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Motivation: 3D imaging for a 3D world ) et

Widely available 2D imaging or
point-wise measurement
techniques are often insufficient
to resolve 3D flow phenomena

= Repetition needed to capture
spatial statistics
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high-speed video of a ethanol drop
in an air-stream digital holographic measurement
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field
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Outline for talk

Introduction to holography and
the “digital revolution”

Particle measurements

New concepts and
opportunities
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What is holography? A e,

boratories
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Optical method first proposed by Gabor in 1948
1. Coherent light diffracted by particle field forms the object wave, E_
2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?
3. Reconstruction with E, forms virtual images at original particle locations
h-E=(|E |?>+ |E|?)E + |E,|?E, + E’E
| ~ D v
DC term virtual real
image image
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Analog holography ) e,
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Applications of holography
took off with invention of the
laser in 1960

Challenges:

=  Darkroom needed to
process the hologram

= Limited temporal resolution

= Manual post processing

Collier et al, 1971, Optical Holography

Thompson et al, 1967, Appl. Opt.
- - - -

August 12, 2015 Daniel R. Guildenbecher




Digital in-line holography (DIH) ) i
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Holographic plate and wet-chemical processing replaced with digital sensor
= First proposed by Schnars and Juptner in ‘90s

= Advantages: (1) no darkroom, (2) temporal resolution is straight forward,
(3) results can be numerically refocused and post-processed

= Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much
less than resolution of photographic emulsions (order 5,000 line
pairs/mm)

= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (8= 0) is typically utilized
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Numerical refocusing ) e
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Light propagation in a non-absorbing, constant index of refraction medium is
described by the diffraction integral equation:

exp[—jk\/ (E=x)+(n-y) +2° }

JE—x? +(p—y)P +2
" £(&n,0) = complex amplitude at input plane

ydgdn

Ely,2)=— [[ElE,m,2=0)

"  E(x,y,z) = complex amplitude at output plane
=  Mathematical expression of the Huygens-Fresnel principle

This convolution can solved in the frequency domain:
E(x,y,z)=T" [S[E(é,n,z = O)]'G(fx,fy,z)}

= J[]is the Fourier transform

o G(fx,fy,z)=exp[—jkz\/1—/12fxz_ﬁzfsz

=  Numerically evaluated using the FFT

= Visualized via the reconstructed amplitude, A = |E|, or intensity, | = | E|?
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Numerical refocusing ) e
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In digital holography, E(&,7,0) = h(& n)-E,
= h(¢&n) = recorded hologra ity

= E'=complex conjugate

reference wave

Drop .
Trajectory :

In-focus structures are observed at
different depths, z

digital holograms of the breakup of an ethanol drop in an = “Rj ngS" around the in-focus structures
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.) . .
are the out-of-focus virtual images
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DIH in the literature | ) i
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Microscopy

o
Phase (Deg.)

Marquet et al 2005, Opt. Lett.

Particle Image Velocimetry s

atz and Sheng 2010, Annu. Rev. Fluid Mech.
Multiphase Flows

y /7

Sheng et al 2009, J. Fluid Mech. Yao et al 2015, Appl Opt. LA
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Particle measurements



Data processing ) i,
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Acquisition and refocusing of a digital
hologram is relatively
straightforward.

z = 160:0.mm

However...

For quantitative measurements,
methods are required to locate and
measure particles.

Challenge: depth-of-focus problem

The spatial extent of the diffraction pattern limits the angular aperture, Q,
from which a particle is effectively reconstructed (Meng et al, 2004, Meas. Sci. Technol.)

=  From the central diffraction lobe > Q= 24/d

= Using the traditional definition of depth-of-focus, o, based on change of
intensity within the particle center 2> 5= 41/Q3?

= Therefore: for in-line holography, 6= d?/4
= Example: d =300 um, A =532 nm = 6= 170 mm!
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Data processing i) de

Literature contains two basic methods to find the focal plane:

1. Fit a model to the observed diffraction patterns (inverse method)
= Generally accurate with small depth uncertainty
= Limited to objects with known diffraction patterns (spheres)
2. Reconstruct the amplitude (or intensity) throughout depth and apply a
focus metric to find “in-focus” objects
=  No a-priori knowledge of particle shape required

= Accuracy is a strong function of the chosen focus metric
Hybrid method:

= Focus metric is a combination of E '
amplitude minimization and edge =
sharpness maximization . _
= Details in Guildenbecher et al 2013, . -
Appl. Opt.; Gao et al 2013, Opt. g
Express; Gao et al 2014, Appl. Opt.

