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Chebyshev polynomial method of iteration
is discussed. The convergence behavior of
the Chebyshev method is given and a numer-
g ical strategy is described which can be used
to estimate the required acceleration parameters.
Numerical examples are given and discussed.

. In this report the practical use of the

THE CHEBYSHEY POLYNOMIAL METHOD OF ITERATION

L. A. Hageman

1. INTRODUCTION

If the eigenvalues {c{}ii? of a real nxn matrix G are ordered such that
to 1< icnnlﬂ < oon < ﬂcel < I@ll, then ¢, is called the dominant eigenvalue
of G if icll > 10210 Many practical problems in applied mathematics require
knowledge of this dcminant eigenvalue and its associated eigenvector.

A standard iterative method for finding the dominant eigenvalue and its
associated eigenvector is the well-known power method. For any matrix G with

) a dominant eigenvalue, the power method is a convergent process provided, of

- course, that the inisiasl guess vector has a nonzero component of the dominant
eigenvector. However, when the dominance ratio g = loel/lgll, of the matrix
G is close to unity, the rate of convergence of the power method is very slow.
Thus, one would like %o find ways to sccelersate the convergence rate of the
basic power me%hod.

One such acceleration scheme is the Chebyshev polynomial extrapolation
method. The improvement achieved by Chebyshev polynomial extrapolation de-
pends strongly on the properties of the eigenvalues and eigenvectors of the

- matrix G. Normally, in applying Chebyshev polynomials, it is sssumed that the
» eigenvectors of G span the asscciated vector space vn(c) of G and that the
eigenvalues of G are real. Often, however, Chebyshev extrapolation improves

‘ the rate of convergence even though the eigenvalues are not real and/or the




eigenvectors do not span the vector space. For this case, though, the acceler-
ation achieved may be small.

The convergence rate of the power method is uniquely determined by the
properties of the matrix G and the initial guess vector; whereas, the conver-
gence rate of the Chebyshev extrapolation method also depends on the choice
of three parameters. The optimum parameter wvalues, i.e., those values for
the parameters which maximize the rate of convergence, are functions of the
domain in the complex plane which contains the eigenvalues of G. Generally,
the eigenvalue domain, and hence also the optimum parameters, is not known
a priori. Thus, estimating the optimum parametei values is an important but
often neglected problem in the practical application of the Chebyshev extrapo-
lation method.

The purpose of this report is to discuss the practical use of the
Chebyshev polynomial method of iteration. First, we define the method and give
the well-known convergence properties of the Chebyshevy iteration method
assuming that the eigenvectors span the associated wvector space and that the
eigenvalues are real. We then discuss the convergence behavior of the Cheby-
shey method when these assumptions on the eigenvalues and eigenvectors are
relaxed. Practical numerical means by which to estimate the needed parameters
are described and a numerical strategy given. Finally, numerical examples
are given and discussed.

Although this report is concerned primarily with the solution of the
homogeneous eigenvalue problem, much of what is said is valid also for the
inhomogeneous problem. The use of the Chebyshev polynomial method of iteration
in the solution of the inhomogeneous matrix problem is discussed briefly in

Appendix B.




II. THE CHEBYSHEV POLYNCOMIAL METHCD

1. Introduction

let G be a real nxn matrix with eigenvalues {Oi};ii and eigenvectors
{;X'}§:2° We assume that the matrix G has a dominant eigenvalue which is

positive and thal the eigenvalues of G are ordered such that

lo 1 < o

Jogle gl g glalclgl <o

1

We let x. be the eigenvector assoclated with the eigenvalue o, i.e., Gzi = gigio

i

Unless the contrary is explicitly stated, we also assume that is

%
real and positive and that o, > hai\ for i > 3.
In this chapter, we are concerned with the problem of solving the homo-

geneous equation
(201) G?Eﬁ m£
for the dominant eigenvalus oy and its corresponding eigenvector %

2. "The Fower Method

One may iveratively solve the eigenvalue problem (2.1) using the
well-known power methoi. Given the real initial vector x(0) and eigenvalue
g{0), the power method generates successive estimates for the eigenvector X

and eigenvalue g, by the process
Ao

. G

[v(k),v(k)]
v(k),x(k - 1)]

(2.2) ¢  olk) = o(k = 1) i

i

S~

=
it

v(k) ,



where [r,s] denotes the scalar product of the vector r with the vector s,
i.e., [r,s] = 5#3 and 3# is the complex conjugate transpose of the vector r.
The integer k in (2.2) is the iteration index number.

There are many ways by which the eigenvalue may be estimated in the
power method. The eigenvalue estimate g(k) in (2.2) is obtained by the so-
called modified Rayleigh quotient [Bilodeau and Hageman (1957)]. Other
techniques which may be used to estimate the eigenvalue are the Rayleigh
quotient, the component sum, and the single component techniques. Unless the
matrix G is symmetricl, it usually makes very little difference which tech-
nigue is used to estimate the eigenvalue.

For the power method of iteration, the eigenvector is more crucial
and more evasive than the eigenvalue. Intuitively, this may be seen by con-

sidering the eigenvalue problem (2.1). Given the eigenvalue g,, it is still

1

s difficult task to determine X9 vhereas, given the eigenvector %5 it is &

easy to calculate ¢ Thus, for the most pari, we shall concentrate on the

1°
convergence of the eigenvector.
*

For any iterative process, the answers to several questions must be
considered. For example,

1. Does the iterative process converge?

2. If the process is convergent, how fast or at what rate
does it converge?

3. What practical criterion may be used to terminate the
iterative process?

In this chapter, we shall be concerned with answers to the first two questions.

4

The third question will be discussed in a later chapter.

lIf the matrix G is symmetric, the Rayleigh quotient and the modified Rayleigh '
quotient have certain advantages over the other techniques.

N



. Since the matrix G has a dominant eigenvalue, it follows [Faddeev and

Faddeeva (1963)] that the power iterative method (2.2) is convergent, i.e.,

lim g(k) = ¢; and lim x(k) = x, .

The rate of convergence of the power method depends primarily on how

well separated the dominant eigenvelue ¢, is from the other eigenvalues of G.

1
To see why this is true, let us first a,ssuuxlel that the eigenvectors of G span
Vn(C) . Thus, the eigenvector estimate zg(kl) after kl iterations may be written

as

(2.3) gc;(kl) = % 4+ Zc.x. 5

where the c y are scalars. The corresponding error vector E(kl) for iteration

kl can be expressed by
§<k1) = E(kl) - X = zcizi .
For itera*ion (kl + 1), we have

%

n
~ .
, G ) B § i . .
(2::4) g_t\kl + l) = m _}E(kl) = m _}El + (Ez-ﬁ"l—))piggi
i=2

If we now assume that kl is large enough so that the eigenvalue estimates

o(kl + r), r> 0, are sufficiently close to oy, then for iteration (kl + r), we

. have

. lThis assumption will be abandoned only in the last section of this chapter.




n
r g.\r
(2.5) E(kl + 1) = (%—) z(kl) = X + Z(-&-l- c, X,
1 1

12

snd
noe

(2.6) Bk, + 1) = Z(.i. ¢ %, -

i=2
Thus, the rate at which the error vector E(k) approaches the null vector or

equivalently the rate at which E(k) approaches x. depends on how well separated

1

the dominant eigenvalue ¢, is from the other eigenvalues of G.

1
If the dominance ratio d of the matrix G is defined by

Iail |02|

(2.7) d = max
i1 19l 1oyl
then the most slowly decaying contribution to the error vector is multiplied
by a scalar of modulus d each iteration. Thus, d may be itaken as the average
reduction factor per iteration for successive error vectors. We define the

average rate of convergence R for the power method as

(2.8) R=-fnd,

Roughly speaking, the reciprocal of R is a measure of the number of iterations
required to reduce the initial error vector by a factor e, where e is the base
of the natural logarithms. Thus, a natural criterion for the comparison of
different iterative methods is the size of their respective rates of conver-
gence. For a more detailed discussion on convergence rates, see Varga (1962),

page 62.




In the next section we shall describe the Chebyshev polynomial extrapo-
lation method which often may be used to accelerate the convergence rate of the

basic power method.

3. The Chebyshev Polynomial Extrapolation Method

From Eq. {2.5) we see that the performance of r power iterations
results in the most slowly decaying contribution to the error vector being
multiplied by a factor of a¥. We note that these r power iterations correspond

r
to aprlying the mstrix operator (E—) to the vector E(k Now if a r-th degree

oy 1)
matrix polynomial Qr(;—) were used to operate on E(kl), we could express2
1

E(kl + r) as

(2.9) x(ky + 1, =Q ( )x/k = Qu(1)x) + Eg;Qr(cl)

Hence, if we could choose the polynomial Qr(y) such that Qr(l) = 1 and

1° Even if such a polynomial

j{:Qr(-i c,;X; = 0, then we would have gg(kl + 1) =X
existed; it woula be & funchion of the ci, Ei’ and ¢ s which generally are not
known for all i. ‘Therefore, such a special polynomial is usually out of the
question.

Suppose, however, that the eigenvalues oy of & are real and satisfy

3
o g'ci/al <4 for 1> 2.7 Then we can try to choose for Qr(y) that polynomial

P}(y) having the least maximum modulus over the range b < y < d and such that

r
It Qr(y) = E:'bkyk is of polynomial of degree r in y, then the matrix polynomial
k=0 r
k
Q. (B) in the matrix B is defined as Q. (B) = z:b B
k=0
e are still assuming that the eigenvectors x, of G span V (C)

)In keeping with the assumption made in Sectlon 1 of this chapter, we assume
that d > | bl
7



Pr(l) = 1. Such a polynomial exists [Flanders and Shortley (1950)] and can

be given explicitly in terms of Chebyshev polynomials by

S

(2.10) P.(y) = b) )

2]

o
vl o
ol lof s

where Tr(w) is the Chebyshev polynomial of degree r. For r > O ,

T (w) = cos[rcos-lw] if lwl < 1 and T, (w) cosh[rcosh_lw] if lwl Z_lel

r

i}

With Qr(y) = Pr(y), the polynomial method of (2.9) is called the

Chebyshev polynomial method and the matrix (%—) is called the argument matrix.
1
The well known recurrence relation for Chebyshev polynomials

(2.11) Tr(w) = szr‘l(w) - Tr_ew) , T> 2,

where To(w) = 1 and Tl(w) = W, enables one to successively generate the poly- -
nomials Pr(y) in a straightforward way [see, for example, Hageman (1963) p. 27].

Starting with §(kl), one may generate successively

G
x(k, + 2) = P &_ x(k.)
bl i | -T2 oy~ 1
x(k, + ) = P G lx(x )
-7 T r 0y =71

lIf w is any complex number, then Tr(w) may be expressed [Forsythe and Wasow

(1960)] as -

T.(v) = l/2[(w + Vu? - D+ (- e - l)r] .




using the procedure

I G
X(kl +t) = 5(k1 T z(kl +t - 1)
E(kl + t) = §(kl +t -1+ a, +t[z(kl + t) - _)E(kl +t=-1)]
1
(2.12) §
+ 6k +t[3c_(kl +t-1) - §(kl +t -2)]
1
[l(kl + 1), X(kl + t)]
I d(kl + t) = c(kl +t - 1) (5, + O, + £ 1)) ’

for t=1,2,3,... (The ¢ calculation is included in (2.12) to take into
account the fact that c(kl) is not exactly equal to ol.) akl+t and BkI+t
are functions of 4, b, and t and are given by

a = 2 B = 0 and for t > 2

k+l- 2-4a-b 7 kl+l" -

(2.13) 4 . (2-d-b T (Q-dsb

o _ bk t-11"d - b - Tt a-bv

{ kbt " d-D 2 -d -1 ’ kl+t*T2-d-b)
ti 4 -b t( d-b
Since
(2.14) max |Pr(y)! = P}(d) = 5 _ld —
b<y<d T

r d - b

we see that the most slowly decaying contributions to the
multiplied by a factor of modulus Pr(d) in r iterations.
unity, the Chebyshev polynomial method of iteration is an

faster than the power method.

error vector are
For d close to

order of magnitude

Table 2.1 shows as a function of 4 the gain

in speed of convergence one may obtaln using the Chebyshev polynomial method of

iteration compared to the power method. For Table 2.1, b

is assumed to be zero.

