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Outline
• The BRL Shaped-Charge Geometry in PAGOSA
• Mesh Refinement Study
• Surrogate Modeling using a Radial Basis Function Network 

(RBFN)
• Ruling out parameters using Sensitivity Analysis

• Equation of State Study
• Design of Experiments
• Accuracy Study for Minimizing Prediction Error
• Sensitivity Analysis using the Fourier Amplitude Sensitivity Test (FAST)

• Uncertainty Quantification (UQ) Methodology
• Forward Propagation Using Monte Carlo Simple Random Sampling

• Sensitivity Analysis (SA) Methodology
• Fourier Amplitude Sensitivity Test (FAST) for First Order Sensitivity 
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• To decrease simulation time, the problem is constructed as 2-D with symmetry 
about the z-axis

• Since this a shaped-charge with a projectile, the jet tip velocity was chosen as the 
output metric-of-interest

The BRL Shaped-Charge Geometry and Materials

Comp B

Tetryl

SS Case

Cu Liner

t = 0 μs t = 15 μs t = 30 μs

Material Strength Model Equation of 
State

Copper Modified 
Steinberg-Guinan Us - Up

Stainless Steel Modified 
Steinberg-Guinan Us - Up

Composition 
B ----- Jones-Wilkins-

Lee

Tetryl ----- Jones-Wilkins-
Lee

Materials of the BRL Shaped-Charge
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Mesh Refinement Study
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Comparing Simulations
• For Uncertainty and Sensitivity Analyses, 

results must be within a numerically stable 
solution region to reduce the influences of 
mesh size and numerical noise.

• The effect of mesh size was investigated at 
1000 μm, 600 μm, 200 μm, 100 μm.

• A simulated Photon Doppler Velocimeter
(PDV) positioned parallel to the z-axis at a 
0.5 mm offset was used to quantify the jet tip 
velocity and compare simulations.
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Results of the Mesh Refinement Study
• Simulations at 1000 μm and 

600 μm ejected a small 
particle near the PDV axis 
while at 200 μm and 100 μm
the jet tip forked.

1000/600 μm         200/100 μm
extract_pdv.py
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Surrogate Modeling using a 
Radial Basis Function Network 
(RBFN)
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Surrogate Modeling of PAGOSA Simulations
• For both Uncertainty and Sensitivity

Analyses, thousands of computations
are necessary and is not feasible for 
large-scale simulations of complex 
processes.

• Surrogate models allow for the 
approximation of simulation output
with a much lower computational cost
with the trade-off of less accuracy.

• A Radial Basis Function Network 
(RBFN) was used for the shaped-charge 
data due to its ability to model nonlinear 
responses [1].

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective
Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005. 
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Surrogate Modeling of PAGOSA Simulations
• For both Uncertainty and Sensitivity

Analyses, thousands of computations
are necessary and is not feasible for 
large-scale simulations of complex 
processes.

• Surrogate models allow for the 
approximation of simulation output
with a much lower computational cost
with the trade-off of less accuracy.

• A Radial Basis Function Network 
(RBFN) was used for the shaped-charge 
data due to its ability to model nonlinear 
responses [1].

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective
Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005. 
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Radial Basis Function Network (RBFN) Theory
• Model is approximated with the function [1,2]:

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

λ𝑖𝑖𝜑𝜑 | 𝑥𝑥 − 𝑥𝑥𝑖𝑖 | =�
𝑖𝑖=1

𝑛𝑛

λ𝑖𝑖𝜑𝜑 𝑟𝑟𝑖𝑖
Where,
• 𝑥𝑥 is the vector of sample points
• 𝑥𝑥𝑖𝑖 is the vector of design points at the ith sampling point
• | 𝑥𝑥 − 𝑥𝑥𝑖𝑖 | is the Euclidean distance of the sample point from the 

design point (radius, 𝑟𝑟𝑖𝑖 )
• λ𝑖𝑖 is the unknown weighting factor for each design point at each 

sampling point
• 𝜑𝜑 is a user-defined basis function

[1] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F., “A Comparative Study of Metamodeling methods for Multiobjective
Crashworthiness Optimization,” Computers and Structures, 83, pp2121-2136, 2005.
[2] Mai-Duy, N., Tran-Cong, T., “Approximation of Function and its Derivatives using Radial Basis Function Networks,” Applied 
Mathematical Modeling, 27, pp197-220, 2003.
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Radial Basis Function Network (RBFN) Basis 
Functions
• Thin Plate: 𝜑𝜑 𝑟𝑟 = 𝑟𝑟2𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑟𝑟2

