
Multi-Variate Weighted Leja Sequences for Polynomial
Approximation and UQ

John D. Jakeman

Senior Member of Techincal Staff
Optimization and Uncertainty Quantification Department

Sandia National Laboratories
Albuquerque, NM USA

Joint work with Akil Narayan

Sandia National Laboratories is a multi program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

SAND2015-6579C

One-dimensional un-weighted interpolation

Given the best N -th order polynomial approximation p? of a function f the
error of the interpolant fN based upon a set of N + 1 random variable
realizations ΞN+1 can be bounded by

‖f − fN (Ξ)‖∞ ≤ (ΛN (Ξ) + 1)‖f − p?‖∞
where the Lebesgue constant for the grid Ξ is given by

ΛN (Ξ) = max
ξ∈[a,b]

λN (ξ)

The Lebesgue constant is the maximum value of the the Lebesgue function

λN (ξ) =
NX
n=1

|ln(ξ)|

where ln(ξ) are the Lagrange polynomials

ln =
NY
i=1
n6=i

ξ − ξi
ξn − ξi

Multivariate weighted interpolation
The 1D interpolation error bound generalizes to a d-dimensional ω-weighted
polynomial subspace V with N terms.

‖f − fN (Ξ)‖L∞(ω) ≤ (ΛN (Ξ) + 1)‖f − p?‖L∞(ω)

ΛV (Ξ) = max
ξ∈Iξ

p
ω(ξ)

NX
n=1

˛̨̨̨
˛ ln(ξ)p

ω(ξn)

˛̨̨̨
˛

V is typically the least degree space of degree at most p, such that
N =

`
d+p
p

´
If we can build a multivariate interpolant and generate a point set that
minimizes the Lebesgue constant we can generate very efficient PCE
interpolants.

The Lebesgue constant is analogous to the condition number of least
squares systems. Let p be the polynomial obtained using the coefficients c.
Then letting p̂ be the polynomial obtained by slightly perturbing the
coefficients c to ĉ we can write

‖p− p̂‖
‖p‖ ≤ κ‖c− ĉ‖‖c‖

Multivariate weighted interpolation
The 1D interpolation error bound generalizes to a d-dimensional ω-weighted
polynomial subspace V with N terms.

‖f − fN (Ξ)‖L∞(ω) ≤ (ΛN (Ξ) + 1)‖f − p?‖L∞(ω)

ΛV (Ξ) = max
ξ∈Iξ

p
ω(ξ)

NX
n=1

˛̨̨̨
˛ ln(ξ)p

ω(ξn)

˛̨̨̨
˛

V is typically the least degree space of degree at most p, such that
N =

`
d+p
p

´
If we can build a multivariate interpolant and generate a point set that
minimizes the Lebesgue constant we can generate very efficient PCE
interpolants.

The Lebesgue constant is analogous to the condition number of least
squares systems. Let p be the polynomial obtained using the coefficients c.
Then letting p̂ be the polynomial obtained by slightly perturbing the
coefficients c to ĉ we can write

‖p− p̂‖
‖p‖ ≤ κ‖c− ĉ‖‖c‖

2
0
1
5
-0

7
-2

3

Weighted Leja Sequences for UQ

Multivariate weighted interpolation

We use the sqrt of the weight function because Error involving Lebesgue constant
is in terms of L-infty but we want to deal with L-2. We have ‖f‖∞ = max(fω̃)
and ‖f‖2 =

R
(f2ω) so to make consistent we want ω̃ =

√
ω.

Zeros of Chebyshev polynomials have Lebesgue constant that grows ∼ log N

Zeros of Hermite polynomials have similar growth is sqrt of weight function is

used but not if just weight function is used.

Multivariate interpolation: Pivoted LU factorization

I Set degree p such that N ≥M
I Specifying an ordering of the basis φ

I Compute [L,U, P] = LU(WV)

I Solve c = (LU)−1PWf

LU factorization requires a square matrix, if M 6= N then a subset of the
basis must be (arbitrarily) chosen.