9



1 ITERATION 5 ITERATIONS 5 ITERATIONS 10 ITERATIONS

a @ | p(@ | (@7 | Ba) | (@7 |r@ | (@7 | p@
.6 -6 429 .216 023 »078 001 006 .-

o7 T .538 o343 - 049 .168 - 004 . 028 - )
.8 .8 667 512 2111 328 016 .108 -

.9 .9 .818 .T29 276 +590 .076 - 349 .003
.95 .95 .905 857 481 <TTH 204 «599 .021

.97 .97 .92 .913 624 .859 - 337 137 . 060

-985 -985 -970 956 -T78 927 =539 860 170

.99 .99 .980 970 843 .951 647 <904 266

.992 »992 .984 ~976 .871 .961 . 700 .923 . 325

.995] .995 | .990 | .985 | .917 | .975 | .792 | .951 | .45T
.998 .998 .996 - 994 .965 .990 .908 .980 .700

TABLE 2.1

From (2.14) we see that [Pr(d)]l/r is the average reduction factor
per iteration for successive error vectors of the Chebyshev polynomial method.
Thus, the average rate of convergence for r iterations of the Chebyshev poly-

nomials method is defined [Varga (1962), page 1l34] as
(2.15) R [P ]=- [n[P (01)11/r .
r*'r r

From Eq. (2.14), it follows that Rr[P}] increases monotonically with r and

that [Varga (1962), page 139)

10




(2.16) Rp(P.]1= limR (P ] = cosh T3

e O

In & later section, we shall discuss convergence rates in more detail.
Thus far, we have assumed that the eigenvalue bounds 4 and b are
known. This, of course, is not a realistic assumption. If the estimates

for d and b are denoted by dO and bo, then we shall take P (y) to be the

r,o
0
Chebyshev polynomial of degree r in which do and bo are used as estimates for
d and b. From Eq. (2.10), we see that P4 (y) may be written as
70

2y -4 .- Db
. ( o~ 0
r

" d. -b
0 0
(2'17) Pr,d. (y) - 2y - d - b
0 T 0 0
r d. ~-b
0 0
and hence
2y - d_ - b
max ITr( I ? 5 O)]
(2.18) IP (N beyd 0 °
. max ¥ = — .
beyca Tr% T (2 "~ - bo)
r a. - b
0 0]

From the min-max property of Chebyshev polynomials or by directly comparing

(2.14), and (2.18), we have

max IPr(y)l < max |Pr a ()1
b<y<d b<y<d 770

with equality only if do = d and bO = b.
To illustrate how the effectiveness of the Chebyshev polynomial

method depends on the estimate of 4, let us consider a matrix G for which

11



d= .9and b= 0. TIf the estimates for 4 and b were correct, i.e., do =d= .9

and by = b = 0, then from Table 2.1 we have P5(d) = .076; whereas, with dy = -8

and by = O, we have from (2.18) that max |p a Nt =P a (8) = .25. Thus,
bey<a 22 %0 5,4y

in 5 iterations the most slowly convefgiﬁg contributions to the error vector
are multiplied by a factor of modulus .076 in the optimum parameter case
as compared to .25 in the non-optimum parameter case. Hence, the use of
non-optimum values for d and b can result in a sizable reduction in the con-
vergence rate of the Chebyshev method of iteration. Fortunately, as we shall
see in the next chapter, practical numerical means exist for estimating these
unknown constants.

In addition to the basic assumption that, G has a dominant eigenvalue
o), We have assumed, thus far, that the eigenvalues of G are real and that
the eigenvectors of G span the associated vector space of Gol In the next

section we shall relax the assumption that the eigenvalues of G be real.

4. Complex Eigenvalues

In this section we will again assume that the eigenvectors {Ei}i:?.
of G span the vector space Vn(C) but the assumption that all the eigenvalues
of G are real will be relaxed. We shall assume only that the dominant
eigenvalue o1 is real and positive.
We will present two approaches which, hopefully, will illustrate
the effect of complex eigenvalues on the Chebyshev polynomial method of iteration-
The first approach will be to show the effect of complex eigenvalues on the

convergence rate when the Chebyshev polynomial of Eq. (2.10) is applied. We

lWe have also assumed that oy and op are positive and that oo > |cii for
i> 3. These assumptions, however, were made merely for reasons of simpli-
city and are not restricting.

12




note that the Chebyshev polynomial given in Eq. (2.10) is based on the assump-
tion that the eigenvalues of G are real. The second approach will be to change
the argument of the Chebyshev polynomial so that the min-max property of these

polynomials will be wvalid over part of the complex plane.l

A. Complex Eigenvalues and the Real Domain Chebyshev Polynomial

Let the eigenvalues of G be denoted by'{oi}iii' As before, we take

the dominant eigenvalue o1 to be real and positive but now we assume only

[o} =1
that the quantities-{;— are contained in a connected region D in the com-
17i=2

plex plane. The dominance ratio is again given by d = l°2|/°l'

Now suppose that the Chebyshev polynomial defined by Eq. (2.10) is
used in the polynomial method of (2.9). If do and bo are used as estimates
for @ and b in (2.10) then, as in Eq. (2.17), we let

2z - d. - b
. ( 0~ %
r

d. - D
0 0
(2.19) Pr,do(z) =
. ( o~ o
T S
r do 0

Thus, from Eq. (2.9) we see that in r iterations the most slowly decaying
contributions to the error vector are multiplied by at most a factor of

modulus fr(D)’ where

2z - d_ - b \.
max|T ( 0 O)|

r d - b
(2.20) £.(D) = maxlp_  (2)| = zeD 5 _Od o .
zed 290 T 0 o)
~ o o
r do 0

1The effect of complex eigenvalues on Chebyshev extrapolation is also dis-
cussed by Wachspress (1966) and Wrigley (1963).

13



The average reduction factor per iteration is then
; l/r
(2.21) Fr\D) = [fr(D)] / .

We now wish to determine how Fr(D) is affected by the region D.

If the eigenvalues of G are real and if do and bo satisfy do

bo < b, then the region D may be chosen to be the closed interval [bo,do] and

for this case we have

Z_d and

r
’ 7 1
(2.22) {F}([bo,dojj} = max |Pr,d (z)1 = 3%
zg[b,,d ] 0 0 0
0’0 Tr —d -t
0 0

Without more knowledge concerning the eigenvalues of G, Fr([bo,do]) is the
smallest average reduction factor which can be achieved by the Chebyshev poly-
nomial method of iteration. Thus, in seeing how Fr(D) is affected by the
region D, we shall use Fr([bc’dO]) as the norm. In what follows, we shall
denote Fr([bo’dO]) simply by F_.

Iet Dr(c) be the set of points in the complex z plane such that the

r
inequality |P, d (z)] < {cFr} is satisfied, i.e.,
, <
0

r
(2.23) Dr(c) —-{z:iPr,do(z)l < {cFr} j},

QIO

Thus, if all eigenvalues of ( ) except unity, are contained in Dr(c), then

1
the average reduction factor per iteration achieved by the Chebyshev polynomial

method will be less than or equal to cFrn We are only interested in ¢ over
the range 1 <c< l/Fr' For if c Z_l/Fr, the Chebyshev method of iteration

is divergent. If ¢ < 1, the set Dr(c) consists of r separated regions which

2z - do - b0
are centered about the r real zeros of the polynomial Tr( i -1 , and
0 0

14



' thus not generally of practical interest.
Obviously, 1f ¢ is fixed, then Dr(c) is a function of r. Ifr =1,

the region Dl(c) consists of all points on or interior to a circle with center

d + b d -b
at —9-5——9 B O) and radius c(—g—é——g)° See Figure 2.1.

The region De(c) consists of all points on or interior to the ovals
of Cassini. A proof of this together with the region D2(c) for an arbitrary
c is given in Appendix A. The regions D2(c) for ¢c = 1 and ¢ = l/Fé are given
in Figure 2.2. Thus, if we choose to cyclically applyl the polynomial

except unity, were contained in

P (z) and if all the eigenvalues of ¢
2,44 o)
Dz(c), then the average reduction factor per iteration would be no greater
than cF2°

In the limit as r approaches infinity, the region Iba(c) consists of

all points on or interior to the ellipse

- [l 2

o) [ o)

(2.24) :
[[
A proof of this is given in Appendix A. The regions D03(°> for c =1 and2

¢ = l/FaDare given in Figure 2.3. Note that Dyy(1l) is simply the line segment

bo < 2 <L doa

We now shall give a more basic approach to the complex eigenvalue problem.

lInstead of letting r tend to infinity.

2The limit of Fr as r—Q0) can be expressed as

- d - b

7 0 0

® . /71
2 - (dO + bo) + 2 (1 - do)(l - bo)
This will be discussed in more detail in Section 5 of this chapter.

15
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B. The Complex Domain Chebyshev Polynomial

Suppose now that the quantities {ci/gi};ig are contained in the

ellipse (see Figure 2.4)

(2.25) Tt * Z; =1,
=T

d -Db

where 0 < ¢ < 5

n

Figure 2.4

the polynomial (2.10) is not valid. For the complex case one would like to
choose for Qr(y) in Eq. (2.9) that polynomial ﬁr(y) having the least maximum
modulus over the ellipse (2.25) and its interior. Clayton (1963) has shown
that such a polynomial exists and that it is unique, real, and can be

expressed in terms of Chebyshev polynomials by

17



m ( 2y -d - b )
.l - v)® - kPR
2-4-0D> )

(2.26) B =

r

((a - ) - ue)H/?

where the Tr(w) are again Chebyshev polynomials of degree ra‘ When € = O,
5r(y) reduces to Pr(y)o We shall refer to the polynomial method of (2.9) as
the complex Chebyshev polynomial method when Qr(y) = ;r(y)°

The vectors J_E(k1 +r) = ?r(%z)i(kl) for the complex Chebyshev poly-
nomial method may be generated successively using the same procedure (2.12)
as described for the real Chebyshev case. For the complex case, however,

the parameters o and B are given by

a = ———— Bk 41 = 0 and for t > 2

1

T 2 -d-b ) T ( 2-4d-b )
t-l([(d_b)z ) 462]1/2 - t-2 [(d_b)e _ ueell/e

[0 =
kft [(wa-u

y B = ——
RV 2 -d-0b K.+t Tr( 2-4d4-0 )

T 1
ti(an)? - 4t/ [(a-0)? - 4?12

If we let D denote the ellipse (2.25) and its interior, then one may

easily show that

P ( d-b / )
r 2 5.1/3
(2.27) max|P (z)] = P () = [(a é b)d - te ]
zeD T r T -
rt[(d - )2 - ueg]l/g)

so that ['ﬁr(d)]l/r is the average reduction factor per iteration for successive

error vectors of the complex Chebyshev polynomial method.
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As before, we define the average rate of convergence for r iterations

of the complex Chebyshev method to be

/v

]

(2.28) R (B.]=- (a[®_(a)1"

From Eq. (2.27) one may show that Rr[§}] increases monotonically with r and

that

1 2 -4 -~-Db -1 d -b
cosh

(2.29) RQD[Pf) = lm Rr[P}] = cosh €2]I/2 B [(d-b)2 _ 46211/2 ’

re [(a-b)2 - 4

Since §r(y) belongs to the set of polynomials from which Pr(y) was
chosen, we must have that P _(d) < %r(d) and hence Rr[§r3 < R.[P.] with strict
inequality for all r > 2. Thus, the complex Chebyshev polynomial method does
not achieve as great an improvement over the straight power method as does
the real Chebyshev polynomial method. In the next section we will compare

the quantities R, RCO[P}]’ and Rco[ir] when 4 is close to unity.

5. Rates of Convergence

As given previously, the average rate of convergence for the complex
Chebyshev polynomial method increases monotonically with r to the limit

R (D[Pr] , where

1 2 -d-b -1 d -b
- cosh
[(d - )2 - 4e?H? [(d - b)% - ke

Since cosh-l(y) = [nly + y2 - 1], we have

Rw[Pr] = cosh 211/2

2 2 2.1/2
~ 2-4d-b 2-d-b)°-(d-0 he]
R _[B]= ln{'( ) + g(_ =4 - )" - )"+ ke }
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or equivalently

~ d - b+ 2e
2.30 RoolFpl = -
(2.30) olFy] 1n{2-d=—b+ 2[(1-d)(l~b)+€2]l/2}

Similarly, for the real Chebyshev polynomial method we have

d-b }
2 -d-b+ 2 [(L-a)(L-nb)]2

(2.31) RplPpl = - [n{

We recall that the quantities 4, b, and ¢ are assumed %o satisfy

(2.32) d<1l, |bl<cd, and e <

no

The average rate of convergence for the power method does not

depend on r and from Eq. (2.8) is given by

(2.33) R=-[nd

We will now compare these convergence rates when d is near unity

or equivalently when 8, where
(2.34) 5=1-4a,

2 3
is near zero. Since - fny = (1 - y) + A -9", -9, .. foro< y<1,

2 3

we may write Eq. (2.3%3) as

(2.35) R=5+

20



Thus, for small 5, a good approximation for the rate of convergence of the

power method is

(236) R= & .