Gao et al 2014, Appl Opt.
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Data processing ) i,
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The basic DIH system includes:

= Collimated/coherent light source (laser)
= Particle field

= |mage recorder (digital camera)

= DATA ANALYSIS SOFTWARE

Currently each group has their own code:
= Hybrid : Guildenbecher, Gao, et al
= Laplacian: Choi and Lee
= Correlation coefficient: Yang et al
= Minimum edge intensity: Tian et al
= Variance: Palero et al.
= Etc...
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Experimental validation ) e
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___________________________________________

1 spatial filter and 15 beam expansion 27d beam expansion
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= Quasi-stationary particle field
= Polystyrene beads (d =~ 465um) in 10,000 cSt silicone oil
= Settling velocity = 0.8 um/s
= Multiple holograms recorded, displacing the particle
field 2 mm in the z-direction between each acquisition

particle field
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I I
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hologram Detected objects colored by z-position
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Diameter measured from area of the Displacement found by particle

detected 2D morphology matching between successive

= Actual mass median holograms
diameter =465 um = Actual displacement = 2.0 mm
= Measured mass median = Mean detected displacement =
diameter =474 um 1.91 mm +/- 0.81 mm
= Error of 2.0% with respect to = Standard deviation of 1.74 times

actual value mean diameter
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Aerodynamic drop fragmentation ) i
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Drop .
Trajectory i

Experimental configuration: Double-
pulsed laser and imaging hardware as
typically used in PIV

= A4=532nm, 5 ns pulsewidth

= |Interline transfer CCD
(4008 X 2672, 9 um pixel pitch)
= Temporal separation, At = 62 ps,
determined by laser timing

digital holograms of the breakup of an ethanol drop in an
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

Note: without a separate reference wave, coherence length requirements in
DIH are greatly relaxed.

=  Expensive injection seeders are not always needed

= Faster lasers (ps or fs) can be used with some advantages (e.g. Nicolas et
al 2007, Opt. Express)
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Aerodynamic drop fragmentation ) e
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Aerodynamic drop fragmentation ) i
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_ , _ .. StereoDIH
Velocimetry suffers from uncertainty in B sl e S

the out-of-plane (z) position

= A stereo-view configuration is one
solution
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= Eliminates false particle size complexity 160 h lv\ " \\ 0
. . . . i /
and position measurements = Careful calibration required
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Aerodynamic drop fragmentation ) e
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Ensemble averaging of 44 realizations at each condition
= Roughly 10,000 individual drops measured per condition

95 100 105 11

(a)t=0ms (b) t=18.3 ms (c)t=31.4ms (d)t=43.6 ms
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DIH is particularly advantageous for rapid quantification of particle statistics
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High-speed (kHz) DIH )
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Increased temporal resolution is possible using high-speed (kHz rate) cameras
{1, =-165ms Lot i ol w8

Challenges: (1) higher readout noise, fewer pixels, larger pixel pitches
(2) very large data sets (10s of Gb)

| August 12, 2015 Daniel R. Guildenbecher 20



High-speed (kHz) DIH )

Processing of a single hologram can take roughly 30 min on a typical CPU

= Much of that time spent on numerical refocusing:
E(x,y,2)=FFT| FFT[h(En)-G(f,.f,,2) |
= Refocusing to a single depth requires:
(1) calculation of G(f,.f,,2)
(2) multiplication of two large arrays, FFT[h(E,n)]- G(f,.f,,2)
(3) a two-dimensional inverse FFT

Graphical processing units (GPUs) are well suited to these

tasks

= E.g. NVIDIA Tesla K40 GPU, Dual Xeon CPU, Matlab v2014a
with parallel computing toolbox —> per-frame processing
time of ~7 seconds
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= Frame-to-frame particle matching illustrates the depth-of-focus problem

=  With sufficient temporal resolution, particles trajectories can be fit to
temporal models
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High-speed (kHz) DIH ) e
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=  Multi-frame trajectory fitting leads to a 36X reduction in z-uncertainty
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Aluminum drop combustion in propellants ()&
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Motivation: rocket failures can
lead to propellant fires

