

o
N
| T

Velocity (%)

Mesh Size = 200 um

the jet tip velocity response. 2] — Both 5.G Enabled |

—— Cu 5S-G Disabled |J
e The stainless steel : T ot o0 ossbied |

ool v o & Lo v v by oy oy oy T T T T

confinement will be Ignored o s T s w5
for later parameter studies.




Testing for Non-Physical Parameter Combinations o1
the Jones-Wilkins-Lee (JWL) Equation of State (EOS)

 The Monte Carlo sampling routine must not pick a non-physical
narameter set to ensure appropriate uncertainty analysis.

 The Chapman-Jouguet slope was estimated to determine if the
parameter set was physically possible (slope < 0).

« JWL parameters estimated from Composition B experiments
were used as a basis for sampling [1] (assuming P, =0, V,=1)

-ma---—-

1.718 0.0617 0.28 5.849288 7.731 0.149834 2577 0.7954 -1.04
2 1694 0.064935 0.28 5.797578 7.623 0.114037 2.541 0.7/876 -0.99
3 1583 0.060095 0.28 4.652022 7.1235 0.130651 2.3745 0.751 -0.85
4 1717 0.049505 0.34 5.242 7.2114 0.07678 1.8887 0.798 -1.08

[1] Weseloh, W., “JWL in a Nutshell (rev.1),” PAGOSA Technical Note, Los Alamos National Laboratory XTD-SS, LA-UR-14-24318.



Monte Carlo Results of Chapman-Jouguet (CJyr1-2>18
State For Composition B

e Each parameter Is sampled as | |
a Uniform distribution from Histogram of Chapman-jouguet/Rayleigh Slope
Its minimum to maximum ; 3
observed

e CJ State estimated for 10,000
samples

Normalized Fregeuncy

* All samples were determined
to produce a negative slope : ]
(p hySICaI) . -14 -1.3 -1.2 -1.1 -1.0 -0.9 —0.8

CJ Slop.e (&F)

16



PAGOSA Jet Tip Velocity Data for Experimentair'e=1
Parameter Sets and Design of Experiments (DOE)

PAGOSA Simulation Data for Experimental Parameter Set PAGSOA Design of Experiments (DOE) Training Data
Lo T T Lo T T
] I CompB DetVel = 0.798 cm/ps -
o8l i 08 |
> | >
E 0.6 - E 0.6 -
O i O
R R
z_ 0.4+ z_ 0.4+
[ [
© ©
— 0.2 — 02 L
0.0_' O.D_""
0 0

Time us)

17



PAGOSA Jet Tip Velocity Data for Experimentair'e=1
Parameter Sets and Design of Experiments (DOE)

PAGOSA Simulation Data for Experimental Parameter Set PAGSOA Design of Experiments (DOE) Training Data
1-0 T T T T I T T T T | T T T T | T T T T | T T T T | T T T T 1-0 T T T T I T T T T | T T T T | T T T T | T T T T | T T T T
' ' ' CompB DetVel =0.798 cm/ps .
__osf i __osf |
R R
> >
= 06} = o6
O O
9o I 9o I
> b > b
9_ 0.4 9_ 0.4_—
— i — i
4+ 4+
@ - o i —
T 02 T 02 — DOE 2 -- DOE6 -- DOE10[
I I — DOE3 -- DOE7 -- DOE11]]
I i { — DOE4 -- DOE8 --- DOE12|]
O_D|||||||||||||||||||||||I| ] pobL— v v Mo T T T T 1w
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time us) Time us)

_set | po | e | W /| Bl | Cl | B2 | C2 |Detvel| CJSlope
DOE3 1718 0.064935 0.34 4.652022 7.124 0.14983 2.577 0.751 -1.06
DOE4 1.718 0.064935 0.28 4.652022 7.124 0.14983 1.889 0.751 -1.12

DOE9 1718 0.049505 0.28 5.849288 7.124 0.14983 2.5/7 0.798 -1.28



PAGOSA Jet Tip Velocity Data for Experimentad ur-is-2ss3
Parameter Sets and Designh of Experiments (DOE)