Similarly, RCD[Pr] mey be expressed as

(s[2_1)%  (s[2,1)°
(2.37) RplP.] = 5[P.] + 3 + 3 +oeee

where

d-b 5 5+ [5(1 - b)]72
2 -4d-b+ 2[(1-«1)(1-1:)]1/2 54 (1 -1b) + 2[5(1 - b))

5[ 1 =1 - 1/2]"

Since 1 - b > 0, we may write 6[Pr} as

2\/18 5t 2(1?10)
(2.38) 3[P,.] = -
14 o L2 5

Vi-st1-®

In most practical applications b will range from O to -4 so that 1 - b usually
varies from 1 to 2. Thus, for small & it is reasonable to assume that 5/(1 - b)
is also small. Hence, for small &, a good approximation for the rate of con-

vergence of the real Chebyshev polynomial method is

(2.39) RplP,] ~ 2af2—

Note that as b varies from 0 to -4, RCO[Pr] varies only from 2/5 to ﬁ . \/5 .

Thus RCO[Pr] is not greatly affected by the value of b.
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For the complex Chebyshev polynomial, RUD[%r] may be expressed as

" L BIEDT BED
(2.40) R(D[Pr] = 8[P,.] + 5 + 3 H oes
where
5P ]1=1 - d - b+ 2¢ - o8 -¢€+ [5(1-b) + 62]1/2
i 2 - - b+ 2[(1-4)(1-D)+ €212 5 + (1-b) + 2[5(1-b) + 21%/2

If we let K° = 62/[(1 - b}3], then 5[§r] may be written as

5
. /T BV K - K42 2
(2.41) 3[F,] = -
1+ 2\// ? 5 «/{i; K2 + T ? T

d -Db

Now ¢ must satisfy 0 < ¢ <
1 -

Thus, for small &, K may take on large values. For ¢ = O (K = 0), 6[§r] is the

same as S[Pr] and thus for small 5

~ As
(2.42) RCD[Pr]G_:O =~ 2«[“;

For ¢ = +/8(1 - b)(K = 1), we have for small &

~ . / B
(2.43) R(I)[Prlg = +/5(1 - b) =~ .828 T

Thus, as ¢ varies from O to only +/5(1 - b), the rate of convergence of the

complex Chebyshev method varies by more than a factor of 2. We now shall see

=B or equivalently as K approaches

~ 4a
what happens to RGD[Pr] as ¢ approaches 5

22
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1 a-b
V321 - v
With € > O and using the fact that e = K+/5(1 - b), Eqg. (2.41) may

be written as

(£(x)}

(2.4h) s['ﬁr] =

Mo

{QK[«/1+K2-K]+2K'\/1?b }_5
1*‘2“/1?1:%*1(2*1?1) <-—'

For K> 0, £(K) is an increasing functionl of K and f L d - D - -2c-b
N/g o./1 - b L-b+3

Thus, f£(K) < 1 for a1l 0 < K < L d - Db ] Hence, for ¢ > O and small 3 we
3ley/1 -0

have

(2.45) R [P ]<2.
O 'r €

- b , we have from (2.44) amd the above that

As ¢ approaches d

~ 8 d-Db 25
(2.46) RCD[Pr]ﬂd-b“el-b-i-S%l-bq-Sb
€72
If b= - d, note that R(D['f’r] approaches the convergence rate of the power

method as ¢ approaches d. This agrees with the well-known result [Varga (1957)]
that as the ellipse containing the normalized eigenvalues {Ui/ 01};1—2 tends to a

r

d+ b or Just

5—)

circle, the min-max polynomial defined by (2.26) tends to (y - (

yr when b = - 4.

1'I'his may be easily shown from the derivative f'(K) .
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From expressions (2.36), (2.39), and (2.45) we have for 8 = 1 - 4

close to zero

(2.47)

and for e > O

(2.48)

Table 2.2 indicates how the different convergence rates vary as a function

of 4, b, and ¢.

m |0

R [Pp) R Py

d. R b=0 b:‘ ol b=°°05 b::"‘ol b=-o3

' =.166 | e=.4

.8 .223 963 2911 .829 .621 . 386
.9 - 104 .65k 622 »569 . 376 213
.95 . 051 455 433 . 397 .225 <11k
.99 .010 .200 .191 176 . 055 024
995 .002 .146 .136 .125 .012 . 005

TABLE 2.2
VARTATION IN CONVERGENCE RATES WITH 4, b, AND ¢
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Thus, when the eigenvalues are real and d close to unity, the real
Chebyshev polynomial method is an order of magnitude faster than the power
method. For the complex eigenvalue case, the complex Chebyshev polynomial
method is likely to achieve a much smaller, though still welcome, increase
in convergence rate over the power method.

We remark that the comparisons given above are based on ROO and not

Rr- As mentioned previously, Rr increases monotonically with r and is bounded

by R1 < Rr <R For r = 1 and for 4 close to unity we have

0"

2
Ry[P{] = 7—F—5 R and

(2.49) <

Rl['ﬁl] ~ R [P]

In the next section we will discuss the case when the eigenvectors do

not span the associated vector space of G.

6. An Incomplete Set of Eigenvectors

In the previous material we have assumed that the set of eigenvectors
of G spans the associated vector space of G. In this section we abandon this
requirement. Before proceeding, we first give a preliminary discussion on

the concept of principal vectors.

A. Principal Vectors

As used in this report, a vector is simply an ordered collection of n
complex numbers. The totality of all such vectors with n elements or components
is called the n-dimensional vector space over the complex number field and is

denoted by Vn(C). Since the nxn matrix G with complex elements operating on a

25



vector x in Vn(c) merely transforms x into another vector y in Vn(C), we say
that Vn(C) is the vector space associated with the matrix A.
i=t

The set of vectors {zi}

;.1 8re said to span the vector space Vn(C)

if every vector in Vn(C) can be written as a linear combination of AR Ir
the set-{zi}izi spans Vn(C), then [Perlis (1952)] t > n and the set-{zi}::i
contalns precisely n linearly independent vectors, i.e., any set of n+ 1
vectors from~[zi}i:§ is dependent.

If the set of n vectors‘{zi}izi is linearly independent, then this
set spans Vn(C) and is said to form a basis for Vn(C)° Thus, any set of n
linearly independent vectors forms a basis for Vn(C) and hence also spans
Vn(c)° We now wish to define a basis for Vn(C) in terms of the eigenvectors
and principal vectors of the matrix G-

An nxn matrix G with complex elements has precisely n eigenvalues
associated with it. These eigenvalues are defined to be the n roots of the

characteristic equationl

(2.50) 16 - 211 = 2"+ hnﬁlzn-l + .os 4+ h Z+ h

1}
o

The roots of (2.50) are not necessarily distinct. The number of roots to
(2.50) which have the same value is called the multiplicity of that root

or eigenvalue. For what follows, let the eigenvalues of G be denoted by

(2"51) (Gl)ml;(UQ)meﬂ°°:(0’i)mi)°'°;(0't)mt P

lBy IG - zI|, we mean the determinant of the matrix (G - zI)-.
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where 012055050 are all distinct and mi is the multiplicity of the eigen-
t

value o5 and where Zmi = N,
i=1

With each eigenvalue o5 of G we may associate at least one nonzero
vector %5 which satisfies the homogeneous eguation

(2.52) Gx; = 0, %4

or equivalently
(2.53) (¢ - o;I)%, = 0 -

The existence of at least one nonzero vector x, is assured since |G - AIl = O.
Any nonzero vector which satisfies (2.52) is called an eigenvector of G corres-
ponding to the eigenvalue ;- From the set of eigenvectors for G, we would
like to pick n linearly independent vectors to form a basis for Vn(C). But,
as we shall see, this is not always possible.

If the matrix G is normall, then it is known [Perlis (1952)] that
it is possible to find a basis for Vn(C) consisting of eigenvectors of G.
(In fact, one may choose the vectors of this basis to be mutually orthogonal.)
If the matrix G is not normal, it may not be possible2 to find a basis for Vn(C)
from the set of eigenvectors of G. However, it is always possible to find a

basis for Vn(C) from the set of principal vectors of G.

lThe matrix G is normal if GkG = GGK, where Gﬁ is the conjugate transpose of G.
Note that all Hermitilan, skew-Hermitian, real symmetric, and real skew matrices
are normal.

2One need only consider the matrix ‘83) to show this.
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Any nonzero vector I3 which satisfies
je
(2°5!+) (G - UiI) -Xi = 9
but for which
-1
(2.55) (6 - 0;1)" 7y, 40

is called [Householder (1953), page 32] a principal vector of grade p corres-
ponding to the eigenvalue o, - Note that the set of eigenvectors is included
in the set of principal vectors since eigenvectors are principal vectors of
grade 1.

The following theorem is a restatement of results given in sections

57 and 58 of a book by Halmos (1957).

Theorem 2.1: For each of the distinct eigenvalues 05 of (2.51), there exists
positive integers q,pl,pa,ou,pq and nonzero vectors 11312”°"Zq such that

the mi vectors

p-l
Zl)(G = UiI)Zl)"““)(G - aiI) Z_l
py-1
Y :(G - UiI)y :°°°)(G - UiI) J
(2.56) { - c
pq-l
| Zq’(G - ciI)zq,aoo,(G - 0;I) Zq
are linearly independent. Moreover,
D Y p
_ 1 _ _ 2 a. _
(¢ 0,I) ¥, = (G 0;I) Yy = eer = (¢ - 0;I) “y, = 0
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and p, + Py + +oe + By =M, where m; is defined in (2.51).
It is easily seen that the m, vectors given by (2.56) are principal

p.-1
vectors of G corresponding to 0y and that the g vectors (G - ciI) J Vs

_J’
J=1,...,q, are eigenvectors of G corresponding to o - If for each distinct
eigenvalue o; we let Yi denote the set of mg vectors given by (2.56), then
[Halmos (1957), pg. 113] the set of n vectors {Yi};fz are linearly independent.
Hence, for any matrix G, the set of principal vectors must include a basis
for Vn(C).

The integers q,P;,P ’°°°’Pq of Thm. 2.1 may also be given in terms

2
of the elementary divisors of G. Corresponding to the eigenvalue ;> the

matrix G has the g elementary divisors

Pl Y
(2.57) (2 - o) L(z - o)

Thus, the pj's, J=1,...,q, are simply the degrees of the elementary divisors
associated with the eigenvalue o If all the elementary divisors of G are
linear, then the principal vectors of G are also eigenvectors and thus,
for this case, the set of eigenvectors includes a basis for Vn(C)°

For simplicity reasons, we shall limit ourselves mainly to a dis-
cussion of the simplest case which illustrates the character of the changes
that occur when the matrix G has nonlinear elementary divisors. Suppose
that the matrix G has only one nonlinear elementary divisor and that this
nonlinear divisor is of degree 2 and is associated with the eigenvalue o
As a basis for V (C), we shall use

(2.58) XypoZpseo XX 1o Xy
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where the vectors -}-(-i are eigenvectors of G with corresponding eigenvalue oy
and satisfy ch_i = UiEi“ The vector y is a principal vector of grade 2 corres-

ponding to o and satisfies

(2.59) (¢ - o ,I)y

]
o

The existence of such a basis is guaranteed by Theorem 2.1. In what follows
we shall assume that the eigenvalues of G are real and that Ioll > |02| > Icil
for i > 3. We now shall see how the vector y affects the convergence rates

of the power and Chebyshev polynomial methods of iteration.

B. The Power Method

The eigenvector estimate _:_c_(kl) after performing kl power iterations

may be expressed in terms of the basis vectors (2.58) as

(2.60) _}5(1{1) =X+ Zci-lii + hy ,
i=2

where h and the c 1 are scalars. If kl is large enough so that the eigenvalue

estimates c(kl + r), r > 0, are sufficiently close to g,, then for iteration

l)

(kl + r) we have

r

_2_(_(1{1) = _Jsl + Z(g—-

i=2

(2-61) _}E(kl + I') ~

The corresponding error vector _F:}_(kl +r) = E(kl +r) - X, may be expressed as

Ir r
(2.62) E(k, + 1) = ch(g—) x, + h(g—-) ¥ -
i
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From (2.59), we have that Gy = oy + x . Thus,

and in general

r r r-1
(2.63) Gy -= (os) Y+ r(os) X
Hence, E(kl + r) may be expressed as
o, |r o_\Tr o_\r-1
(2.64) E(kl+ r) =~ ZCi(_j__) X, h(-i) v+ 9_1-_3) .
i=2 191 ! o119 s

Since lim rd = 0 if jal < 1, we bave that 1lim E(k; + r) = O. Thus, the
=0 r-Q

power method is still a convergent process when principal vectors of grade 2
are present.

The most slowly decaying basis wector in (2.64) will depend on the
magnitude of &as/cll and is likely to vary with r. After r power iterations,

the xs vector has & coefficient of

Gs r-1 as n
cr| eyepl :
%1 %9 %1%

as compared with a coefficient of g at the beginning of these r iteratioms.