= Sandia Laboratories is
interested in predicting the
response of objects in this
environment

http://www.cbsnews.com/news/rocket-crash-no-immediate-threat-to-station-but-cause-is-unknown/

Aluminum agglomeration at the surface
yields large reacting drops with high
damage potential

= Prediction requires knowledge of
particle size, velocity, and temperature

high-speed video of a burning propellant
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Aluminum drop combustion in propellants ()&
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= -
double- | ! ' : f
pulsed laser | : ) Pz i

° 1 —
------- A \
VAR '
spatial  collimating camera focal- camera and lens
filter optics plane
propellant

strand

propellant in the text fixture

Propellant: solid-rocket propellant pressed into a pencil size strand

= Combusts from the top surface down, ejecting molten aluminum particles
traveling a few m/s

Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision at 15Hz

Lens: Infinity K2 long distance microscope with CF-4 objective

= ~ 6X magnification
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Aluminum drop combustion in propellants (@) &
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Aluminum drop combustion in propellants ()=
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Algorithms automatically measure unique features of burning aluminum
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Aluminum drop combustion in propellants ()&
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Three strand burns = 5594 images
and 17496 measured drops

N
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~

= Main peak due to agglomerated
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particles ejected from the surface of a burning propellant
captured with 3D hologra(i)%' = 0.00 mdt
i

Sandia
National
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Recorded at
20,000 fps

Camera: Photron
SA-Z
Laser: Coherent
Verdi V6

43,684 frames 2>
15,991 measured
drops
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Aluminum drop combustion in propellants ()&
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DIH gives mass transfer (particle size + velocity)

We really need to quantify the heat transfer (particle and .Il.
gas phase)

= Combination of DIH and two-color pyrometery =
particle size + velocity + temperature

pyrometer front
focal plane
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Aluminum drop combustion in propellants ()&
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1.2 ]
Gas phase temperature can be 1f——Dia  T=3103k
measured using fs/ps CARS 0.8 F — Residual  O2N2TT-2%

)
=
=)
=
S 06
= Advantages compared tons CARS: > g4t
2} n
= Low (mJ) pulse energies = reduces & 0-3?
. . c r
dielectric breakdown » 02k
. . x f
*= Time-delayed probe > eliminates < -04 F+—+—++ 4 +++—+—f++—+—+F+—+—+—
, S 100 150 200 250 300
background signal Raman Shift (cm™)
= Enhanced precision ~ 1% 250
Collimating Lens 200
+= 150/
PROBE VOLUME 8
FoE:?:g 7 O 100-
501

1000 1500 2000 2500 3000 3500 4000 4500
Temperature (K)

500

See poster: Hybrid fs/ps CARS for sooting and metalized flames by Kathryn
Hoffmeister, Sean Kearney, Daniel Guildenbecher, and Caroline Winters
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Pulse-burst DIH i i,
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: igniter in boom box : Photron SAZ + K2 long-
vacuum spatial I I I distance microscope with
f=200 mm filter f=500 mm ! ,X. f 1 CF4 objective
I |
1 |

] ]
e e m - : ! !
50 pm diamond : A ¢ : ND filter +
pinhole I . 1 532 bandpass
| ! filt
periscope o — - ! _____ ! o

QuasiModo 1000
pulse-burst laser,
532 nm

%

boom-box and high-speed DIH imager

Spectral Energies pulse-burst laser
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Sandia

Pulse-burst DIH o

= Beam quality is sufficient for DIH
= Freezes high-speed particles and penetrates through flash and smoke

= Noise due to soot and index-of-refraction gradients



Optical challenges in DIH )
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Coherent imaging is susceptible to:

= |mage distortion through index
of refraction gradients

” ,‘f

z='0.0 mm '
4 i -
! Desired: optical corrections to remove
' these noise sources before recording
i
‘
2 mm
I !