Time = 1.00314

PAGSOA Design of Experiments (DOE) Training Data

Experimental 10 T T T T | T T T T | T T T T | T T T T | T T T T | T T T T
CompB DetVel =0.798 cm/us |
0.8 |- ]
—~ > el
- [ ] — f—-"' _,-w-:'_
Time = 0.00000 2 oe P b= R T
kU] i ,' = - —.== D '—7‘:3_;;-'-? T ]
3 L = s
g I
9_ 0.4_— —
— i
] — DOE1 -- DOE5 --- DOE9 |
/ 021 — DOE 2 - - DOE®6 -~ DOE 10 H
I — DOE 3 -- DOE7 --- DOE 11 |]
| — DOE 4 -- DOES8 --- DOE 12 ||
00 i T & & & T 4 4 4 4 T & % 4 4 T 5 4§ 4 3
0 5 10 15 20 25 30
Time us)

DOE 4: Copper liner disconnects
from confinement canister
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PAGOSA Jet Tip Velocity Data for Experimentair'e=1
Parameter Sets and Design of Experiments (DOE)

Time = 1.00314

Experimental

f av_pressure

4.460e-02
3.073e-02
1.687e-02
3.000e-03
-1.087e-02

H

Time = 1.00314

DOE 4

av_pressure

5.114e-01
3.761e-01
2407e-01
1.054e-01
-3.000e-02

H

)

cin

Jet Tip Velocity (

PAGSOA Design of Experiments (DOE) Training Data

1.0
T T T [ T T T T [ T 1 T T [ T T T T ] T T T T ] T T T
CompB DetVel =0.798 cm/us |
0.8
a
0.6 |- A
’
M
0.4 b &
.’l — DOE 1 -- DOES --- DOE?9
0.2 j:.«' — DOE 2 -- DOE®G6 --- DOE 10
- — DOE 3 -- DOE7 - - DOEll:
L — DOE 4 -- DOES8 --- DOE 12 (]
pobL— v v Mo T T T T 1w
0 5 10 15 20 25 30
Time us)

*Uncertainty and Sensitivity
Analyses will be limited to less than
20 ps to use all data sets.
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Radial Basis Function Network (RBFN) Error Study>'*
for the Inverse Multiquadric Basis Function

Prediction Error for InvMultiquadric RBF Type, c=0.00166954891486

5 0.7
I 6l
QE 0.5_ |
— O .
- - N’
Basis Function = og — PAGOSA |
g *5 0.3} — RBFN
1 o 0.2}
<p(r)=\/ —— s )
r-—=« Error VS. Time
102 . . : : :
— I
SN
~ 102}
§ |
L]
10! ' ' ' ' ' ' '
4 6 8 10 12 14 16 18 20

Simulation Time (us) 21



Radial Basis Function Network (RBFN) Error-"-+r-o-2518
Study for the Multiquadric Basis Function

Prediction Error for Multiquadric RBF Type, ¢=0.267111926377

" 0.7
ST
=2 § 0.5
. - N’
Basis Function = o)
L = 0.3}
~
O
O 0.2}
@(r) = \/7”2 —c? < o1 — RBFN
0.0 L L 1 L I 1 1
. Error VS. Time
104, | | |
~~ 3'_
E’\i 10°}
S
LI |
10! . . . . . , |
1 6 8 10 12 14 16 18 20

Simulation Time (us) 22



Radial Basis Function Network (RBFN) Error-"-+r-o-2518
Study for the Thin Plate Basis Function

Prediction Error for ThinPlate RBF Type, c=0.367278861269
0.7 : . .

0.6 ]
0.5 |
0.4 |
0.3}
0.2 |
0.1} — PAGOSA ||
0.0} — RBFN
-0.1 , . . .

Basis Function

Jet Tip
Velocity (°™/us)

o(r) =r?log(cr?)