Hence, the X vector has been multiplied by a factor of

(2»65) M =r
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in r power iterations. The multiplication factor for the other basic vectors
in the error vector expansion is, as before, (gi/ol)ro We note that the
vector X is being built up if the multiplicsation factor is greater than
unity and being reduced when this factor is less than unity.

Although 1lim Mr = 0, initially Mr may increase with r. For
example, if Ics/olﬁq§0»99 and h/clcs = 1.0, then M. 1s an increesing function
of r for r € 90 and is greater “han unity for r < 640. If the ratio los/cﬂ

is small, however, then Mr goes to zero very rapidly. For example, if

o, = 0, then Mr = 0 for r > 2. Thus, for the power methcd of iteration, the

effect of principal vectors of grade 2 depends rather strongly on the value

of the corresponding eigenvalue.

C. The Chebyshev Polynomial Method

Suppose that the r-th degree real polynomial given by (2.10) is

applied to the eigenvector estimate E(kl)' We may write this as

(2.66) x(ky + 7) = P_l&(6)J5(k;)
0 !
2z d+ b ,r[ggz)]
where g(z) = ol(d il and Pr[g(z)] = @;TET;;TT ; and where Tr(g) is

the Chebyshev polynomial of degree r in g. We note that the notation used in
(2.66) is slightly different from %that used previously. We have introduced
the dependent variable g merely for notational ease later.

With the vector E(kl) given by (2.60), the vector x(k, + r) can be

written as

(2.67) §(kl +T) = %+ }Z:ciPr[g(G)]éi + hPr[g(G)]z
i=2
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and the error vector E(k; + r) as

(2.68) B(ky + ) = ) eP [&(6)]x; + nP_[g(6) ]y
i=2

Since the x; are eigenvectors, the sum ZciPr(g(G)]g_(_i can be written as
i=2
ZciPr[g(oi) ]zc_i, We now want to see what happens to the term Pr[g(G) ly-
i=2
Since Pr[g(G)] is a polynomial of degree r in g{(G), we may write

(2.69) P [e(G)] = a,+ a,[8(G)] + ag[g(’G)J2 + oo+ [8(6)]7
Now
2G a4+ b , 2
g(G)_y_ =[Ul(d _ b) - 4 - b]z = gl‘cs)l + —r—_”l 3 - b -)ES o
Thus,
2 ( 2 2 (
(&(6) 17y = [&(o )]y + 2 m glo )x
and in general
r r 2 r-1
(2.70) [e(6))'y = [&lo )T y+ r CERD] [elo )] "= -
Since r(c—(%Tb_) [g(osj]r‘l = E%éf—)—] , we have from Eqs. (2.69) and
l S
=0
(2.70) that s
d{P_ [e(o.)]]}
(2.71) P.le(G)ly = P.lelog))y + = X
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We also have

(2.72) d{Prc[ls(os)]} _ 3 are.(e)] o 1 4T (e)] °
z AT (@ =w | | Flelo)]]|
ar (&)
But [National Bureau of Standards {1952), page ix) —3 = rUrnl(g), where

Ur_l(g) is the Chebyshev polynomial of the second kind. Ur-l(g) is a poly-

nomial of degree r - 1 and is given by

(.13 v, (g) - Sinlrzoe e _ [L)e" - (520 « (TP -e® v oo

V1 - g2 ’

Thus, using (2.71) we may write {2.68) as

U . [elo.)]
2 r-1 s
(2.74) E(kl+r) = iéeciP}[g(ui)]gi + hPr[g(os)]z + hr(cl(d=b)) Tr[g(cl)]f

|
)

Since b < g < 4, g(os) can lie between -1 and +1. Thus, from Eq. (2.73) we
see that EUr_l(g(cs))l < r. Since 1/Tr[g(gl)] behaves as o, where lal < 1,

we have that lim E(kl + I} o= C. Thus, the Chebyshev polynomial method 1is
r- Q0

still a convergent process when principal vectors of grade 2 are present in
the set of basis vectors.
The most slowly decaying basis vector in (2.74) will depend on the

values of Oy and r. Exceprt for the vector X all basis vectors in the expan-

sion (2,74) are modified in the normal Chebyshev way. In applying the r-th
degree Chebyshev polynomial to E(kl)’ we see from Eq. (2.74) that the X vector

has been multiplied by a factor of



U, le(oy)] T [8(o,)] oh
T {e(v)] | 70, _[8(o )] " cgo.(@ - ©) {

(2.75) M (P.] =

where we assume that Ur_l[g(os)} £ 0.

In Table 2.3, we give the values of M_and Mr[Pr] when 4 = .99,
b = 0, and h/cscl = l. In the first case we take 0y = 0 and in the second case
we take oy = 0. Note that the magnitude of the multiplication factor of the

Chebyshev polynomial method did not change much for the two casesl whereas

that corresponding to the power method did. Alsc from Table 2.3%, we see that

the Chebyshev polynomial iterations would diverge if a polynomial of degree
less than 4O were repeatedly applied.

The presence of principal vectors of grade 2 or higher in the set
of basis wvectors also makes it very difficult to estimate the parameters needed
for the efficient use of the Chebyshev polynomial method. In general, it is
felt that extreme caution should be exercised when using the Chebyshev poly-

nomial method of iteration if the set of eigenvectors for G does not span the

associated vector space.

lWe remark that Mp[Py] would be much smaller for the g; = O case if we had taken
b.":“do
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CASE 1; o CASE 2; o = 0.0

r Mr Mr Mr[Pr]

1 1.990 1.00C 1.000

2 2.960 - 000 -6.547

3 3.911 . 000 14%.478

4 L,8he - 000 -23. 378

5 5. 75k 34,585

10 10.040 =53.087

20 17. 341 -29,161

40 27.698 - 1.276

80 36.611 - 003
160 32.370
320 12.965
640 1.040

Principal Vectors of Grade ¢reater Than Two

Suppose now that the nonlinsar elementary divisor of G is of degree

n vectors

TABLE 2.3

X X o0 0 g X o0 o X oo a
2% )_s’zlﬁzgi ’-b-’m’usaa-l’

m+ 1, vhere m is artitrary. For this case we tzke as a basis for Vn(C), the

wvhere the vectors X, are eigenvectors of G with corresponding eigenvalue o,

L7

and the vector zj,j=l,2,aoo,m is a principal vector of grade J + 1 corresponding




to the eigenvalue o The vectors Zj satisfy the relationship y. = (G-osI)m‘JZm

J

or equivalently

(@ - Usl)zﬁ = Il
(G - Usﬂgmul = 1ﬁ=2
(2.77) 9 :
(G - ¢ I)le = ¥
R (R

The existence of such a basis is guaranteed by Theorem 2.1. We also assume
that the eigenvalues of G are real and that idll > !Oé‘ 2_|ci| for 1 > 3.

In terms of the basis vectors (2.75), the eigenvector estimate after
k, iterations may be expressed as

1

(2.78) x(ky) = %

where we again assume that the eigenvalue estimates o{k, + r) , N> 0, are

1
sufficiently close %o ¢,
For the power method of iteration; the error vector _}E(kl + r) may

be expressed as

>
IR G
E(k; + 1) = Z(a—) CiEg o+ Z(;—I

which after some manipulation may be written as
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oy r g r-m m
(2.79) E(kl + 1) =~ Z(-U—) CiXy * 3T DO)__C_S + ZDJZJ 5
. 1 1 )
=2 J:l
where
m-j
1 r m=-k
= h =0,1l,...,m
DJ (U )m (k)(Us) J+k s J=0,1, m,
1 k=0

and where h_  is taken to be zero. Since gys Og» m, and the h 's are indepen-

0 J
dent of r and finite, there exists nonnegative constants D, such that

L5

~lr
(2.80) In,l < Dj(j) , 3=0,1,...,m

Thus, since lim (r)m(os/ol)r'm = 0, again we have that lim E(k, + T) = O .

I‘—O(I) r-oCD

From (2.79) and (2.80), we see that the coefficient of the x_ basis

vector in the expansion (2.78) goes to zero as

g \r-m
(2.81) 7) (?;;) .

Thus, for large m, the presence of principal vectors of grade m may greatly
reduce the convergence rate of the power method.

If the eigenvector estimate §(kl + r) had been obtained by applying
the r-th degree polynomial P [g(G)] of Eq. (2.66) to §(kl), then the error

vector E(kl + r) may be expressed as

m

(2.82) E(kl +T) =~ ZCiPr[g(G) %, + Zthr[g(G) ]Zj .

12 J=1




In a manner similar to that given previously for the case m = 1, we obtain

m
B(k) + 1)~ ) oPle(o;))x; + y bP [e(o,)]y,
g=1

i=2
m j m-1 J
h, (P [g(c )]} h, . a°(P [&(o_)])
J r s g+l r s
(2.83) + z 5t 3 }3‘45 *{Z 3T 129 Eh)

J—:l - j’:l

. d(P, i&lag) 1)
+ oce +

m dz zﬁnl

To show that the error vector given by (2.83) approaches the null

vector as r approaches infinity, one needs to show that

a%(P_e(o,) 1)

(2.84) lim : =0
- Q0 dz*
. . . . 2 b
for j=0,1,...,m. With g(ol) > 2.0 or equivalently with d < 3 + 30 one may

easily show that (2.84) is true. Wiih d < 1.0, we conjecture that (2.84) is
true.
We now turn to the practical prohlems of estimating the constants

d and b, and of terminating the iterative process.
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III. THE ESTIMATION OF THE DOMINANCE RATIO d AND THE TERMINATICN

OF THE ITERATIVE PROCESS

In this chapter we shall give a criterion for terminating the iterative

process (2.12) and shall specify a numerical means by which to estimate the

dominance ratio d. For the purposes of this chapter we shall assume that the

eigenvalues of the nxn matrix G are resl and are ordered such thal

and that the set of eigenvectors for G inclules a basi for V

assume that g, > o. > iail for 1> 7.

1 2

1. The Estimation c¢f 4 and b

n(c

As mentioned pre-ricusly, the use of non-optimum talues for d and b

can result in a sizable reduction in the convergence rate of the Chebyshev

method of iteration. Thus, one is faced with the problem of determining

these unknown constants in order to use the (hebyshev polynomial method

efficiently.

Since we have assumed that d > |b|, the rate of convergence of

the Chebyshev polynomial method will be governed primarily by the value of

d. Thus, the estimate for 4 appears to be the more important estimate. Hence,

in what follows we assume that enough is known about the eigenvalues of G so

that an estimate bC for b may be picked to satvisfy bO < b and lbqi < d. We

remark that these conditions on the choice of b. are nci

o)

~

impracsical,  For if

the eigenvalues of G are all positive, then b > 0 and bo ~ 0 is a satisfactery

choice. If nothing is known about b, then one may arply

nomial method with the argument matrix G°
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instead of G.

the Zhebyshev poly-

Since the eigenvalues




of G2 must be nonnegative, zero is a lower bound for the eigenvalues of Geo
We remark that the effective convergence rate of the Chebyshev polynomial
method with argument matrix G2 differs very little from that with argument
matrix G. In fact, if b = - d, then the effective convergence rates of the
two are identical. This follows from the identity T2r(x) = Tr(2x2 - 1).

The rate of convergence will not be critically affected by the
estimate bo if bO satisfies the above two conditions. This then is why we
feel Jjustified in assuming that bO satisfy only the two conditions given
above and that an accurate estimate for b is not essentialol Thus, hence-
forth, we will be concerned only with estimates for d.

In order to obtain an accurate estimate for d, we propose the
follovwing strategy. Before starting the Chebyshev method of iteration, do
a few (say 5 or 10) power iterations in order to obtain an initial estimate
for 4. (These initial power iterations also provide a reasonable estimate
for oy for use in the initial Chebyshev iterations.) Then apply repeatedly
low degree Chebyshev polynomials so that the estimates for 4 may be con-
tinuously updated. After a good estimate for d is obtained high degree poly-
nomials may be applied, if needed.