× × × × × ×
× × × × ×
× × × × ×

V
(1)
41 × × × ×
× × × × ×





|α| = 1 |α| = 2

× × × × × ×
V

(1)
41 × × × ×

× × × ×
× × × ×
× × × ×





|α| = 1 |α| = 2

Multivariate interpolation: Least Orthogonal Interpolation

I Compute a pivoted degree-block LU factorization PV = LUH

I Solve c = HTU−1L−1f

I Degree p is lowest degree that interpolates the data (allows for
degenerate points).

I OLI is designed for M ≤ N .

I OLI uses a linear combination of all terms |α| ≤ p.

× × × × × ×
× × × × ×
× × × × ×

V
(1)
41 V

(1)
42 × × ×

× × × × ×





|α| = 1 |α| = 2

× × × × × ×
V

(1)
41 V

(1)
42 × × ×

· · × × ×
· · × × ×
· · × × ×





|α| = 1 |α| = 2

Un-weighted LU-Leja interpolation sequences: construction
Given ΞN , choose ξN+1 such that

ξN+1 = arg max
y∈Y⊂Rd

|detV (ΞN ∪ y)|

Row pivoted LU factorization can be used to perform a greedy search for
Leja sequences over a finite candidate set proceeds as follows:

I Define large candidate set Ξcand.
I Form Vandermonde matrix V , Vmn = φn(ξcand

m)
I Factorize [L,U, P] = LU(V)
I Select ‘best’ points. Ξcand[P [1 : M]]. The first M pivoted rows define

the discrete Leja sequence.

Pivoted LU attempts to maximize the determinant of V
I Sequence is dependent on the ordering of φn
I Leja sequences have only been built for un-weighted spaces w(ξ) = 1.

× × × × × ×
× × × × ×
× × × × ×

V
(1)
41 × × × ×
× × × × ×





|α| = 1 |α| = 2

× × × × × ×
V

(1)
41 × × × ×

× × × ×
× × × ×
× × × ×





|α| = 1 |α| = 2

Un-weighted OLI-Leja interpolation sequences: construction

Row pivoted LU factorization can be used to peform a greedy search for
Leja sequences over a finite candidate set proceeds as follows:

I Use pivots from [L,U,H, P] = OLI(V) to select best points

I This again attempts to maximize the determinant of V through
pivoting

I Sequence is not dependent on the ordering of φn

I A linear combination of basis functions is used to select pivot points
(rows)

I Sequences will be more stable than LU based sequences

× × × × × ×
× × × × ×
× × × × ×

V
(1)
41 V

(1)
42 × × ×

× × × × ×





|α| = 1 |α| = 2

× × × × × ×
V

(1)
41 V

(1)
42 × × ×

· · × × ×
· · × × ×
· · × × ×





|α| = 1 |α| = 2

Weighted Leja interpolation sequences

To apply Leja sequences to weighted spaces we introduce the matrix

W , wm,m =
p
ω(ξm)

Weighted LU-Leja sequences can be obtained via

[L,U, P] = LU(WV)

and OLI-Leja sequences via

[L,U,H, P] = OLI(WV)

OLI Leja sequences: Continuous-greedy optimization

Using current sequence ΞN build interpolants
of all polynomial basis functions of degree
|α| = k

pα(ξ) = I[φα(ξ); ΞN]

The objective function is

F (ξ) = ω(ξ)
X
|α|=k

(φα(ξ)− pα(ξ))2 = ω(ξ)
X
|α|=k

q2
α(ξ)

The j-th derivative of the objective is

∂F (ξ)

∂ξj
=
X
|α|=k

qα(ξ)

„
qα(ξ)

∂ω(ξ)

∂ξj
+ 2ω(ξ)

∂qα(ξ)