Error VS. Time

104,

103}
10t L
10°

lﬂ'l I 1 1 1 1 L L | 1
q 6 8 10 12 14 16 18 20

Simulation Time (ps) 23

Error (%)




Radial Basis Function Network (RBFN) Error-"-+r-o-2518
Study for the Gaussian Basis Function

~ Prediction Error for Gaussian RBF Type, c=0.00166954891486
* 0.7 : , , | | | |
= —
~ 0.6 |
=2 § 0.5}
Basis Function — = o4t
L = 0.3} 1
IS
z o 0.2 — PAGOSA |
— p—CTr —_—
o(r)=ce Q o1 — RBFN
> 0.0 L L L L | L |
Error VS. Time
10° ¢ : , , | | | |
S
E\/ 107}
— 101 [
= 10°F
LIJ lﬂ_I;— ,
1021 . . . . g | . .
4 6 8 10 12 14 16 18 20

Simulation Time (us) 2
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Uncertainty Quantification (UQ)
for the BRL Shaped-Charge Jet
Velocity
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What is uncertainty?

* Qualitatively, Uncertainty is the possibility of error in
experimentation and modeling.

 Quantitatively, uncertainty is a mathematical description
of the expected range of values due to natural variation in
experimentally measured quantities due to imprecision of

measurement systems and material manufactu ring
methods.

* Since models are calibrated with uncertain experimental
data, models will inherit this uncertainty.

» We can use various computational techniques to quantify the
effects of uncertainty on modeling (forward propagation).

* If the distribution of the output is known (posterior), then a
parameter’s uncertainty can be approximated (inverse method)




Uncertainty Quantification Methods for ta-ur-is-2ses

Experiments and Modeling
e EXperimental Uncertainty

e Statistical Confidence Intervals

 Modeling Uncertainty
° Propagation of Uncertainty *Large-scale simulations
* Truncated Taylor Series Expansion Method [1] rely on surrogate models to

e Monte Carlo (MC) Methods lower computational costs
| + Random Sampling (Forward Propagation Method) |
» Acceptance/Rejection Sampling [2]
* Markov-Chain Monte Carlo (MCMC) (Inverse Method) [3]

 Generalized Polynomial Chaos (gPC) [4]
 Latin Hypercube Sampling (Stratified Systematic Sampling)

[1] Coleman HW, Steel WG. Experimentation and Uncertainty Analysis for Engineers. 2" Ed. New York: John Wiley and Sons; 1999.
[2] Martino, L, Miguez, J. Generalized rejection sampling schemes and applications in signal processing. Signal Processing. V90:11, 2981-2995. 2010.
[3] Moral, PD, Doucet, A, Jasra, A. Sequential Monte Carlo Samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology), V68:3,

411-436. 2006.
27
[4] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.



Monte Carlo (MC) Simple Random Sampling*f&r*=>*

Uncertainty Propagation

« MC methods seek to propagate known (or assumed) statistical
distributions through a model to determine the amount of

variance in output

* This is done by sampling randomly from representative
statistical distributions (priors) for each parameter of interest in

a model

e Parameter sets are mapped through the model and descriptive
statistics and histograms are collected to quantify the posterior
statistical distribution.



Monte Carlo Random Sampling Method =~ "VRi6:2918
Workflow

/ Initialization \ / Randomizer \ /Model Evaluation \

In|t|al. Parjrg.ete'rs ar'1d Randomly sample from
a_SSOC'ate S el parameter distributions

— ) . - |ife regimes for
A C Build randomized &Ir

5 randomized parameter
| | i parameter set -

< ~ " >

/ \ / Output Recording \
Analyze Results . o ;
Get descriptive tore model output for

- analysis
statistics of output. Complete? U

Determine output

distribution / \ /

Evaluate MSF model




Uncertainty Resulting from Variation in Jone§>"1*%1%3
Wilkins-Lee Parameters for Composition B

Jet Tip Velocity Uncertainty

1[] T T T T | T T T T | T T T T | T T T T
08t |
J& I
2=
>
= o6}

O i

o

g I

o %

|_ :\f I

] /N N =100,000

T 02k ' N — Mean -
! — 95% Data range ]