Numerical estimates for 4 may be obtained by observing the decay
rate of the residual vector y(k) = v(k) - x(k - 1), where v(k) and x(k - 1)

are defined by (2.12). We define the residual vector gquotient as

lIt is essential, though, that a bg < b be used. For if bg> b+ (1-4),

then the Chebyshev polynomial method will diverge.

b1



1y (Nl
(3.1) (k) = Ty(x - D

where Il || denotes some suitable vector norm. For the power method, it is
known that lim Q(k) = d. To see why this is true, let x(0) be expanded in

k-00
terms of the eigenvectors of G as

n
x(0) = x) + 2ci§i
i=2

Thus, we have

(o) 1 % k-1
v(k) - x(k - 1) = 0(0)...0(k - 2) (c(k-l) ”1)3‘41 *(cZk=15 'l)d “o%o

n o o, (k-1
+ E: i -1l = C.X
clk - l; ol i-i
i=3

Since lim o(k) = o, and Io.I/Ul < d for i > 3, we have that lim Q(k) = 4.
k- O * k- 00
Thus, an initial estimate for & may be obtained by doing a few power iterations
before starting the use of Chebyshev polynomials.
Estimates for d may also be obtained every Chebyshev iteration by
comparing the convergence rate actually being obtained with the theoretical
convergence rate one would obtain if the d being used were correct. If &

Chebyshev polynomial using do as the estimate for d is started on iteration

kl+ 1 and if
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¢

(3.2) ¢

(1)

L(ii) llj{:Pr,do(oi/Ul)ci§J|is small relative tollPr

o(kl + r) is sufficiently close to g, for all r > 0

and
n

a (d) 02§2“)

J
i=3 ©

then from Eq. (2.9) we may approximate zg_(kl + r) by

where P (y) is given by Eq. (2.17). Since P
r,do

Pr,d (d)

0
_}_{_(kl + 1)~ Pr‘,d (1) Xy + RO CoXs s
0 r,do

(1) = 1, the residual

r,do

vector y(k, + r + 1) may be approximated by y(k, + r + 1) = (d - 1)P (d)e, x
PALS PASS ] r,a, %%

and the residual vector quotient by

(3.3)

where PO,dO(y)

(3.4)

4
Pr’dokd)
r~=l,dO
r+1
1. WithQ = I IQ(kl + [), it follows that
12
Qr-+l = EPr,do(d)l

Thus, Qr+l gives a measure of |P Pl (4)! and one may obtain a new

’70

estimate for the dominance ratio by solving (3.4) for d. We now shall describe

how one may obtain a new estimate for d from (3.4).

Case 1:

From Figure 3.1, this case implies that d > d

expected convergence rate from the present estimate 4

1> Qr+l > Pr,do(do)

0 and w2 are not obtaining the

0 Thus, a new estimate

b3



for d should be obtained for possible use in the generation of a new Chebyshev
polynomial. To obtain this new estimate for d we mske use of (3.4). Using

P (d) as defined in (2.17), we may express (3.4) as

r,do
. 24 - do - bO
r do - b0
(3.5) YT Ta - b
0 0
Tr( d. - b )
0 0
2=-4d,-Db
or equivalently since P (8.) = 1.0/T 2 0
r,d 0/ = YA RlT I T p
0 0 0
2d -d_ - Db
(3.6) 7 0 Sy _ Qr-+l
° r d. -b P (a.)
0~ 0 r,d "0

The right side of (3.6) is greater than one so that the largest positive solu-

tion to (3.6) can be expressed as

d, -Db

d -b r,d 0 d + b
(3.7) a w~ (_9_5__9) cosh > 0 + ( 0 O) .
0 0

This solution may then be used as the new estimate for d. One may easily show

that the 4 given by (3.7) satisfies the inequality dy<d< 1,

Case 2: Q <P.g4 (do)

’70

r+l

From Figure 3.1, we see that this case implies that d < do and we
are getting a convergence rate which is greater than that expected from using

a For this case the right side of (3.6) is less than one and a solution

o
to (3.6) is

Ll




-cos-l ——Eft%——y ]
do - b, Pr,dO dO dO + bO
(3.8) d & | ————|(cos +
2 : d. - b
r 0 0

If the principal value is used for the inverse cosine, then the resulting 4
estimate satisfies p < d < do, where p is the largest positive root of

P (y) = 0. (See Figure 3.1.)
r,do
Case 3 QT+1 > 1.0

This case implies that there has been no error reduction. If the
error is not being reduced, then one or more of our assumptions are not
being satisfied. This can happen

(a) 1if a(kl + r) is not a sufficiently good approximation

of 0ys
(b) if the set of eigenvectors of G does not span V_(C),

(¢) 1If the eigenvalues of G are not all real, or

(d) if b < by

If the assumptions given in (3.2) are valid, expressions (3.7) and
(3.8) normally will give a good estimate for d. Obviously, these assump-
tions do not always hold. However, they may be reasonable under certain con-

ditions. The Chebyshev strategy given below is designed toward this end.

2. Chebyshev Strategy

Basically, the Chebyshev strategy can be divided into three parts,

as follows:
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{a) 1Initially, at least four iterations of the power type are
carried out in order to obtain an initial estimate do for 4 and a reasonable
estimate for op- We note that these power iterations will practically elimin-
ate from the eigenvector guess Z(O) those eigenvector modes corresponding to
the smaller eigenvalues. {Ses Eg. {2.95)).

(b) Tne use of Chebyshev poiynomials is then started on iteration
5, say, using do as the estimate for d. Low degree Chebyshev polynomials
are repeatedly applied with the estimates for the dominance ratio being con-
tinuously updated. If the low degree Chebyshev polynomials are generated
with the dominance ratio under-estimated, these polynomials will greatly
reduce all the eigenvector modes in the guess vector 5(0) except those with
the larger eigenvalues. TFor example, if d = .889 and if a S5-th degree Cheby-
shev polynomial is generated with do = .8, then all eigenvector modes xs with
(ai/ol) < .8 are multiplied by a factor smaller in magnitude than .0l7, while
the %, eigenvector mode is multiplied by a factor of only .211. Thus, generating
a poiynomial with tke dominance ratio under-estimate? results in assumption
(ii) of (3.2) being more nearly satisfied. One may impose upper bounds on
the initial 4 estimates in an effort to make these estimates less than d.

For example, one may insist that 4 < .9, dl < 925, ete.

0
(¢} As (3.2) becomes more nearly satisfied giving relatively good
convergence towards the corre.t 4, high degree Chebyshev polynomials may be
applied;, if needed, to reduce those eigenvector modes with the larger eigen-
values.
In summary, the Chebyshev strategy is to first eliminate the more
rapidly decaying eigenvector modes from the guess §(O\ and then concentrate

on the most slowly decaying modes. This generally enables the estimates for

G to converge to the correct value.

b7



The decision whether to terminate the present Chebyshev polynomial
and start the generation of & new polynomial using an improved estimate for
d can be made by comparing the convergence rate actuslly being obtained with

the theoretical convergence rate one would obtain if the estimate for 4 were

correct.
The convergence rate for iteration k is defined to be
HE(X)I
. (k) = - [n ~—F

where E(k) = x(k) - x, is the error vector for iteration k. If a Chebyshev

1

polynomial using 4, as the estimate for 4 is started on iteration k+1l, then

0
from Eq. (2.9) we may write E(k + r) = ZE:ciP (3,/0,)x,- Using assumption
- r,do i/ 71721
1l=¢

(3.2) and Eq. (3.3), o(k + r) may be approximated by

Pr,d (d)

ok + )= - [n.i;——SL—zaj- ~ - [n[Q(k + r+ 1)] .

r-l,do

Now if do = 4, the Chebyshev theory of Chapter II implies that the theoretical
convergence rate for iteration k + r should be - [n[Pr(d)/Pr_l(d)] or equiva-

lently - [n[Tr_l(a)/Tr(a)], vhere a = (2 - 4, - bo)/(dO - b,)- Thus,

[n[o(k + v+ 1)]
fnlr,._,(a)/T (a)]

(5.10) Rk + r+ 1) =

may be used to compare the actual convergence rate with the theoretical con-
vergence rate for iteration k + r.
The decision whether to begin a new Chebyshev pclynomial using a new

estimate for d can be based on R(k). For example, one could start a new
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polynomial on iteration k + r + 1 if R(k + r + 1) is less than .7. It is
often helpful to insist that all polynomials generated be at least of degree

rn, where r]oI may be taken to be 3 or L.

3. Terminating the Iterative Procedure

let the relative sum error A(k) for iteration k be defined as

HE(X)Il,

(3.11) Alx) = e

vhere by||rH is meant the Euclidean or [2 norm of the vector r, i.e.,

Hrlb [r, r]

In order to obtain a computable approximation for‘A(k) let

Hv(k) - x(k -
(3.12) ak) = In;(k : Dll, —

We now assume k is large enough so that E(k - 1) may be approximated by

(3.13) x(k - 1) = X+ CoXy

Thus A(k) may be expressed as

1/2
(1 - d) ce X5 %s

(3.14) a(k) =

, 2
XyoE) ¥ BOpX Ky + XXy

Using (3.13), we have E(k - 1) = x(k - 1) - X so that A(k - 1) ~

1= X
|c2|°H§2H/H§ﬂ| and

k9



(1 - a)

Alk) = A(x - 1) 5
{(L+y+ Ak - l)]2}1]§

where y = 202[§1,§2]/{§l,§1]0 Using Schwarz's inequality we have

lyl <2A(x - 1). Thus, if A(k - 1) < 1, we have

(1L -a)A(k - 1)
ATEK)

(3.15) [1-Axk-1)]< <fl+AMr-1)] .

Hence, for k sufficiently large we have

Alk Alk
(3.16) 1= d§ i NOR Mr - 1) < (1 - a§ 2 A(k)

Another possible measure as to how well §(k) approximates X is

what we shall call the relative point errcr A (k). If EJ is a vector of order

n whose Jj-th component is unity and all other components zero, then the rela-

tive point error for iteration k is defined as

[e5%]

(3.17) Ak) = max
J

where the subscript j varies only over the set of indices for which (33,31) { 0.

To obtain a computable approximation for A(k), we let

(3.18) 5(k) = nzx 1l - TES:ZKE:ITT ’

where the subscript J again varies only over the set of indices for which
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C (egox(k - 1)) # 0.7

Again assuming that k is sufficiently large and using Eq. (3.13), we

have

[ey,x(X)] _ (4x)) + (@)cp(eyxp)
[eyox(k - 1)] (eg0%)) + cplenxy)

and if (33,51) £ 0, then

(3.19) [epx(k - 1)~ - T+ay
where
(e 752)

a.j = 02 -(—————y-e_'j’ﬁl

Thus, 5(k) may be approximated by

a
(3.20) 5(k) = (1 - 4) njx 1—_—;1;-3-
Using (3.13), ANk ~ 1) may be approximated by A(k - 1) = max!ajl. Thus, if
J
maxla,l < 1, we have
3 J
Ak - 1) 5(k) Mk - 1)
(3.21) T+ ME-1)S1-da~1T-Mrk-1)

1In practice, one usually may avoid those J for which (g »Xy) = O by allowing
the indices J in (3.18) to vary only over those J for wgic% [gj,ﬁ(k -1)>
7{max[gj,§(k - 1)1}, where y is some fixed small number.

4‘I’ J
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and

5(1;) S(k)
(3.22) (1 - a) + o(k) < Me - 1) < (1 - 4a) - 3(k)

Thus, one could terminate the iterative procedure {2.12) by using
A(k) and/or 8(k) modified in some way by a function of d to measure the
relative sum and point errors. We note that the relative sum error is an
aggregate measure of the error vector E(k) while the relative point error
is a pointwise measure.

A(k) may also be used to estimate the relative eigenvalue error

7(k), where

(3.23) (k) = alk) 1‘ .

9

From Eq. (2.12), o(k + l)/ul is given by

G G
[;I E(k):;I x(k)]

ok + 1) o(x) [X(E+ 1),x(k+ 1)]

o "o DESIEET T (E y,x(x))
0'1 - -
and hence
(& x(x), (& x(k) - x(x))]
(3.24) olk+ 1) ;L 1 :

! [%I x(k) ,x(k) ]

If k is large enough so that the vector estimate §(k) can be written as

x(k) = x) + X,

then (3.24) can be approximated by
ok+1) cp(d = 1)[%y,%, + p0%,,X,)

o} 2
1 X15X%) + c2(l - d)x),%y + cd%,,X,

(3.25)
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But [A(K)1% ~ c2lx,,%,]/[x, )%, so that

ok + 1) - 1+ dA(k)
_L.El__l 1l < (1 d)A(k)[(l - dh(k)(1 =A(k))]

and using (3.15) and the fact that d < 1, we have

2
(3.26) Qﬁk_({_}), -1 < [%%] Ak + 1) .

The inequalities (3.16), (3.22), and (3.26) are based on the assump-
tion that k is large enough so that

1. the eigenvalue estimates o(k) are sufficiently close
to oy and that

2. the elgenvector expansion of the error vector g(k) con-

sists of one predominaunt eigenvector.

The conditions given above were needed in order to give some mathematical basis
for these inequalities. It is felt, however, that the indicated bounds are
realistic under much less stringent conditions. In using (3.16) and (3.22),
it is important that one have a good estimate for d. This is especially true
when 4 is close to unity.

