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One-dimensional un-weighted interpolation

Given the best N-th order polynomial approximation p* of a function f the
error of the interpolant fy based upon a set of N 4+ 1 random variable
realizations En 41 can be bounded by

If = fn@E)llee < ANE)+ DIIf =1 [l

where the Lebesgue constant for the grid E is given by
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The Lebesgue constant is the maximum value of the the Lebesgue function

N(§) = Z |1 (€)

where [,,(§) are the Lagrange polynomials
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Multivariate weighted interpolation

The 1D interpolation error bound generalizes to a d-dimensional w-weighted
polynomial subspace V' with N terms.

1f = INE)lLoew) < ANE) + DIIf =P Lo w)
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V' is typically the least degree space of degree at most p, such that
N= (%)
P

If we can build a multivariate interpolant and generate a point set that
minimizes the Lebesgue constant we can generate very efficient PCE
interpolants.

The Lebesgue constant is analogous to the condition number of least
squares systems. Let p be the polynomial obtained using the coefficients c.
Then letting p be the polynomial obtained by slightly perturbing the
coefficients ¢ to ¢ we can write

lp — 2l <k llc — el
lIpll llll
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Multivariate weighted interpolation

We use the sqrt of the weight function because Error involving Lebesgue constant
is in terms of L-infty but we want to deal with L-2. We have || f||oc = max(f®)
and ||f||2 = [(f?w) so to make consistent we want & = v/w.

Zeros of Chebyshev polynomials have Lebesgue constant that grows ~ log N

Zeros of Hermite polynomials have similar growth is sqrt of weight function is
used but not if just weight function is used.



Multivariate interpolation: Pivoted LU factorization

> Set degree p such that N > M

> Specifying an ordering of the basis ¢
» Compute [L,U, P] =LU(WYV)

» Solve c = (LU) 'PW f

LU factorization requires a square matrix, if M # N then a subset of the
basis must be (arbitrarily) chosen.
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Multivariate interpolation: Least Orthogonal Interpolation
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Compute a pivoted degree-block LU factorization PV = LU H
Solve ¢ = HTU'L™'f

Degree p is lowest degree that interpolates the data (allows for
degenerate points).

OLI is designed for M < N.

OLI uses a linear combination of all terms |a| < p.
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Un-weighted LU-Leja interpolation sequences: construction
Given Ey, choose £y, such that

€ny1 = argmax|det V(En Uy)|
yEYCR

Row pivoted LU factorization can be used to perform a greedy search for
Leja sequences over a finite candidate set proceeds as follows:

» Define large candidate set =229,

» Form Vandermonde matrix V', Vi,n = ¢, (£52°)

» Factorize [L, U, P] = LU(V)

» Select ‘best’ points. Z**[P[1 : M]]. The first M pivoted rows define

the discrete Leja sequence.

Pivoted LU attempts to maximize the determinant of V'

» Sequence is dependent on the ordering of ¢,

» Leja sequences have only been built for un-weighted spaces w(€) = 1.
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Un-weighted OLI-Leja interpolation sequences: construction

Row pivoted LU factorization can be used to peform a greedy search for
Leja sequences over a finite candidate set proceeds as follows:

» Use pivots from [L,U, H, P] = OLI(V) to select best points

» This again attempts to maximize the determinant of V' through
pivoting

» Sequence is not dependent on the ordering of ¢,

> A linear combination of basis functions is used to select pivot points
(rows)

» Sequences will be more stable than LU based sequences

laf =1 laf =2 laf =1 laf =2
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Weighted Leja interpolation sequences

To apply Leja sequences to weighted spaces we introduce the matrix
W, Wmm=+Vw(&,,)
Weighted LU-Leja sequences can be obtained via
[L,U, P =LU(WYV)
and OLI-Leja sequences via

[L,U, H, P] = OLL(WV)



OLI Leja sequences: Continuous-greedy optimization

Using current sequence ZEn build interpolants
of all polynomial basis functions of degree
lal =k

pa(§) = I[¢a(€); EN]

The objective function is

F&) =w(®) > ($al€) —pal8)’ =w(&) D qa(€)

|| =k la|=k

The j-th derivative of the objective is

oF(E) 0ul€) o) 90(6)
e = 3 0® (1062219 4 20e) 218))
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OLI Leja sequences: Continuous-greedy optimization

Scalar LU at iteration ¢ maximizes the determinant by row pivoting (based upon
column 7). It orthogonalizes (subtracting a scalar from column %) each row to all
factorized rows. OLI maximizes the determinant by row pivoting, but instead of
subtracting scalar it must orthogonalize all columns corresponding to basis
functions of degree k. The objective function is the row norm (column norm if we
are using QR on VkT, where V}, is Vandermonde formed by all bases of degree k.
Like scalar LU which chooses the largest scalar pivot, OLI chooses the largest

row-norm.



Continuous OLI Leja sequences: Algorithm

OLI continuous Leja sequence

Build interpolants of bases in Iy - ]

Pa(€) = OLI[ga();Eni), k++ if M2 N |

Sample objective at candidate points
F = F(Ecand)a Ecand = {fi}le
F(&) = w(&) Xja—r 12(8)

[ Use largest values as initial points for optimization

= = argsort[F], Sy ={ & €2,i<t}

!

Find local optima
Flocal = BFGS[Einit]

= 2lal= k(Za(E)( kel ) )an )
)

[ Add global optima to the Leja sequence ]

p— — K *
By =EpUE, & =argmax Figeal J




Properties of Leja sequences

1D Leja sequences distribute like the correspond like the corresponding
Gauss quadrature nodes
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Leja sequences has compact support even if Iz does not

p=2 p=3 p=4
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Lebesgue constants of Leja sequences

The least orthogonal Lagrange basis functions are
N .
L&) =) cP¢u(¢), C=HU'L™, C=[,- "]
n=1

We compute the Lebesgue constant via multi-start local optimization
(BFGS)

N

Av(E) = max /w(€) >

¢el;

1n(§)
w(€,)
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Lebesgue constants of un-weighted Leja sequences
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Lebesgue constants of weighted Leja sequences

Polynomial degree
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Interpolation on Leja sequences: Example

We want to approximate q(§) = u(1/3, &) where

i e R @o| =1 @O

dx
u(0,§) =u(1,§) =0
with diffusivity log(a(x,€&)) =a+ o4 22:1 V Ak (x)€g, where
{ i, and {px(x)}f_, are determined by Cq(x1,x2) = exp [7(11?#]

» Compute PCE using LU or OLI interpolation

» Measure accuracy in PCE approximation ga by computing
Mt;lt/Q g — qalls, () using Miese = 10000 samples from w(§).



Approximation accuracy of un-weighted Leja sequences
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Approximation accuracy of weighted Leja sequences

Gaussian variables (d=5)

Beta(2,5) variables (d=10)
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Quadrature with Leja sequences

Let {pn}ﬁ’:l, denote family of polynomials orthonormal under w.

Given data f, we wish to interpolate at the sites &,,, so we seek the
coefficients ¢, solving the linear problem

Ve=f, Vinn = ¢n(€,,)-

The first row of the matrix V! gives us quadrature weights v, defining
the Leja polynomial quadrature rule

N
QNS =Y vaf(€,)
n=1



Stability

The condition number of the quadrature rule Qn is given by

N
KN = Z [vn]-
n=1
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Let p be an integral using some quadrature weights w. Then letting i be
the integral obtained by slightly perturbing the quadrature weights w to w
we can write
e =2l llw =]
1777 (]