Reconstructed amplitude throughout depth, z Holography configuration for shotgun investigations




Phase-conjugate DIH theory ) i
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——————

e P p——p . —>
Pulsed laser i____J' / b -

< — —
particles with 25% random phase phase conjugate
disturbance at each particle plane mirror

traditional in-

line hologram firstfparticle z-position

Dramatic improvement
compared to
traditional in-line

optircrally restored numériéally re-fbéuéed to hol ogram
hologram first particle z-position

= Phase-conjugate mirror reflects the incoming wave with opposite phase

= Non-linear optical effect achieved through passive means (stimulated Brillouin
scattering) or active means (degenerate four-wave mixing)

= After double passing, the phase disturbance is canceled
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SBS phase-conjugate DIH ) e
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A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

| z | z |
Quanta-Ray Pro 350 " I I " I I
injection seeded, H H
Nd:YAG, 532 nm, H i
~10 ns pulse duration 0 0
CCl, cell
v phase wire in-line =300 mm
conjugate hologram
image plane image plane
LaVision sCMOS + K2 long- LaVision sCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
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SBS phase-conjugate DIH

Without a
disturbance
both views give
similar results

in-line hologram

@ Sandia
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SBS phase-conjugate DIH ) e
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A focused beam in a non-linear medium induces phase conjugation via
stimulated Brillouin scattering (SBS)

= A misaligned lens in the beam path causes a phase disturbance

Quanta-Ray Pro 350

i i —>
injection seeded, i 1 i i
Nd:YAG, 532 nm, H i

~10 ns pulse duration
—> CCl4 cell
phase wire in-line =300 mm
conjugate hologram
image plane image plane
phase d1sturbance
(f=2000 mm)
LaVision sCMOS + K2 long- LaVision sCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective
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SBS phase-conjugate DIH () S
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in-line hologtam phase-conjugate hologram

Phase
conjugation
corrects image
distortion

refocusedi :2 205
SO RERRNNY Y
..h,._mL

@f '*z.:" '*:' ’
See poster: Phase conjugate digital inline holography (PC—DIH) by
Kathryn Hoffmeister, Sean Kearney, and Danlel Guﬂdenbecher
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Ballistic DIH i i,
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Multiple scattering can be reduced through
ps time gating

= Combination with DIH might enable
scatter free 3D imaging through optically

dense media ballistic image of a diesel spray
(Linne et al 2006, Exp. Fluids)

= First proposed by: Trolinger et al 2011,
International Journal of Spray and
Combustion Dynamics

gate transmission

-1 0 1 2
delay [ps]
measured gate transmission

CS, cell

\

Ti:Sapphire, £=250mm s

800 nm, 100 fs

imaging plane

crossed polarizers
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Ballistic DIH i) s
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DIH imaging through a Kerr gate (no scatter sources)

DIH image of a needle recorded with the ballistic configuration (1.6 ps switch delay)

Next step: Explore ballistic DIH through dense scattering sources

= Challenge: Are there sufficient ballistic photons to form a coherent image?

August 12, 2015 Daniel R. Guildenbecher 42




Conclusions i i,
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DIH has many advantages: ... and opportunities for research:
e 3D-3C measurement e Depth-of-focus problem

* Rapid quantification of statistics * Data processing
* Simple optical configuration * Optical improvements
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Where is the reference wave? i) s
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Laser : @ - ° <
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spatial filter  collimating optics particle field CCD

Hologram is the combination of object and reference waves: h = |E_+E,|?
= Reconstruction with E, gives: h-E,= (|E,|*>+ |E,|?)E,+ |E,|%E, + E*E
. J

~ N NN

DC term virtual real
image image

= |n off-axis holography, these terms are spatially separated are we attempt to
reconstruct the original object wave, E,

= Inin-line holography, we actually want to reconstruct the combination of
the reference wave and object wave, E_+E,

= Rearranging: h-E,= |E_|%E, + |E,|%(E+E,) + E’E
A\ S

v v
DC term virtual real
image image
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SBS phase-conjugate DIH )
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in-line hologram phase-conjugate hologram

A hot plate
creates a phase
disturbance in
the air
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SBS phase-conjugate DIH () S
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A butane in-line hologram phase-conjugate hOlOgram

igniter creates
a more severe
phase
disturbance

I mm
—

mfpg};spd to g ‘354 fH{i’l& ‘,,;.,;_

’ , 3 , v,

N

p-w Ar)'w" L "‘ %1&\- -
g

e

e it e o o g S S o

et TX N YO 2
¥ = Dt e e s

| Ml “’W‘“w”"m:
lmm g ”" Al sy

nc‘ 9‘}

| August 12, 2015 Daniel R. Guildenbecher 47




4-wave mixing phase-conjugate DIH ) i
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' ' . a