∂ξj

«

OLI Leja sequences: Continuous-greedy optimization

Using current sequence ΞN build interpolants
of all polynomial basis functions of degree
|α| = k

pα(ξ) = I[φα(ξ); ΞN]

The objective function is

F (ξ) = ω(ξ)
X
|α|=k

(φα(ξ)− pα(ξ))2 = ω(ξ)
X
|α|=k

q2
α(ξ)

The j-th derivative of the objective is

∂F (ξ)

∂ξj
=
X
|α|=k

qα(ξ)

„
qα(ξ)

∂ω(ξ)

∂ξj
+ 2ω(ξ)

∂qα(ξ)

∂ξj

«

2
0
1
5
-0

7
-2

3

Weighted Leja Sequences for UQ

OLI Leja sequences: Continuous-greedy optimization

Scalar LU at iteration i maximizes the determinant by row pivoting (based upon

column i). It orthogonalizes (subtracting a scalar from column i) each row to all

factorized rows. OLI maximizes the determinant by row pivoting, but instead of

subtracting scalar it must orthogonalize all columns corresponding to basis

functions of degree k. The objective function is the row norm (column norm if we

are using QR on V T
k , where Vk is Vandermonde formed by all bases of degree k.

Like scalar LU which chooses the largest scalar pivot, OLI chooses the largest

row-norm.

Continuous OLI Leja sequences: Algorithm

OLI continuous Leja sequence

Build interpolants of bases in Π|α|=k
pα(ξ) = OLI[φα(ξ); ΞM], k++ if M ≥ N

Sample objective at candidate points

F = F (Ξcand), Ξcand = {ξi}si=1

F (ξ) = ω(ξ)
∑

|α|=k q
2
α(ξ)

Use largest values as initial points for optimization

Ξ̃ = argsort[F], Ξinit = {ξi : ξi ∈ Ξ̃ , i ≤ t}

Find local optima

F local = BFGS[Ξinit]

∂F (ξ)
∂ξj

=
∑

|α|=k qα(ξ)
(
qα(ξ)∂ω(ξ)

∂ξj
+ 2ω(ξ)∂qα(ξ)

∂ξj

)
Add global optima to the Leja sequence

ΞM+1 = ΞM ∪ ξ?, ξ? = arg maxF local

Properties of Leja sequences
1D Leja sequences distribute like the correspond like the corresponding
Gauss quadrature nodes

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

z

D
is

tr
ib

u
ti

o
n

fu
n
c
ti

o
n

F
Z

5
0

Leja points

Arcsine distribution

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

zC
o
n
tr

a
c
te

d
d
is

tr
ib

u
ti

o
n

fu
n
c
ti

o
n

F
Z

5
0
/
√

5
0

Leja points

Limit distribution

Leja sequences has compact support even if Iξ does not

×2
√

p

p = 2

×2
√

p

p = 3

×2
√

p

p = 4

.

Lebesgue constants of Leja sequences

The least orthogonal Lagrange basis functions are

lj(ξ) =

NX
n=1

c(j)n φn(ξ), C = HTU−1L−1, C = [c(1), · · · , c(n)]

We compute the Lebesgue constant via multi-start local optimization
(BFGS)

ΛV (Ξ) = max
ξ∈Iξ

p
ω(ξ)

NX
n=1

˛̨̨̨
˛ ln(ξ)p

ω(ξn)

˛̨̨̨
˛

Lebesgue constants of un-weighted Leja sequences

100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

0 14 20 25 29 32 35 38 41 43

N

Λ
Polynomial degree

Λ (Discrete LOI-Leja)

Λ (Discrete LU-Leja)

100 200 300 400 500 600 700 800 900 1,000
0

200

400

600

800

012 3 4 5 6 7

N

Λ

Polynomial degree

Λ (Discrete LOI-Leja)

Λ (Discrete LU-Leja)

100 200 300 400 500 600 700 800 900 1,000
0

200

400

600

800

1,000

1,200

1,400

1,600

01 2 3

N

Λ

Polynomial degree

Λ (Discrete LOI-Leja)