• Gaussian: 𝜑𝜑 𝑟𝑟 = 𝑒𝑒−𝑐𝑐𝑟𝑟2

• Multiquadric: 𝜑𝜑 𝑟𝑟 = 𝑟𝑟2 − 𝑐𝑐2

• Inverse Multiquadric: 𝜑𝜑 𝑟𝑟 = 1
𝑟𝑟2−𝑐𝑐2

• Where:
𝑟𝑟 = | 𝑥𝑥 − 𝑥𝑥𝑖𝑖 | is the Euclidean distance (vector magnitude)
c is an RBFN constant that can be tuned to minimize error
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Computing the Lambda Matrix for the Radial 
Basis Function Network (RBFN)
• The RBFN formula is solved for λ using a simple matrix inversion:

• This calculation is performed at each time step, producing a set 
of weighting factors for each training data set (𝑓𝑓𝑖𝑖).

• If the phi matrix is singular, the Moore-Penrose Pseudoinverse 
is used.

𝑓𝑓𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖λ𝑖𝑖
λ𝑖𝑖 = 𝜑𝜑𝑖𝑖𝑖𝑖−1𝑓𝑓𝑖𝑖

𝜑𝜑𝑖𝑖𝑖𝑖−1 ≈ 𝜑𝜑𝑖𝑖𝑖𝑖𝑇𝑇 𝜑𝜑𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑖𝑖𝑇𝑇
−1
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Training the Radial Basis Function Network (RBFN)
• In order to use the surrogate model, data to train the RBFN

are needed.
• The number of simulations to fully describe the model 

behavior scales as Levels^Parameters. (2 Levels, 8 
Parameters = 256 Simulations)

• To reduce the number of needed simulations, the 
parameter space is explored systematically using a Design 
of Experiments (DOE) methodology.

• A Fractional Factorial design method is employed in 
Matlab using the script Fractional.m.

• The method reduced the number to 12 simulations for the 
Equation of State study instead of 256.

LA-UR-16-25183
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Ruling Out Strength Model Parameters
• For  a first pass, a simple 

On/Off analysis was used 
determine overall effect on jet 
tip velocity.

• 4 Simulations: Both On, Cu 
Off, SS Off, Both Off

• The copper liner
overwhelmingly controlled
the jet tip velocity response.

• The stainless steel
confinement will be ignored
for later parameter studies. 

LA-UR-16-25183
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Testing for Non-Physical Parameter Combinations of 
the Jones-Wilkins-Lee (JWL) Equation of State (EOS)

• The Monte Carlo sampling routine must not pick a non-physical 
parameter set to ensure appropriate uncertainty analysis.

• The Chapman-Jouguet slope was estimated to determine if the 
parameter set was physically possible (slope < 0).

• JWL parameters estimated from Composition B experiments 
were used as a basis for sampling [1] (assuming P0 = 0, V0 = 1)

[1] Weseloh, W., “JWL in a Nutshell (rev.1),” PAGOSA Technical Note, Los Alamos National Laboratory XTD-SS, LA-UR-14-24318.

Set ρ0 e0 W B1 C1 B2 C2 DetVel CJ Slope

1 1.718 0.0617 0.28 5.849288 7.731 0.149834 2.577 0.7954 -1.04

2 1.694 0.064935 0.28 5.797578 7.623 0.114037 2.541 0.7876 -0.99

3 1.583 0.060095 0.28 4.652022 7.1235 0.130651 2.3745 0.751 -0.85

4 1.717 0.049505 0.34 5.242 7.2114 0.07678 1.8887 0.798 -1.08

LA-UR-16-25183
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Monte Carlo Results of Chapman-Jouguet (CJ) 
State For Composition B

• Each parameter is sampled as 
a Uniform distribution from 
its minimum to maximum 
observed

• CJ State estimated for 10,000 
samples

• All samples were determined 
to produce a negative slope 
(physical).

LA-UR-16-25183
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PAGOSA Jet Tip Velocity Data for Experimental 
Parameter Sets and Design of Experiments (DOE)

LA-UR-16-25183

CompB DetVel = 0.798 cm/μs
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PAGOSA Jet Tip Velocity Data for Experimental 
Parameter Sets and Design of Experiments (DOE)

?