L - - Extremes

[}U ] ] ] ] ] ] ] ] | ] ] ] ] [ ] ] ] ]

0 5 10 15 20
Time us)
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)

cm
[15

Jet Tip Velocity (

Uncertainty Resulting from Variation in Jone§>"1*%1%3
Wilkins-Lee Parameters for Composition B

Jet Tip Velocity Uncertainty 12
l-D T T T T | T T T T | T T T T | T T T T ol
Simulations = 100,000 >
i S .l
0.8 |- 2
- ot
L
- o °f
LN emm=mm=s g
0.6 |- - |
A e T 5 I
~==" = |
L 2} :
0.4 :
I 0 |1 . . . -
o 0.50 0.55 /0.60 0.65 0.70 0.75 0.80 0.85 0.90
L X
0.2
i — 95% Data range || j
L - - Extremes 4
UU 1 1 1 1 1 1 1 1 | 1 1 1 1 I 1 1 1 1
0 5 10 15 20 P (V]et < VCrltlcal)
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Sensitivity Analysis (SA) for the
BRL Shaped-Charge Jet Velocity
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What is meant by “Sensitivity Analysis”™?

e Sensitivity Analysis (SA) is a general idea for measuring a
parameter’s influence on modeling output.

 Two main analysis types: Local and Global

* Local methods can give an idea of a how influential a
parameter is but only examines a single point within the
entirety of the a model’s N-dimensional input space.

e Analysis of Variance (ANOVA) global methods seek to
describe the contribution of a given parameter to the total
variance of model output by passing the parameter’s
distribution through the model.
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Sensitivity Analysis Methods for Modeling

 Local Methods
« Partial derivatives [1] via perturbation method

e Global Methods

 First Order Effects Index [2] -
« Monte Carlo method Large-scale simulations rely
On_e aro - cigle — - on surrogate models to lower

| * Fourier Amplitude Sensitivity Testing (FAST) [2] | computational costs

» Total Effects Index [3]

[1] Coleman HW, Steel WG. Experimentation and Uncertainty Analysis for Engineers. 2" Ed. New York: John Wiley and Sons; 1999.

[2] Saltelli, A., Tarantola, S., Chan, K.P.-S., "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output”,
Technometrics, Vol 41, No 1, Feb 1999.

[3] Saltelli, A., Paola, A., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., “Variance-based sensitivity analysis of model output. Design and 34
estimator for the total sensitivity index,” Computer Physics Communications, Vol 181, pp 259-270, 2010.
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Global Methods: First Order Effects Index

 Analysis of Variance (ANOVA) method

 First order effects indices measure a parameters direct
contribution to the overall model variance

G - Var(Y|x;)
' Var(Y)

 Where,

Var(Y|x;) is the variance of model Y by varying parameter x; alone
Var(Y) is the total variance of model Y by varying all parameters together

 Monte Carlo methods can be used to get these quantities
directly, however this can be very computationally expensive
(9x104 versus 1704 function evaluations)



Fourier Amplitude Sensitivity Test (FAST) First Qrdeepsiss
Effects Indices for Jones-Wilkins-Lee Parameters of
Com pOSItIOh B - F.AST.Fi.rSt. Olrder Effect Index

» Detonation Velocity (V4),
Initial Density (py), and C,
controls initial liner
velocity

e
o

o
i
T

o
=
|

o
w
I

o
(S}
|

« B, controls majority of
Initial jet formation while
B, controls late time
formation

=
'_I
I

FAST First Order Effect Index

e
o

W will be ignored as
Insignificant (S < 0.1)
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Uncertainty and Sensitivity for PAGOSA LA-UR-16-25183
Simulations Due to Variation in Jones-Wilkins-
Lee Parameters

Jet Tip Velocity Uncertainty FAST First Order Effect Index
1-0 T T T T | T T T T | T T T T | T T T T 0-6 [ T T | T T | IIIIIIIII
L ¢ L | Y €0
v T — B B,

I © os5f { 1 )
. 08 4 £ . — )
g_g: - t r — W Vdet

L 04}

=> - Yy— C
= 06l m F
W] I ot
= L O 03}
)] o N
> B —_ L
o 04F o
= i B 02k
— I = C
QL i L
— 02} —

i — 95%D 1 w®™r

I o Data range || <

L - Extremes L

0.0 S O R 0.0
0 5 10 15 20 0
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Summary

A mesh convergence study was used to ensure that solutions
were numerically stable by comparing PDV data between
simulations.