Λ (Discrete LU-Leja)

Lebesgue constants of weighted Leja sequences

100 200 300 400 500 600 700 800 900 1,000

10−1

102

105

108

1011

1014

1017

012 3 4 5 6 7

N

Λ

Polynomial degree

Λ (Discrete LOI-Leja)

Λ (Discrete LU-Leja)

100 200 300 400 500 600 700 800 900 1,000

100

101

102

103

104

105

106

107

108

012 3 4 5 6 7

N

Λ

Polynomial degree

Λ (Discrete LOI-Leja)

Λ (Discrete LU-Leja)

Interpolation on Leja sequences: Example

We want to approximate q(ξ) = u(1/3, ξ) where

− d

dx

»
a(x, ξ)

du

dx
(x, ξ)

–
= 1 (x, ξ) ∈ (0, 1)× Iξ

u(0, ξ) = u(1, ξ) = 0

with diffusivity log(a(x, ξ)) = ā+ σa
Pd
k=1

√
λkϕk(x)ξk, where

{λk}dk=1 and {ϕk(x)}dk=1 are determined by Ca(x1, x2) = exp
h
− (x1−x2)2

l2c

i
I Compute PCE using LU or OLI interpolation

I Measure accuracy in PCE approximation qΛ by computing
M
−1/2
test ‖q − qΛ‖`2(w) using Mtest = 10000 samples from w(ξ).

Approximation accuracy of un-weighted Leja sequences

101 101.2 101.4 101.6 101.8 102 102.2

10−10

10−7

10−4

10−1

102

x

y
Uniform variables (d=2)

Discrete LU Leja sequence

Discrete OLI Leja sequence

Sobol Sequence

101 101.2 101.4 101.6 101.8 102 102.2 102.4 102.6
10−9

10−7

10−5

10−3

10−1

101

x

y

Uniform variables (d=5)

Discrete LU Leja sequence

Discrete OLI Leja sequence

Sobol Sequence

101 101.2 101.4 101.6 101.8 102 102.2 102.4 102.6

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

x

y

Uniform variables (d=10)

Discrete LU Leja sequence

Discrete OLI Leja sequence

Sobol Sequence

Approximation accuracy of weighted Leja sequences

101 101.2 101.4 101.6 101.8 102 102.2 102.4 102.6
10−9

10−7

10−5

10−3

10−1

101

x

y

Gaussian variables (d=5)

Discrete LU Leja sequence

Discrete OLI Leja sequence

101 101.2 101.4 101.6 101.8 102 102.2 102.4 102.6

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

x

y

Beta(2,5) variables (d=10)

Discrete LU Leja sequence

Discrete OLI Leja sequence

Quadrature with Leja sequences

Let {pn}Nn=1, denote family of polynomials orthonormal under ω.

Given data fn we wish to interpolate at the sites ξn, so we seek the
coefficients cn solving the linear problem

V c = f , Vm,n = φn(ξm).

The first row of the matrix V −1 gives us quadrature weights vn defining
the Leja polynomial quadrature rule

QNf '
NX
n=1

vnf(ξn).

Stability
The condition number of the quadrature rule QN is given by

κN =

NX
n=1

|vn|.

100 200 300 400 500
0.9

1

1.1

1.2

Number of nodes N

κ
1 N

100 200 300 400 500
0.9

1

1.1

1.2

Number of nodes N

κ
1 N

50 100 150 200 250 300 350 400
0.9

1

1.1

1.2

Number of nodes N

κ
1 N

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
O

sc
il
la

to
ry

ω
(x

)

Let µ be an integral using some quadrature weights w. Then letting µ̂ be
the integral obtained by slightly perturbing the quadrature weights w to ŵ
we can write ‖µ− µ̂‖

‖µ‖ ≤ κ‖w − ŵ‖‖w‖