LA-UR-16-25183

CompB DetVel = 0.798 cm/μs

Set ρ0 e0 W B1 C1 B2 C2 DetVel CJ Slope

DOE 3 1.718 0.064935 0.34 4.652022 7.124 0.14983 2.577 0.751 -1.06

DOE 4 1.718 0.064935 0.28 4.652022 7.124 0.14983 1.889 0.751 -1.12

DOE 9 1.718 0.049505 0.28 5.849288 7.124 0.14983 2.577 0.798 -1.28 18



PAGOSA Jet Tip Velocity Data for Experimental 
Parameter Sets and Design of Experiments (DOE)

?

DOE 4: Copper liner disconnects 
from confinement canister

LA-UR-16-25183

CompB DetVel = 0.798 cm/μs
Experimental                                    DOE 4 
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PAGOSA Jet Tip Velocity Data for Experimental 
Parameter Sets and Design of Experiments (DOE)

?

*Uncertainty and Sensitivity 
Analyses will be limited to less than 
20 μs to use all data sets.

LA-UR-16-25183

CompB DetVel = 0.798 cm/μs
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Radial Basis Function Network (RBFN) Error Study 
for the  Inverse Multiquadric Basis Function

𝜑𝜑 𝑟𝑟 =
1
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Radial Basis Function Network (RBFN) Error 
Study for the Multiquadric Basis Function

𝜑𝜑 𝑟𝑟 = 𝑟𝑟2 − 𝑐𝑐2
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Radial Basis Function Network (RBFN) Error 
Study for the Thin Plate Basis Function

𝜑𝜑 𝑟𝑟 = 𝑟𝑟2𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑟𝑟2
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Radial Basis Function Network (RBFN) Error 
Study for the Gaussian Basis Function

𝜑𝜑 𝑟𝑟 = 𝑒𝑒−𝑐𝑐𝑟𝑟2
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Uncertainty Quantification (UQ) 
for the BRL Shaped-Charge Jet 
Velocity
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What is uncertainty?
• Qualitatively, Uncertainty is the possibility of error in 

experimentation and modeling.
• Quantitatively, uncertainty is a mathematical description

of the expected range of values due to natural variation in 
experimentally measured quantities due to imprecision of 
measurement systems and material manufacturing 
methods.

• Since models are calibrated with uncertain experimental 
data, models will inherit this uncertainty.

• We can use various computational techniques to quantify the 
effects of uncertainty on modeling (forward propagation).

• If the distribution of the output is known (posterior), then a 
parameter’s uncertainty can be approximated (inverse method)

LA-UR-16-25183
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Uncertainty Quantification Methods for 
Experiments and Modeling
• Experimental Uncertainty

• Statistical Confidence Intervals

• Modeling Uncertainty
• Propagation of Uncertainty

• Truncated Taylor Series Expansion Method [1]
• Monte Carlo (MC) Methods

• Random Sampling (Forward Propagation Method)
• Acceptance/Rejection Sampling [2]
• Markov-Chain Monte Carlo (MCMC) (Inverse Method) [3]

• Generalized Polynomial Chaos (gPC) [4]
• Latin Hypercube Sampling (Stratified Systematic Sampling)

[1] Coleman HW, Steel WG. Experimentation and Uncertainty Analysis for Engineers. 2nd Ed. New York: John Wiley and Sons; 1999.
[2] Martino, L, Miguez, J. Generalized rejection sampling schemes and applications in signal processing. Signal Processing. V90:11, 2981-2995. 2010.
[3] Moral, PD, Doucet, A, Jasra, A. Sequential Monte Carlo Samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology), V68:3, 

411-436. 2006.
[4] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.

*Large-scale simulations 
rely on surrogate models to 
lower computational costs

LA-UR-16-25183
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Monte Carlo (MC) Simple Random Sampling for 
Uncertainty Propagation
• MC methods seek to propagate known (or assumed) statistical 

distributions through a model to determine the amount of 
variance in output

• This is done by sampling randomly from representative 
statistical distributions (priors) for each parameter of interest in 
a model

• Parameter sets are mapped through the model and descriptive 
statistics and histograms are collected to quantify the posterior 
statistical distribution.

LA-UR-16-25183
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Monte Carlo Random Sampling Method 
Workflow

Initial Parameters and 
associated distributions

B

A C

Randomly sample from 
parameter distributions
Build randomized 
parameter set

Randomizer
Initialization

Model EvaluationRandomizer

Evaluate MSF model 
life regimes for 
randomized parameter 
set.

Output Recording
Store model output for 
analysis

Repeat!