phase ) in-line CCl, cell
conjugate wire ologram
virtual CCD virtual CCD

LaVision sCMOS + K2 long- LaVision sCMOS + K2 long-
distance microscope with distance microscope with
CF4 objective CF4 objective

phase disturbance
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4-wave mixing phase-conjugate DIH () i

n-line hologram

Glass with a
uneven layer of
optical glue
creates a severe
distortion

I mm
N

I'efo(:used tO«z 2901 mm

3 4
5 . » q

Laboratories

phase-conjugate hologram

AL S
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Ny "* o P
o]l mm

refocused to z =201 mm
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Breakup of a water jet in a shock-tube ()
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f=1.15 ms

laminar water jet

5 mm

Goals:
1. Quantify the fragment sizes and velocities as a function of shock strength

2. Investigate the relation between surface instabilities and fragment properties

| August 12, 2015 Daniel R. Guildenbecher 50



Sandi
Breakup of a water jet in a shock- tube ()
recordeﬂ hoIogmm at f“ 5 2.) TS
Soreds N
. - .:" '-‘*\‘
. — £
shock-tube :
shock propagation h ,'. 7;“. v
direction : : -
initially laminar Fane
water jet
. refocused to z =75 mm
X magnification
camerag and lens
2x magnification
camera and lens
1 mm
[FORR R
Daniel R. Guildenbecher 51
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Breakup of a water jet in a shock-tube ) e

Laboratories

fecorgled ‘}fol'oﬁalp Ab.2=6.81 ms

-

T S X

’ 3 g . 0.008
. *'Inﬁq‘_.f:' g it § g
.. 5 0.006 -
2
= 0.004 -
g
)
2 0.002
0 - :
0 200 400 600 800

diameter [um]
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Alternative 3D measurements ) e,

J laboratories

Plenoptic cameras use micro-lens arrays and white light to create a 3D image

diameter d [pum]
150 200 250 300 350 400




Drop impact on a thin film ) e

Laboratories

Motivation: measurement of secondary
droplets by other methods requires
significant experimental repetition O

" Process symmetry provides
opportunities to validate accuracy

Experimental configuration:

= Double pulsed laser (1 =532 nm, 5 ns
pulsewidth)

impact of a 3 mm water drop on a 2 mm water film

" |nterline transfer CCD (4872 X 3248’ (Guildenbecher et al, 2013, Exp. Fluids.)
7.4 um pixel pitch)

. I “syringe pump | syringe
= Temporal separation, At = 33 us, ;Mté )

determined by laser timing T ;

V7 7 T N S
Continuum J— spatial filter and 1% beam expansion | i 2 beam expansion | cCcD
1

L I \J|: (II + D Il\ %]

1
f=100mm pinhole f=750mm] | ThorLabs BEISM-A
1 d=50 pum [

experimental configuration of holographic recording of drop impact on a thin film
(Guildenbecher et al, 2014, Exp. Fluids.)

August 12, 2015 Daniel R. Guildenbecher



Drop impact on a thin film

Processed with the hybrid method

5 mm

August 12, 2015 Daniel R. Guildenbecher

Sandia
m National

Laboratories

340 | | | | | | |

335

330

325

320

z (mm)

315

310

305

holographic reconstruction of
drop impact on a thin film
(Guildenbecher et al, 2014, Exp. Fluids.)




Percussion primers ) e,

Laboratories

Motivation: No viable technique currently exists to
quantify the size and velocity distribution from the hot
particles in percussion primers

Experimental configuration:
= Double pulsed laser (1 =532 nm, 5 ns pulsewidth)

" |nterline transfer CCD (4872 X 3248, 7.4 um pixel
pitch)

= ~6X magnification achieved using Infinity K2 long
distance microscope with CF-4 objective

"= Temporal separation, At =2 us, determined by laser

timing
- -
double- | ! ' © ] i
pulsed laser | ! f z j
_______ / &\. ¥
spatial ~ collimating A ° camera focal- camera and lens
filter optics . plane
|

primer

March 26, 2014 Daniel R. Guildenbecher 56




Percussion primers ) e,

Laboratories

Five holograms recorded at these
conditions

counl

20 40 60 B0 1000 120 140 1ed 180 200
diameter [1m]