We note that the inequality (3.26) may be sharpened somewhat if the
matrix G is symmetric. For this case the set of basis vectors may be chosen
to be orthogonal. Thus, since X)Xy = 0, Egs. (3.1%) and (3.25) may be

expressed as

22 /2
Ak + 1) = (1 - d)7epx,,%, o1 a)A(x)
LX),%) + cgzgg,ge [1+ (AQx))21H2
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and

ch(d - 1)x_,x 2
ok -1) ,_ 2 2—2’~2 L 4 - 1)[11(1;)}
% X% + cdx,x, 1+ afA (x)]
Hence, since d < 1, we get
2

(3.28) ofk+ 1) _ 1‘ <ol s BT

c ~ -

1

In the next chapter, we shall discuss some numerical results.
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IV. NUMERICAL EXAMPLES

In this chapter we give numerical examples which illustrate certain
points concerning the behavior of the Chebyshev polynomial method.

We seek to solve the homogenecus problem

()‘hl) :/L WX

for the dominant eigenvalue o, and its corresponding eigenvector x,. The

1 1

Chebyshev iterations are carried out using the procedure

-
G - £ -
z(kl + t) = STk, % £ TS 5<k1 ¢t - 1)
[K(kl + t) sy;(kl +t)]
: J o(kl + t) = a(kl + t = 1) (G, T IS5 7 DT
(4.2) rolk, + b - 1)
{ = =] - -
x(k) + t) iwﬂ¢]3*<%fm ey ﬂkl+t) x(ky + ¢ - 1)
: rx(k +t=1) - x(k, + t - 2)
i kl+t - l - l 4
. L
where ¢ and B are given by {2.13). The above procedure differs from
kl+t k1+t
(2:12) only in the nercTine I o7 U Bar (a4 %) in the extrapo-

lation. For convergent prroblems, numerical experiments indicate that both
procedures (2.12) and (4.2) give essentially the same results.

The Chebyshev strategy is basically that as described in Chapter III.
The generation of & Chebyshev polynomial is terminated and a new polynomial

started on iteration k if
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(1) the degree of the polynomial to be terminated is
(4.3) greater than or equal to 3, and if

(11) R(k) < .6,

where R(k) is given by (3.10). If it is decided to terminate the n-th poly-

nomial then dn+ , the estimate for d to be used in the generation of the

1
(n + 1) Chebyshev polynomial, is usually taken to be the d as determined from
(3.7) or (3.8). However, the following restrictions are placed on dn+lg
do < .95 4; < .985, d, < -995, and d < 99995 for n > 3.

In the numerical data given below, we let

k = the iteration index.

o(k)

the estimate for 01 after k iterations.

d(k) = the estimate for d after k iterations.

[

r = the degree of the Chebyshev polynomial which has been generated at the
end of the k-th iteration. r = O implies that the k-th iteration is a
power iterate.

R(k) = the ratio of the actual convergence rate to the theoretical convergence
rate for iteration k - 1. R(k) = 1.0 if iteration k - 1 was a power
iteration; otherwise R(k) is as defined by (3.10).

A(k) = the error estimate as defined by (3.12).

8(k) = the error estimate as defined by (3.18).

For problem 1, the matrix G of (4.1l) is a symmetric, positive semi-
definite matrix of order 99 whose nonzero eigenvalues are of = [cos n[/loo]2 )
[=1,2,.°°,h9° The remaining 50 eigenvalues of G are equal to zero. Thus,

0; = -999013 and 4 = 02/01 = .99704. Since the matrix G is symmetric for this
problem, the set of eigenvectors for G includes an orthonormal basis for the
associated vector space. Thus, the real Chebyshev polynomial method of

Chapter II may be rigorously applied.




Three different iteration strategles were used to obtain the dominant
eigenvalue for problem 1. First the problem was run using the Chebyshev
strategy described above. Then the dominarnt eigenvelue was obtained using
only power iterations and finally the problem was solved using only one high
degree Chebyshev polynomial with the correct value for 4 being input. The
numerical results for problem 1 are given in Tables L4.l-k.3. Graphs of A(k)

vs. k for the %hree iteration strategies are given in Pigure kh.l.

Commerts on Problem 1:

From Table 4.1, we see that the Chebyshev strategy worked as expected
for this problem.

The odd behavior of R{k), A{k), and 5(k) in Table 4.3 around the 25th
and 50th iterations is probably due Yo the relationship between the eigen-
values c!, of G ard the zeros and/or peaks of the Chebyshev polynomials of
degree 24 and 49. Generally, if a high degree Chebyshev polynomial using
an input velue for 4 which is tco large is generated early, the behavior
of the R, A, & and 4 guantities is wuch more erratic. This is illustrated

in problem 3 below.
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PROBLEM 1

CHEBYSHEYV ACCELERATION

k r R(k) al(k) Alk) 5(k) a(k)
2 0 1.00 -989613 . G652 24965 - 35350
5 1 1.00 -993801 01917 - C9994 .82201
7 3 .41 -995651 - OL0EH - 03517 .89142
8 1 .23 -996157 - 00872 «ORTOR -90706
9 2 55 -99640u - 00787 < 2ThO - 9k661
10 3 ol .996810 . 00651 - R602 95272
11 1 .28 .997113 - 00553 - R ILT . 9572€
13 3 .60 2997455 - 00453 01367 97211
1k A7 -99TET9 - 00388 - 01092 97U 3
16 3 .68 -997869 - 00338 . 01086 .9814k
17 1 .59 .998021 - 00297 - 00927 .98258
20 b .69 -998247 - 00240 - 00625 -98£87
21 1 .60 998349 - 00214 - 00559 -98758
25 5 65 2998543 - 00166 - 00418 .99097
26 1 .58 - 998604 - 00151 . 00362 .99132
32 7 .65 -998784 -00103 - 00226 .99345
33 1 .60 -998821 -00093 -00197 .99360
41 9 -6l -998921 . 00057 . 00126 99501
42 1 59 .998932 . 00052 00111 -99511
50 9 .64 -998971 - 000%6 - 00073 99638
51 1 .60 .998976 - 00034 - 00065 299643
60 10 .80 -998997 - 00022 - G008 - 99696
61 11 -T8 -998999 00021 - O00LE 299697
62 12 .76 -999001 °06019 - OOCHS -99698
S0 40 .60 -999013 - 00002 > Q0CO5 cggzohl
TABLE 4.1




PROBLEM 1

POWER ITERATIONS

k r | R(k) o(k) A(Kk) (k) d(k)
2 0 1.00 .989613 04652 24965 35350
5 o | 1l.00 .993801 . 01917 - 0999k .82201
7 0 1.00 .994808 . OLul2 .07129 .8Th26
8 0 1.00 -995155 01292 .06236 .89593
9 o | 1.00 995439 01173 . 05542 90854
10 o |1.00 995678 0L077 . 04987 91841
11 0 1.00 .995883 . 00998 04532 .92634
13 0 1.00 .996215 .00873 03833 .93831
14 0 1.00 2996353 .00823 . 03558 - 9429k
16 0 1.00 .996588 .00T41 .03112 .95036
17 o] 1.00 996689 - 00706 02928 »95339
20 o | 1.00 - 996945 . 60621 . 02486 96057
21 0o |1.00 .997017 00598 02367 296249
~25 o | 100 -997260 00522 01986 96858
26 0 1.00 .997312 ~00506 .01909 .96980
32 o} 1.00 .997567 - 00430 - 01547 97546
33 0 1.00 997602 . 00420 -01500 97620
L1 0 1.00 -997836 00354 .01203 .980TT
42 ¢ 1.00 .997860 00347 »0L1Th .98121
50 0 | 1.00 -998026 00303 00983 98411
51 0 1.00 .998040 .00298 00963 .98kk1
60 0 1.00 .998182 - 00262 . 00815 .98661
61 0 1.00 .998195 .00258 00802 .98681
90 o | 1.00 -998L473 00187 . 00535 <99061
300 o | 1.00 .998935 00053 . 00129 99566

TABLE k.2
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60

FROBLEM 1

CHEBYSHEV (HIGH DEGREE) ACCELERATION

- INFUT 4 = 99704

k r R(k) o(k) A(k) 8'k) a(k)
2 1 1.00 -989613 - QU652 24965 -99TO4
5 l 1.08 »995101 - 02976 1.19120 .98015
T 6 .98 299621k - 02488 L5943 -99096
8 T .99 - 996627 02231 16182 099285
9 8 .99 .997082 . 01985 11047 .99395
10 9 .99 -99T7h6k .01759 .78013 -99LES
11 10 .99 ,99%776 . 015551 . 0RLCA 99517
23 22 1.02 2998908 - 00371 o 1066 99670
it 23 1.03 .998921 - 00330 - 00959 -99672
25 2k 1.0k -998929 - 00294 00861 299675
26 25 =2 -998940 - 00306 - 00931 -99688
27 26 4.30 998962 . 00192 ;©0655 299667
28 27 -1.57 -998968 - O0R2E N y( -99685
29 28 1.50 -998973 .00192 . 00617 -99684
30 29 .99 -998979 - 00172 - 00567 99685
50 kg .58 -999012 - (0022 - 01807 .99700
51 50 8.4k 999013 - 00009 00746 .99€95
52 51 -7-86 999013 - 0002C 02578 -997C3
53 52 3-99 2999013 > 00013 00577 99697
5k 53 .19 -999013 . 00013 00816 -99700
55 | 54 .99 .999013 00012 | L0039 | -99700
56 55 .98 2999013 - 00010 -00141 .99700
57 56 .98 -999013 > 00009 - 00105 -99700
58 57 99 999013 - 00008 - 00081 99700
71 70 .96 999013 - 00002 - 02008 997C1L

TABIE 4.3
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For problem 2, the matrix G has the same eigenvalues as those for
problem 1 but the set of eigenvectors for this problem does not include a
basis for the associated vector space. A nonlinear elementary divisor of
degree 50 is associated with the eigenvalue zero and thus, principal vectors
of grade 50 are present in the set of basis vectors for G. The numerical
results obtained from this problem are given in Tables 4.4-4.7. In Tables

4.6 and 4.7, the quentity Q(k) is defined by Eq. (3.1).

Comments on Problem 2:

The power iterations for problem 2 were almost identical to those
of problem 1. This would not have been the case, however, had the nonlinear
divisor been associated with some rather large nonzero eigenvalue.

Note the rapid divergence property of the Chebyshev iterations. The
results of the Chebyshev high degree acceleration problems do not necessarily
imply that the conjecture of (2.84) is false. In (2.84) it is assumed that
an infinite degree Chebyshev polynomial is generated and that the true
dominant eigenvalue is used as the normalizing factor in the Chebyshev
extrapolation. In an attempt to see the effect of the normalizing factor,
the high degree Chebyshev acceleration problem of Table 4.6 was rerun using
the true dominant eigenvalue in the Chebyshev extrapolation, i.e., the
x(k; + t) term in (4.2) was computed using [o(k, + t - l)/al]y_(k1 + t) instead
of [o(k + t - 1)/a(kl + t)]v(k, + t). As seen from Tables 4.6 and 4.7, this
change seemed to affect only the eigenvalue estimates. The reason for the
relative stability of the R(k), d(k), and Q(k) quantities in Tables 4.6 and
k.7 is not known.