Analyze Results
Get descriptive 
statistics of output. 
Determine output 
distribution

Complete?

LA-UR-16-25183
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Uncertainty Resulting from Variation in Jones-
Wilkins-Lee Parameters for Composition B

N = 100,000

LA-UR-16-25183

30



Uncertainty Resulting from Variation in Jones-
Wilkins-Lee Parameters for Composition B

Simulations = 100,000

𝑃𝑃 𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗 < 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

LA-UR-16-25183
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Sensitivity Analysis (SA) for the 
BRL Shaped-Charge Jet Velocity

LA-UR-16-25183
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What is meant by “Sensitivity Analysis”?
• Sensitivity Analysis (SA) is a general idea for measuring a 

parameter’s influence on modeling output.
• Two main analysis types: Local and Global
• Local methods can give an idea of a how influential a 

parameter is but only examines a single point within the 
entirety of the a model’s N-dimensional input space.

• Analysis of Variance (ANOVA) global methods seek to 
describe the contribution of a given parameter to the total 
variance of model output by passing the parameter’s 
distribution through the model.

LA-UR-16-25183
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Sensitivity Analysis Methods for Modeling
• Local Methods

• Partial derivatives [1] via perturbation method

• Global Methods
• First Order Effects Index [2]

• Monte Carlo method
• Fourier Amplitude Sensitivity Testing (FAST) [2]

• Total Effects Index [3]

[1] Coleman HW, Steel WG. Experimentation and Uncertainty Analysis for Engineers. 2nd Ed. New York: John Wiley and Sons; 1999.
[2] Saltelli, A., Tarantola, S., Chan, K.P.-S., "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output", 

Technometrics, Vol 41, No 1, Feb 1999.
[3] Saltelli, A., Paola, A., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., “Variance-based sensitivity analysis of model output. Design and 

estimator for the total sensitivity index,” Computer Physics Communications, Vol 181, pp 259-270, 2010.

Large-scale simulations rely 
on surrogate models to lower 
computational costs

LA-UR-16-25183
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Global Methods: First Order Effects Index
• Analysis of Variance (ANOVA) method
• First order effects indices measure a parameters direct 

contribution to the overall model variance

• Where,
𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌|𝑥𝑥𝑖𝑖 is the variance of model Y by varying parameter 𝑥𝑥𝑖𝑖 alone
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) is the total variance of model Y by varying all parameters together

• Monte Carlo methods can be used to get these quantities 
directly, however this can be very computationally expensive 
(9x104 versus 1704 function evaluations)

𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌|𝑥𝑥𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

LA-UR-16-25183
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Fourier Amplitude Sensitivity Test (FAST) First Order 
Effects Indices for Jones-Wilkins-Lee Parameters of 
Composition B
• Detonation Velocity (Vdet), 

Initial Density (ρ0), and C1
controls initial liner 
velocity

• B1 controls majority of 
initial jet formation while 
B2 controls late time 
formation

• W will be ignored as 
insignificant (S < 0.1)

LA-UR-16-25183

𝑃𝑃 = 𝑓𝑓
𝑊𝑊𝑊𝑊
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𝐶𝐶1𝑉𝑉 −𝑊𝑊
𝐶𝐶1𝑉𝑉

+ 𝐵𝐵2
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Uncertainty and Sensitivity for PAGOSA 
Simulations Due to Variation in Jones-Wilkins-
Lee Parameters

LA-UR-16-25183
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Summary
• A mesh convergence study was used to ensure that solutions 

were numerically stable by comparing PDV data between 
simulations.

• A Design of Experiments (DOE) method was used to reduce the 
simulation space to study the effects of the Jones-Wilkins-Lee 
(JWL) Parameters for the Composition B main charge.

• Uncertainty was quantified by computing the 95% data range 
about the median of simulation output using a brute force 
Monte Carlo (MC) random sampling method.

• Parameter sensitivities were quantified using the Fourier 
Amplitude Sensitivity Test (FAST) spectral analysis method 
where it was determined that detonation velocity, initial density, 
C1, and B1 controlled jet tip velocity.

LA-UR-16-25183
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Future Work/Improvements
• Improve parameter sampling method to ensure 

thermodynamical consistency for the Jones-Wilkins-Lee (JWL) 
Equation of State (EOS) (Implement rejection criterion)

• Investigate effects of variation in parameters from both EOS’s 
and strength models together ( EOS: Copper Liner, CompB, 
Steel, Tetryl Booster; Strength: Copper Liner)

LA-UR-16-25183
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Questions?