First known quantification of particle size

=  Particle size distribution shows the
expected behavior

= Probability goes to zero at large and
small particle diameters

Numerically re-focused to z =200 mm from the CCD

March 26, 2014 Daniel R. Guildenbecher



Cross-correlation method ) e

Laboratories

Theory: in-focus particle images from two sequential holograms contain
correlated information

= The maximum cross-correlation, c, gives the displacement (Ax, Ay)

c=max| > > Img,(m,n)img,(m,n)(m—Ax,n—Ay)

Ax,Ay

" Img, and Img, chosen as the edge sharpness images from the two frames

= 7z positions in each frame (z, and z,) are found from the maximum value of
c over all possible combinations of z, and z,

0.15

— z,=194.72 mm,

E 02 » z,=192.72 mm,

S Az =2.00 mm
0.25

. : 0.15 0.2 0.25
hologram hologram after displacing
(Guildenbecher et al, the particle field by 2 mm 4 [mm]
2013, Opt. Lett.) (Guildenbecher et al, maximum value of ¢ for the particle in the white
2013, Opt. Lett.) boxes (Guildenbecher et al, 2013, Opt. Lett.)
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Cross-correlation method ) e

Laboratories

Again, experimentally validated with quasi-stationary particles in silicone oil

count
N
()
|

ol

1.5 1.75 2 225 25
|AZ| - |Z2 'Zl| [mm]

195

Z [mm) 185 150
measured displacement field from one realization measured z-displacements from all realizations
(Guildenbecher et al, 2013, Opt. Lett.) (Guildenbecher et al, 2013, Opt. Lett.)

= Actual displacement = 2.0 mm

= Mean detected displacement = 1.996 mm +/- 0.072 mm
= Standard deviation of 0.15 times mean diameter
= Order of magnitude improvement compared to uncertainties in the literature
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Sonic pellets from a shotgun

350 m/s \
- T e ‘—\
L P si*
22 —0 \
e
1.8 W \\
N

T30 e e Y

10 5 0 5 10
x [mm]

particle field from the shotgun measured with the cross-correlation method
(Guildenbecher et al, 2013, Opt. Lett.)

Sandia
m National
Laboratories

-10

y [mm]

10

Results closely match the expected mean velocity (350 m/s) and

diameter (2.0 mm)
= Uncertainty in Az is on the order of 0.2 particle diameters
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3D, 3C fluid velocity measurements?

Litron Nano S J— I g \
65-15 PIV T i \
hwp  pp

Sandia
m National
Laboratories

L |

= Particles stirred by
a rotating rod
(ro=1.58 mm,
@,=100 rpm)

= Recorded at 15Hz
with a LaVision
sCMOS camera
(2560 X 2160,
6.5 um pixel pitch)

1
T

f=100mm pinhole f=750 mm]

T U

y [mm]

-5 0 5
x [mm]

particle field
with stir rod

240

r 230

z [mm)]

- 220

210

200

particles measured with the hybrid method, background shows the recorded holograms

March 26, 2014
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3D, 3C fluid velocity measurements? ) e,

Laboratories

For all trajectories
245 1

= Errorin measured z=-0.04 = 1.51 mm

= Errorin measured Az=-0.03 &= 1.05 mm sl

= Standard deviation of 2.3-d 235 -

Experiments repeated with smaller particles

(d =118um, see paper for details) e
" Errorin measured z=-0.003 £ 0.379mm ¢ et
= Errorin measured Az=-0.001 &= 0.302 mm  «° 2201
= Standard deviation of 2.6-d .

Next steps: sl
= Compare results with alternative particle 205 -

detection methods -
= Use results to quantify effects of particle . .

overlap and other experimental noise & [

sources all measured x-z trajectories vs. predicted

March 26, 2014 Daniel R. Guildenbecher



3D, 3C fluid velocity measurements? ) e,

Laboratories

Advantages: s
=  Simple optical setup requiring only one
line-of-sight view 2401
= Large depth of field (hundreds of mm 235 |
possible)
= Particle sizes can be measured (if desired) 20 2z
Challenges: g 225 1 %
= High uncertainty in the z-direction W 2204 7;3
= Particle field must be relatively sparse s |1 £
providing only limited vectors
= Vectors at random positions 2101
= Methods not as mature as PIV or even 205 -

tomographic-PIV
200 A

Note: the literature contains many works on

holographic-PIV. My own work has not been
focused on these applications

mean measured x-z velocities
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