The numerical results of problem 2 show that the presence of nonlinear

elementary divisors can drastically affect the behavior of the Chebyshev
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polynomial method. We remark, however; that the Chebyshev polynomial method
often may be used to good advantage when the nonlinear divisors are associated
with very small eigenvalues and when the strategy used makes provisions for
the presence of principal vectors in the set of basis vectors. For a dis-

cussion of this, see Hageman and Kellogg (1966).
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PROBLEM 2

CHEBYSHEV ACCELERATION

64

k R(k) alk) A(k) 5(k) a(k)
2 1.00 .988735 - O0k155 <2490k . 38662
5 1.00 <993 36 SOLTAD - 09973 82724
T 43 -9956T1 -00952 03573 -89279
8 .22 -99618L . 00785 - 0R622 -90927
9 49 .996411 00718 . EHBL 95319
10 g 996807 . 00615 1L 95T - 96015
11 .20 .997118 - 00548 03706 -96575
13 -1.42 -997475 - 00715 - 0B527
1k -2.22 -997T43 01312 19625 -96575
16 -4.23 998267 - Ot166€ 57306
17 -2.9h 999980 - 09300 %.15835 - 96575
18 -5.94 1.002620 .14019 6. 34790
19 -4.32 1.022880 + 32197 7.57360
20 -2.92 1.161700 77061 8.96510 <96575
22 -2.38 | -7.201190 97715 89157
23 - .19 4.877060 68904 1-38180 296575
26 1.23 1.192005 83736 b.28377
27 -2.03 | 15.030100 -94680 1.14667 - 96575
51 -1.25 T-245400 28150 1.09R60
TABLE 4.L




PROBLEM 2

POWER ITERATIONS

k R(k) o(k) A(k) 8 (k) a(k)
2 1.00 .988735 . 04155 24904 . 38662
5 1.00 993636 .0L712 . 09973 82724
T 1.00 -994710 . 01301 07123 .88353
8 1.00 -9950T4 .01170 . 06232 .89970
9 1.00 .995371 . 01067 - 05539 .91187
10 1.00 +995620 . 00983 . 04984 .92137
11 1.00 .995831 .00913 -0k530 92900
13 1.00 <9961 7k .00803 . 03832 -9L0o48
1k 1.00 996315 . 007584 . 03557 -9kkg2
50 1.00 998015 00287 .00983 98443
51 1.00 .998033 .00282 -00963 -984T1
90 1.00 .998465 . 00179 . 00535 .99068
300 1.00 .998929 - 00049 .00128 -9954 3
TABLE 4.5
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CHEBYSHEV (HIGH DEGREE) ACCELERATION INPUT 4 = .9970k

PROBLEM 2

66

k r R(k) o(k) Q(k) 8(k) d{k)
3 1 1.00 .991 6488 - 1662 -99TOk
5 3 -.08 2996 1.0015 4545 94707
7 5 19.10 .998 2.1296 1.5511
8 6 18.45 1.0001 2.4899 1.1931
9 7 | 16.33 | 1.018 | 2.504 1.9559
10 8 14.43 1.180 2.6049 1.3407
11 9 11.93 -1.098 2.397h 1.9913
25 23 T 8.149 1.0125 1.0044
26 2k - 006 37.401 -9994 1.0155
27 25 .09 87.462 -9896 1.2289
51 k9 .73 54.195 .9240 1.0k16
52 50 T3 43.764 9232 1.¢005
53 51 - Th 55. 134 9225 1.0007
100 98 .89 32.889 -9079 1.0091
101 99 .89 92.769 9077 1.001k
102 100 .89 4W7.791 .9076 1.0033
200 198 .95 3.920 9018 1.0001 -9982
201 199 .95 21.413 .9018 1.0030 .9982
202 200 .95 79.812 9017 1.0007 .9982
298 296 .97 20.268 -9001 1.0022 -9976
299 297 .97 7.289 -9000 1.0006 .9976
300 298 .97 67.839 - 9000 1.00C2 -9976
TABLE 4.6




CHEBYSHEV (HIGH DEGREE) ACCELERATION -

PROBLEM 2

INPUT d = .9970k
INPUT o) = 999013

k r R(k) o(k) Q(k) 5 (k) d(k)
3 1 1.00 <991 6421 1662 <9970k
5 3 -.93 -996 1.0165 5151 -946TT
7 5 19.06 .998 2.1268 1.4248
8 S 18. 4k 1.000 2.4895 1.1609
9 7 16.33 1.021 2.5941 1.7265
10 8 14,41 1.219 | 2.6002 1.3235
11 9 11065 -.789 2.3534 3.8515
25 23 .10 57.687 .9898 1.0360
26 24 .18 43,993 .9810 1.0015
27 25 ey 4. 2kk L9Th3 1.0265
51 e} o Th ho,202 .9226 1.0015
52 50 .75 53%.643 .9219 1.0177
53 51 -T5 23.402 .9212 1.0418
100 98 .89 52.409 -9077 1.0049
101 99 .89 11.303 .9076 1.0027
102 100 .89 60.198 90Tk 1.0027
200 198 .95 97.918 .9018 1.0017 99805
201 199 .95 85.801 .9018 1.0123 . 99804
202 200 .95 76.197 .9017 1.0023 .9980%
298 296 .97 33,731 -9001 1.0027 <99752
299 297 .97 50.082 9000 1.0002 99752
300 298 .97 28.078 9000 1.0008 .99752
TABLE 4.7
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For problem 3, the matrix G is not symmetric but the set of eigen-
vectors for G is known to include a basis for the associsted wvector space.
It is also known that the eigenvalues of G are nonnegative. The dominant
eigenvalue, 075 for this problem appears to be .999886. The numerical results
are given in Tables 4.8-4.10 and graphs of A(k) vs. k for the three iteration

strategies are given in Figure 4.2.

Comments on Problem 3:

Using Table 4.9, the inequality (3.22) for the relative point error

after 300 power iterations gives

365 < A299) < 1.26

One component 'of the eigenvector estimate after 300 power iterations had a
relative point error of .55. Thus, the inequality (3.22) can give realistic
bounds for A(k). In using (3.22), it is well to keep in mind that a
sufficiently good estimate for d is needed. For example, using d{k) as the

estimate for d, inequality (3.22) gives for iteration 73

-00118
-0201 - .001138

- 00118 < MT2) <

L0201 + .00118 ~ <065,

055 <
which obviously is not correct.
In Table 4.8, note that a Chebyshev polynomial of degree 12 with
do = .97689 was used early and after that low degree polynomials were again
used. This implies that the initial guess vector had a rather large error
component associated with an eigenvalue 04 » where ori/cl ~ .98. This fact is

also implied from the power iterations since from Table 4.9 we see that the
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estimate for & from iteration 30 to iteration 73 varied between only .978
and .980. One of the nice properties of the Chebyshev polynomial method
is that the method, if properly used, can pick out large components in the
error vector and reduce them efficiently.

The high degree Chebyshev problem with input 4 = .99976 is converging
at a slower rate than the Chebyshev problem with the strategy. This is due
to the fact that the error components associated with smaller eigenvalues
are being reduced in the high degree problem at a rate dictated by the second
largest eigenvalue Ope The erratic behavior of A(k) for the high degree

Chebyshev problem can be easily seen in Figure 4.2.
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FROBLEM 3

CHEBYSHEV ACCELERATION

70

k r R(k) o(k) A(k) 5 (k) d(k)
5 1 1.00 .997093 -002691 - Q0493 -90000
T 3 .32 .997686 002080 . 00366 -95686
8 1 .22 .997973 -001820 . 00345 - 95000
10 3 40 .99833% . 001539 - 00313 . 97550
11 1 .35 .998594 .001351 . 00283 -97689
22 12 .65 2999693 000168 - 00032 -97979
23 1 .53 -999708 -000142 - 00025 -98006
25 3 .38 .999718 .000133 - 00025 99110
26 1 .33 .999727 . 000126 . 00024 <99194
29 4 .65 -999740 000114 . 00022 .99425
30 1 055_' .999748 -000108 . 00021 -994%70
32 3 48 -999751 . 000105 - 00021 -99707
35 3 -59 999755 - 000102 . 00021 -99836
38 3 .61 -999759 -000100 » 00020 -99904
39 1 .58 -999760 000099 00020 .99908
42 4 61 +999762 000098 - 00020 .99941
43 1 .55 999763 000097 - 00020 -99945
45 3 49 -999764 - 000097 «D0020 -99971
46 1 46 -999764 - 000097 - 00019 :99973
52 7 .60 .999768 - 000095 -00019 -99982
53 1 -56 999769 - 000095 - 00019 99983
| 63 8 1.61 .999772 - 00009k . 00018 .99991
73 18 2.54 -999788 000088 -00015 -99988
83 28 3 37 .999813 - 000076 - 00011 -99985
93 38 5.43 999842 . 000055 . 00007 99982
103 48 9.76 999867 . 000028 . 00003 .99979
110 55 26.46 999881 - 000009 . 00001 -99976

TABLE 4.8




PROBLEM 3

POWER ITERATIONS

k R(k) o(k) (k) 5(k) a(k)
2 1.00 :996539 - 00406 00899 93k
5 1.00 -997093 - 00269 - 00493 -92902
T 1.00 .9973%23 . 00242 . 00377 .95161
8 1.00 .997421 00231 - 00374 95665
23 1.00 .998383 . 00146 . 00303 -97595
30 1.00 .998653 . 00125 - 00269 .97820
43 1.00 .999001 . 00095 .00213 -9T946
bl 1.00 :999022 00093 . 00209 -97949
45 1.00 .9990l42 00091 - 00205 .97951
52 1.00 .999166 - 00079 - 00179 -97959
53 1.00 .999182 - 00077 . 00176 -97959
63 1.00 .999316 00063 - 001l .97967
73 1.00 .999416 . 00051 .00118 -97990
83 1.00 .999492 - 00042 » 00096 .980%6
93 1.00 .999551 - 00034 . 00078 .98108
103 1.00 <999597 00029 - 00064 -98209
110 1.00 -999623 00025 - 00056 .98298
150 1.00 .999709 »00015 . 00026 -99003
200 1.00 .999748 -00011 00021 .99691
250 1.00 999760 - 00010 - 00020 .99910
300 1.00 .999766 . 00010 -00019 .99967
TABLE 4.9
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PROBLEM 3
CHEBYSHEV (HIGH DEGREE) ACCELERATTON - INPUT & = 99976

X r R(k) ol k) A{k) 5{x) d(x) g
2 1 1.00 -996539 - OCL OBk 00899 9997§~4
5 b 17.82 .998659 002883 - 0GT36 98318 |
6 -1.13 1.000413 . 002736 . 00620 99315 |
7 64.65 1.001129 . 003823 .01215 9995244
10 9 7.06 1.000933 . 002878 . 00718 997¢7 ?
11 10 25.62 1.001089 . 003512 01233 99926 |
12 11 11.67 1.000705 > 003150 , 00963 .99893 5
13 12 -4.55 999991 003277 I > 009k2 99925_?
1k 13 20.41 999961 . O0LOLS L 0126k E
15 1k 6. 02 999979 - 0C260k - 00532 99891 .
42 I§) -6.49 . 999502 LO0LLTS G0355 99971
b3z 4o =5-55 -999 38 001698 -COLEL 99977
L L3 -6.84 999799 002027 - 00611 99983
L5 Lh 9.16 -999772 . 001578 - D0LBL 99976
46 45 11.45 999651 .001153 . 00287 -9997 }
53 52 .02 1.000180 | .001130 00443 99975
63 62 3.49 -99940% -000697 . 00162 99973 »
73 T2 10.13 .999860 . 000564 . 00147 99975
83 82 =2.53 -999802 - 000485 - 00135 99976
93 92 =2.41 1.00003k . 000299 . 00072 99975
103 102 16.17 »999890 - 000273 - 00091 99976
107 106 .92 .999862 000198 | ACOkh 90076 |
108 107 22.47 999830 .000099 | -00031 99973 |
109 108 -8.46 -999808 000128 o032 9997k |
110 109 -7.93 :999819 LOC0T6l 038 99975 1
111 110 1.98 .9998L2 .00015L S §;§“> j
T2 TABLE 4.10
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For problem 4, the only fact known concerning the matrix G is that it
has a positive dominant eigenvalue. The purpose of this problem is to illus-
trate the behavior of the complex domain Chebyshev polynomial method described
in Chapter II. The numerical results for this problem were obtained from a
program designed for a different purpose and, hence;, the strategy employed is
slightly different and fewer numbers are available as output.

The complex domain Chebyshev method requires the use of the three
parameters b, d, and ¢ of Figure 2.4. For this problem, b was assumed equal
to -d. The problem was run three times using complex Chebyshev acceleration:
first with fixed ¢ = .1, then with fixed ¢ = .5, and finally with fixed ¢ = .75,
In Tables 4.11-4.14, r and d(k) are defined as before. However, 5(k) is now

defined as

[sjyzt_(k)]
3(k) = m;.x 1 - Te Tk - 5]
and Q(k) as
Ny (kI

k) = Sy

where y(k) = v(k) - x(k - 2). The 5(k) and Q(k) defined above have the same
basic meanings as given previously, i.e., 5(k) is still a measure of the
relative point error and Q(k) can be used to estimate 4. For power iterations
we have 1lim Q(k) = d2° In the Chebyshev accelerated problems, the estimate
for the gg;inance ratio is not updated at each iteration.

Graphs of 5(k) vs. k are given in Figures 4.3 and 4.h4.