40



Appendix
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Forward Propagation Monte Carlo Method

Posterior DistributionPrior Distribution(s)

Monte 
Carlo 

Simple 
Random 
Sampling

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑛𝑛

Model
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Inverse Monte Carlo Method

Posterior DistributionPrior Distribution(s)

Markov-
Chain 
Monte 
Carlo 

Methods

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑛𝑛

Model
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Required Python Packages for the Included 
Analysis Scripts
• NumPy – multi-dimensional array support
• SciPy – library of scientific tools
• MatPlotLib – Matlab-like plotting package

The installation method will vary depending on your platform 
(Windows, Unix) and Python installation (basic,  Anaconda).

LA-UR-16-25183
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Summary of Scripts Used
• Fractional.m – Fractional Factorial Design of Experiments (DOE)
• Taguchi.m – Taguchi Design of Experiments (DOE)
• pdv_read.py – Python extractor for PAGOSA PDV data
• xy_interp.py – Linear interpolator to ensure that all datasets are in the 

same x coordinates. Can also be used to shorten datasets.
• sgfilter.py – Savitsky-Golay smoothing algorithm for noisy datasets
• rbfTrain.py – Training script for investigating error using four 

implemented basis functions
• UQSA.py – Automated routines for uncertainty quantification and 

sensitivity analysis

LA-UR-16-25183
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Design of Experiments (DOE) Matrix for BRL 
Shaped-Charge Simulation Study

Set ρ0 e0 W B1 C1 B2 C2 DetVel CJ Slope

1 1.718 0.049505 0.34 5.849288 7.731 0.07678 1.889 0.751 -0.98

2 1.583 0.064935 0.34 5.8492888 7.124 0.07678 1.889 0.798 -0.97

3 1.718 0.064935 0.34 4.652022 7.124 0.14983 2.577 0.751 -1.06

4 1.718 0.064935 0.28 4.652022 7.124 0.14983 1.889 0.751 -1.12

5 1.718 0.049505 0.28 4.652022 7.731 0.07678 1.889 0.798 -0.81

6 1.583 0.049505 0.28 5.849288 7.124 0.07678 2.577 0.751 -0.94

7 1.583 0.049505 0.34 4.652022 7.124 0.14983 1.889 0.798 -0.92

8 1.583 0.064935 0.28 4.652022 7.731 0.07678 2.577 0.798 -0.61

9 1.718 0.049505 0.28 5.849288 7.124 0.14983 2.577 0.798 -1.28

10 1.583 0.049505 0.34 4.652022 7.731 0.14983 2.577 0.751 -0.7

11 1.583 0.064935 0.28 5.849288 7.731 0.14983 1.889 0.751 -0.89

12 1.718 0.064935 0.34 5.849288 7.731 0.14983 2.577 0.798 -1.04

LA-UR-16-25183

46



The Fourier Amplitude 
Sensitivity Test (FAST) Method
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Analysis of Variance (ANOVA)
• Total Variance breakdown:

𝑉𝑉𝑇𝑇 = �
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𝑉𝑉𝑖𝑖 + �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑉𝑉𝑖𝑖𝑗𝑗 +�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

�
𝑘𝑘=𝑖𝑖+2

𝑛𝑛

𝑉𝑉𝑖𝑖𝑖𝑖𝑘𝑘 + ⋯ + 𝐻𝐻.𝑂𝑂.𝑇𝑇.

First Order      Second Order                 Third Order

The total number of variance terms scales as:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

28 − 1 ∗ 10000 ∗
0.5 ℎ𝑟𝑟
1 𝑠𝑠𝑠𝑠𝑠𝑠

1 𝑑𝑑𝑑𝑑𝑑𝑑
24 ℎ𝑟𝑟

1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
365 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 145.6 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

To put this in perspective, for capturing these effects for the PAGOSA simulations:
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Fourier Amplitude Sensitivity Test (FAST) for 
First Order Effects Indices
• Divide by the total variance to obtain all the sensitivity indices:

1 = �
𝑖𝑖=1

𝑛𝑛

𝑆𝑆𝑖𝑖 + �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑆𝑆𝑖𝑖𝑗𝑗 +�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

�
𝑘𝑘=𝑖𝑖+2

𝑛𝑛

𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘 + ⋯ + 𝐻𝐻.𝑂𝑂.𝑇𝑇.