» A Design of Experiments (DOE) method was used to reduce the
simulation space to study the effects of the Jones-Wilkins-Lee
(JWL) Parameters for the Composition B main charge.

« Uncertainty was quantified by computing the 95% data range
about the median of simulation output using a brute force
Monte Carlo (MC) random sampling method.

e Parameter sensitivities were quantified using the Fourier
Amplitude Sensitivity Test (FAST) spectral analysis method
where It was determined that detonation velocity, initial density,
C1l, and Bl controlled jet tip velocity.
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Future Work/Improvements

 Improve parameter sampling method to ensure
thermodynamical consistency for the Jones-Wilkins-Lee (JWL)
Equation of State (EOS) (Implement rejection criterion)

 Investigate effects of variation in parameters from both EOS’s
and strength models together ( EOS: Copper Liner, CompB,
Steel, Tetryl Booster; Strength: Copper Liner)



Questions?
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Appendix



Forward Propagation Monte Carlo Method

Prior Distribution(s)

X1

Posterior Distribution

/— Model 4\

Monte
Carlo
Simple
Random

EEE——)
EE—)

Sampling
/ o /
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Inverse Monte Carlo Method

Prior Distribution(s)

X1

/— Model 4\

Markov-
Chain
Monte
Carlo
Methods

o

/

Posterior Distribution
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Required Python Packages for the Included"" -~
Analysis Scripts

 NumPy — multi-dimensional array support
» SciPy — library of scientific tools
 MatPlotLib — Matlab-like plotting package

The installation method will vary depending on your platform
(Windows, Unix) and Python installation (basic, Anaconda).
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Summary of Scripts Used

* Fractional.m — Fractional Factorial Design of Experiments (DOE)
e Taguchi.m — Taguchi Design of Experiments (DOE)
e pdv_read.py — Python extractor for PAGOSA PDV data

e Xy _Interp.py — Linear interpolator to ensure that all datasets are in the
same X coordinates. Can also be used to shorten datasets.

o sgfilter.py — Savitsky-Golay smoothing algorithm for noisy datasets

 rbfTrain.py — Training script for investigating error using four
Implemented basis functions

 UQSA.py — Automated routines for uncertainty quantification and
sensitivity analysis



Design of Experiments (DOE) Matrix for BRLA-VR6-283
Shaped-Charge Simulation Study

Set [poleo W _[BL____[Cl_|B2 _C2 | DetVel |CJSlope_

1 1.718 0.049505 0.34 5.849288 7/7.7/31 0.0/678 1889 0.7/51 -0.98
2 1.583 0.064935 0.34 5.8492888 7.124 0.0/6/8 1.889 0.798 -0.97
3 1.718 0.064935 0.34 4.652022 7.124 0.14983 2577 0.7/51 -1.06
4 1.718 0.064935 0.28 4.652022 7.124 0.14983 1.889 0.751 -1.12
3} 1.718 0.049505 0.28 4.652022 7/7.731 0.0/6/8 1.889 0.798 -0.81
6 1.583 0.049505 0.28 5.849288 7.124 0.0/67/8 2577 0.7/51 -0.94
7 1.583 0.049505 0.34 4.652022 7.124 0.14983 1.889 0.798 -0.92
8 1.583 0.064935 0.28 4.652022 7.731 0.0/6/8 2577 0.798 -0.61
9 1.718 0.049505 0.28 5.849288 7.124 0.14983 2577 0.798 -1.28
10 1583 0.049505 0.34 4.652022 7/7.731 0.14983 2577 0.751 -0.7
11 1.583 0.064935 0.28 5.849288 7.731 0.14983 1889 0.751 -0.89
12 1.718 0.064935 0.34 5.849288 7.731 0.14983 2577 0.798 -1.04
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The Fourier Amplitude
Sensitivity Test (FAST) Method
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Analysis of Variance (ANOVA)

e Total Variance breakdown:

:Z Z i z: i zn: Vije + -+ + H.O.T.
|

+1 k=i+2

l

First Order Second Order Third Order

The total number of variance terms scales as:

Evaluations = (2Factors — 1) x Simulations

To put this in perspective, for capturing these effects for the PAGOSA simulations:
0.5 hrlday 1year

28 — 1) * 10000 = 145.6 ti
( )+ ) 1 sim 24 hr 365 days yEQTs Lpi thne
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First Order Effects Indices
 Divide by the total variance to obtain all the sensitivity indices:

n n n n n

=1 j=i+1 =1 j=i+1 k=i+2

First Order Effects Index

Method _________Scalesas________Evalutations Needed

Monte Carlo Factors * Simulatons 80000 (8, 10k)
FAST CM®w,, 5, + 1) 1697 (M=16, w,,,4,=53)
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First Order Effects Indices
 FAST iIs a much quicker method for computing sensitivity
measures over a Monte Carlo approach

e Each parameter Is represented by a cyclic function known as a
search curve that approximates a statistical distribution when

sampled.
« For uniformly distributed variables [1]:

1 1 . .
x(0) = (Xmax — Xmin) [E + ;aSIH(Sln(wH + (P))]'I'xmin

[1] Saltelli, A., Tarantola, S., Chan, K.P.-S., "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output”,
Technometrics, Vol 41, No 1, Feb 1999.
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Uniform Distribution Search Curve

1

x(0) = (Xmax — Xmin) E T ;aSin(Sin(we QD))]'I'xmin

e Where

Xmayx 1S the maximum value of the parameter

Xmin 1S the minimum value of the parameter

w 1S the parameter frequency

@ 1s a random value from a uniform distribution from O to 1

* The phase angle, ¢, serves to improve the sampling of
parameter space and make sampling less regular.

* For each variable of a model, each frequency must be
Incommensurate (orthogonal) such that they do not share
higher order resonant frequencies. (e.g. primes)



0.

Uniform Distribution Search Curve With and*"%#%
Without a Random Phase Angle

 Inclusion of the random phase angle makes the sampling more
“space filling”

10Sz—am'paled ZDEpace (Y1, Y2), No Random Angle Sampled 2D Space (Y1, Y2), With Random Angle
. & . . . . . —~3 . .
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Theory

 The FAST method is essentially applying multiple Fourier filters
to a single data set.

e For an N-dimensional model, the complex Fourier transform is:

X = (x11x2' ...,XN)

f(s) = fe_zmxf(ﬁ)dﬁ = ff f e~ 2MLXaS1 4225+ XNSN) £ (x ) dx  d X ... dxy

RN



Condensing the N-Dimensional Fouriéi>'®
Transform

» Since each parameter can be represented as a cyclic function
x = f(0), this simplifies the N-dimensional Fourier transform
to a transform over a single variable.

F5) = [ e2m=@p(x(0))do
RN
e The transform is applied to the numerical data of the sampled
function to produce f(s).
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Discrete Fourier Transform Coefficients

 Now that f(s) is obtained, the sensitivity measures are
comprised of the coefficients of the discrete Fourier transform
as:

1

T
1 "
Aj = - ff(s) cos(js)ds Bj = oy
—T1T

J f(s)sin(js) ds

A; = A]2 + sz where j=1,2,...,N

* This gives the total variance from a single parameter for each jth
higher order resonance frequency.
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Sensitivity Measures
* Next, sum the A; over each higher order resonance to get the

variance contributed by the it" parameter and the total model

variance:
n n
Di:ZZpr DZZZA]
p=1 j=1

* The first order effects sensitivity measure by FAST is then
simply:
D;

SiFAST — -
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