First Order Effects Index

Method Scales as Evalutations Needed
Monte Carlo 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ons 80000 (8, 10k)
FAST 2𝑀𝑀ω𝑚𝑚𝑚𝑚𝑚𝑚 + 1 1697 (M=16, ω𝑚𝑚𝑚𝑚𝑚𝑚=53)
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Fourier Amplitude Sensitivity Testing (FAST) for 
First Order Effects Indices
• FAST is a much quicker method for computing sensitivity 

measures over a Monte Carlo approach
• Each parameter is represented by a cyclic function known as a 

search curve that approximates a statistical distribution when 
sampled.

• For uniformly distributed variables [1]:

𝑥𝑥 𝜃𝜃 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1
2

+ 1
𝜋𝜋

asin(sin 𝜔𝜔𝜔𝜔 + 𝜑𝜑 ) +𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

[1] Saltelli, A., Tarantola, S., Chan, K.P.-S., "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output", 
Technometrics, Vol 41, No 1, Feb 1999.
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Uniform Distribution Search Curve

• Where
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value of the parameter
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value of the parameter
𝜔𝜔 is the parameter frequency
𝜑𝜑 is a random value from a uniform distribution from 0 to 1

• The phase angle, 𝜑𝜑, serves to improve the sampling of 
parameter space and make sampling less regular.

• For each variable of a model, each frequency must be 
incommensurate (orthogonal) such that they do not share 
higher order resonant frequencies. (e.g. primes)

𝑥𝑥 𝜃𝜃 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1
2

+ 1
𝜋𝜋

asin(sin 𝜔𝜔𝜔𝜔 + 𝜑𝜑 ) +𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
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Uniform Distribution Search Curve With and 
Without a Random Phase Angle
• Inclusion of the random phase angle makes the sampling more 

“space filling”
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Fourier Amplitude Sensitivity Testing (FAST) 
Theory
• The FAST method is essentially applying multiple Fourier filters 

to a single data set.
• For an N-dimensional model, the complex Fourier transform is:

𝑓𝑓 𝑠𝑠 = �
𝑹𝑹𝑁𝑁

𝑒𝑒−2𝜋𝜋𝜋𝜋𝑥𝑥𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 = �…�𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑥𝑥1𝑠𝑠1+𝑥𝑥2𝑠𝑠2+⋯𝑥𝑥𝑁𝑁𝑠𝑠𝑁𝑁)𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 …𝑑𝑑𝑥𝑥𝑁𝑁

𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁
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Condensing the N-Dimensional Fourier
Transform
• Since each parameter can be represented as a cyclic function 
𝑥𝑥 = 𝑓𝑓(𝜃𝜃), this simplifies the N-dimensional Fourier transform 
to a transform over a single variable.

• The transform is applied to the numerical data of the sampled 
function to produce f(s).

𝑓𝑓 𝑠𝑠 = �
𝑹𝑹𝑁𝑁

𝑒𝑒−2𝜋𝜋𝜋𝜋𝑥𝑥(𝜃𝜃)𝑓𝑓 𝑥𝑥(𝜃𝜃) 𝑑𝑑𝜃𝜃
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Fourier Amplitude Sensitivity Testing (FAST) 
Discrete Fourier Transform Coefficients
• Now that f(s) is obtained, the sensitivity measures are 

comprised of the coefficients of the discrete Fourier transform 
as:

• This gives the total variance from a single parameter for each jth

higher order resonance frequency.

𝐴𝐴𝑗𝑗 =
1

2𝜋𝜋
�
−𝜋𝜋

𝜋𝜋

𝑓𝑓 𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑 𝐵𝐵𝑗𝑗 =
1

2𝜋𝜋
�
−𝜋𝜋

𝜋𝜋

𝑓𝑓 𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑

Λ𝑗𝑗 = 𝐴𝐴𝑗𝑗2 + 𝐵𝐵𝑗𝑗2 where j=1,2,…,N
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Fourier Amplitude Sensitivity Testing (FAST) 
Sensitivity Measures
• Next, sum the Λ𝑗𝑗 over each higher order resonance to get the 

variance contributed by the ith parameter and  the total model 
variance: 

• The first order effects sensitivity measure by FAST is then 
simply:

𝐷𝐷𝑖𝑖 = 2 �
𝑝𝑝=1

𝑛𝑛

Λ𝑝𝑝𝜔𝜔 𝐷𝐷 = 2�
𝑗𝑗=1

𝑛𝑛

Λ𝑗𝑗

𝑆𝑆𝑖𝑖𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐷𝐷𝑖𝑖
𝐷𝐷
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