Th




Comments on Problem k:

The Q(k) quantity in Table 4.11 indicates that the matrix G for this
problem has rather large complex eigenvalues. To see why this is so, we
shall assume that G has some large complex eigenvalues and show that the
behavior of Q(k) is the same as that of Table 4.11.

let the eigenvalues of G be ordered such that 0y > 0y > 103| =

, i.e., we are assuming ¢

loh‘ > |05|2_c°c , where o, =0 and o), to be com-

5 b

plex eigenvalues. Also, let X, be the corresponding eigenvectors. Now if k

is sufficiently large so that §(k - 2) can be approximated by

x(k - 2) = X) + Xy o+ Ky x

o 5+ Xz s then y(k + m) can be approximated by

(4.k) y(k + m) ~ dm(d2 - )x, + zm(z2 - )x, + zm(z2 - 1)x

5 3’

where z = 05/01° If we denote the j-th component of the wvector (z2 ol)_a_c_5 by

ip
a e J

component of y(k + m) can be written as

and the j-th component of the vector (d2 - 1)§2 by x,, then the j-th

j’

(&.5) yj(m) ~ d.m[xi + 2r'a cos(mo + Bs)1

J

1l

vhere z = lzle'® ana r = zi/d. Thus, we have

ly(k + m)il2 = Z[yj(m) ]2 ~ deZ[x§ + rmbjcos(m@ + BJ)] s
J J

where b, = 4a .x, and where we have assumed the r2m term in [yj(m)]2 to be

J JJd
negligible. Thus, we have
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= b

. 1+ rchJcos(mQ + Bj)
J

[k + m)]° =~ 4

1+ rm=EZCJcos({m - 2)9 + Bj)
L J J

where ¢ 3= b 3 / x?. Again neglecting terms of order greatsr than rm, we have
J

[Q(k + m) ]2 - dli- [l . rm—2 an{rg(ccs(m@ + 53) - cos({m - 2))& + ﬁj) ]] .
J

which may be written as
2 )+ ’ M=g 7
Ak + m)]"=~ 43 1+ r “[s{cos me) + #{sin w€)] ¢ ,

where 8 = ch[recos B,j - cos(BJ—Qe)] and where ¢ = ch[sin(ﬁjaee) - r°ein BJ].
J

J

It s° + t° # 0, then s(cos mé) + t(sin @) = v sin(wd + &), where v = (52 + te)l/e

and © = sin”Ys/c. Thus, we have

i}

(4.6) [a(k + m) ]2 ~ du[l + vrmmesin(me +H7 -

Thus, Q(k + m) will oscillate about d2 with & period of 2n/9a Since we have
assumed r < 1, the amplitude of this oszillation becomes smaller with m. This
is precisely the behavior of Q{k) in Table L4.1i. The pesks in Q{k) have been
underlined in Table 4.11

From Table 4.11, we see that the period is between 38 and 42 sc that
the argument 6 of z(=°3/°1) is roughly between 8.5° and 9.5°. The numerical

data of Table 4.11 also implies that the modulus of z iz about .93. The Chebyshev
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data given in Tables 4.1% and 4.14 imply that the normalized complex eigen-
values of G lie interior to the ellipse
2 2

(4%.7) X v —L—
(.946)%  (.75)°

but exterior to

(4.8) x” Y 1
° <+ = °
(.968)°  (.5)

The complex number 2z = .95e1(2ﬁ/40) is interior to both ellipses but
Z = 0955ei(2ﬂ/38) is interior to the ellipse of (4.7) and exterior to the

ellipse of (4.8).
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PROBLEM 4
POWER ITERATIONS

k r 3 (k) Q(k)

12 0 .8312430 ! BT0567

32 ) .0%34180 1.187410

52 0 - 0097594 783629

T2 0 - 0035820 997618 |
112 0 . 0004183 .937051 j
152 0 - 0000494 - 91kko2
154 ) - OCO04 35 5914765
156 ] » 0000384 -913569
158 0 - 0000339 2911347
160 0 0000301 -908208
162 0 - 0000269 »9OUBLS
164 0 0000242 900857
166 ) | -0000218 .897353 i
168 0 - 0000198 .894 37k
170 ) - 0000180 .892083
172 0 - 0000164 -890686
174 0 . 0000150 89012k
176 0 - 0000126 890562
178 0 . 0000124 .891785
180 0 -0000112 -89369%
182 0 . 0000102 .895988
18k 0 . 0000092 .898k12
186 0 0000082 -900863
188 0 - 000007k .902887
190 0 - 0000066 .90kk89
192 0 - 0000059 .905593
19% 0 - 0000052 965985
196 ) - 0000047 -9uBLLe

18 TABLE 4.11



PROBLEM 4

COMPLEX DOMAIN CHEBYSHEV ACCELFRATION - FIXED € =

< 1

k r 5(k) Q(k) d(k)
10 0 .954786 .590 . 768
18 8 L2k 35 .87

20 0 .258927 <593 .913
22 2 . 146929 .887

58 18 175514 67k

40 0 112929 . 394 .900
u2 2 149251 :913

I 4 . 148386 -005

46 6 286167 155

48 8 485156 . 300

50 10 .971887 843

52 12 1.617660 .986

54 1k L. 354200 -T13

56 16 390364 587

58 18 84.09410 317

60 20 54 . 00010 .89%

62 22 22.94770 .539

64 24 27.97570 .139

66 26 18.38360 602

68 28 85.22920 L7227

70 0 16.95400 .903 -900
T2 2 75.16020 833
100 30 53.60490 095

TABLE 4.12
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FROBLEM k4

COMPLEX DOMAIN CHEBYSHEV ACCELERATION - FIXED & = .5
K r 5 (k) Q(k) da(x)
10 0 - 954786 -590 768
18 8 427459 809
20 0 290486 -738 -906
22 2 ,207921 .BET
38 18 . 022285 541
40 0 . 018l4kk .37 967
42 2 . 019464 .549
Lhy 4 - 25491 1.405
46 & -029178 1.116
48 8 - 028033 .890
50 10 017541 479
52 12 . 012640 1.328
S5k 1k .011752 1.601
56 16 » 006478 1,204
58 18 . 012880 1.22i
60 20 - 009910 972
62 22 . 008962 ol
S ol . 007952 1.084
66 26 008748 1.592
68 28 - 006889 =309
70 0 - 007033 2.764 -900
T2 2 - 00LLTO -886

108 38 001312 2.097
110 0 - 000825 594 -968
112 2 .000701 768
158 L8 - 006667 -854
198 28 - 001256 2451

TABLE 4.13




PROBLEM L4

COMPLEX DOMAIN CHEBYSHEV ACCELERATION - FIXED € = .75
k r 5(k) Q(k) a(k)
10 0 .9547860 -590 . 768
18 8 4150640 .827
20 0 . 3155640 .84k .899
22 2 .24 34230 .86k
38 18 - 0231445 973
ko 0 - 0193948 .823 -900
42 2 - 0156790 .840
4y b . 0154278 845
46 é . 0128705 .31
48 8 .0118865 730
50 10 . 0120340 T4
52 12 -0128080 . 768
5k 1k . 0127994 .803
56 16 .0119710 841
58 18 - 0103050 .885
60 20 - 0082678 934
62 22 . 006 3066 .98k
64 2k . 0046881 1.019
66 26 - 0034826 1.030
68 28 . 0026561 1.01k4
T0 0 . 0020136 .911 941
72 2 . 0019455 947

108 38 . 0002086 870
110 0 -0001729 766 -946
112 2 - 000171k 865
158 48 -0000110 -886
160 0 - 0000085 .803 .96

TABLE 4.1k
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APPENDIX A

THE REAL DOMAIN CHEBYSHEV POLYNOMIAL
AND COMPLEX EIGENVALUES

In this appendix, we wish to find the set of points,,Dr(c), in the
complex z plane which satisfy the inequality !

(a-1) RAPROIE (cF )

where 1 < ¢ < l/Fr s

(A.2) P a (z) =

and

o s

From (A.2) and (A.3), the set of points Dr(c) may also be expressed as

(A.4) Dr(c) = {Z:]Tr( 2z 'dzo--bzo)| < er}

We shall consider the special cases of r=1,2 and the limit as r approaches .

CASE 1: r =1

Since Tl(s) = 8, we seek those z which satisfy the inequality
2z - dO - bo

do = P

< c¢ . B8ince bO < do,do - bO > 0 and hence we may write
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(4.5)

Thus, the set Dl(c) consists of all z on or interior to the circle with

do + bo do bo
center at (O , ———5———) and radius c(—~—§7——) - Using the maximum modulus

theorem, one may easily show that no z exterior to this circle satisfies (A.5).

CASE 2: r = 2

For this case TE(S) - 25° - 1 and thus we seek those z which satisfy

2z -d_ - b
(4.6) |2( o~ 0) SIPTE
0 o
4 " P
If we let a = » then vwe may write (A.6) as
2./2
d_ + b,l2
0 o) R

Lz_(
a2 2

or equivalently

2

(A.T) < (ac)

If z = x + iy, then (A.7) becomes

2 2
(A.8) \/ [x - (E-Q—;—-I—)-Q)] + a} + yi/{[x - (i);;—fg)]-a + y2 < (ac)2

The points (x,y) satisfying the equality in (A-8) lie on the ovals of Cassini.

See Figure A.1l.
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——-é-——a,\/c +1,0

Figure A.1

Thus, again using the maximum modulus theorem, the set 32(3) consists of all

z. on or interior to the ovals of Cassini-.

CASE 3: r—

If we let
(do + bo)
2o\T 3
(Aeg) S = a 5 3
0 0
2
2z = do - bo
then the Chebyshev polynomial Tr( % ) mey be expressed [Forsythe and
0 0

Wasow (1960), p. 228] as

1]
el N oy
—~
-
0

+
m
o
'
bt
S
2]
+
—~~
0
i
0
no
1
’—l
S
aj
——

7,(s)

or equivalently as

(A.10) T (s) =

H
-
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Now let
(A.11) W=25+aa/8 -1

Thus, ITr(s)| < ¢ when |1/2[w" + w1l < ¢’ or equivalently when

<2 .

(A.12) | &7+ —|

" we)®

As r approaches 0 , the inequality (A.1l2) is satisfied if and only ifl
‘E-‘g 1 and \ l—l <1l.
c we
or equivalently if and only if
(A.13) lwl < cand lwl>=1/c .

Hence, w must lie in the closed annulus between the circles |w| = l/c and
lwl = ¢. We now shall proceed to get the corresponding z region.

Solving Eq. (A.1l) for s gives
(A.14) s = 1/2(w + 1/w} .

If ¢ > 1, then the annulus

1The if part is obvious. To show the only if part, one need only show that
if % or 1/lwcl is greater than unity, then

1
Lim l(%)r + (;E)r = 0 -
r—@
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1/c <ijwl<e
in the w plane is mapped [Kober (1957), pg. 62] onto the closed region

ls - 1Ll + s+ 1l < 9—%—113

in the s plane and onto the closed region

: 1
(. - b )(c + =)
(A.15) lz - djl+ 1z - boj < 9 3 -

in the z plane. See Figure A.2. If z = x + 1y, then the closed region

described by the inequality (A.15) is simply the ellipse

2

(A.16)

and its interior.

If ¢ = 1, the circle |w| = 1 is mapped onto the line segment
- 1< s<1in the s plane and onto the line segment bO <z< do in the z
plane. Thus, in the limit as r approaches infinity, the region DoO(c) con~
sists® of all z on or interior to the ellipse (A.16).

The regions Dj(c), D,(c), and Dpfc) for ¢ = 1 and ¢ = l/Fr are given

in Figures 2.1, 2.2 and 2.3.

lA similar type result is given by Wrigley (1963 .
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w plane s plane z plane

(O)a) (7;6)
ar\
K c (5:0) (H:O)
1l
c - = d.+ b
0
a = 2C Y = 20 p.:(do-bo),’)+7
c + -3-:'- do - bo
B= —— 5= —5—0a
Figure A.2
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APPENDIX B

THE INEOMOGENEOUS PROBLEM

In this appendix we shall describe briefly the use of the Chebyshev
polynomial method of iteration in the solution of the inhomogeneous matrix

problem

(B.1) Ax =

%]

where, for convenience, we assume that the nxn nonsingular matrix A4 is givaen
by A =1 - B. We shall also assume that the eigenvalues {c;}l:n of T are

l:l
real and are ordered such that

(B.2) lo, | < l“n-l‘ < .o < |02| <oy <1

and that the set of eigenvectors for B span the associated vector space.
The matrix problem (B.l) may be solved iteratively using the well

known Jacobi method

e

(B.3) x(k + 1) = Bx(k) + s

where k is the iteration index number. If E(k)

1]

x(k) - x is the error

vector after k iterations, then it follows from (B.l) and (B.3) that
E(k) = BE(k - 1) = B*E(0) .

Expanding E(O) in terms of the eigenvectors of B gives

k k
E(k) = B E:cizi = 2:(01) ci¥y -

i 1
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Hence, for the Jacobi method of iteration, we see that the most slowly decay-
ing contribution to the initial error vector goes to zero as (ol)k«
To solve (B.l) using the Chebyshev polynomial method of iteration, one

can use [Varga (1962), pg. 138] the iterative procedure
(B.4) x(k + 1) = wk+l[_g_(k +1) -x(k-1)]+ x(k-1),

vhere v(k + 1) = Bx(k) + s. The sequence w1 is glven by w) = 1 and

o [
%
9 k+l( o‘l)

where Tk(w) is the Chebyshev polynomial of degree k in w. The error vector
(k)

E after k Chebyshev iterations can be [Varga (1962)] given by
(B.5) E(k) = P, (B)E(0) ,
where
W
55
Pk(w) = 7T
Tk .
&

Thus, the expansion of E(0) gives

E(k) = P, (B) Zcif_i - ZPk("i)"il‘-i .
1 1

Hence;, we see that the most slowly decaying contribution to the initial error

vector for the Chebyshev iterations goes to zero as Pk(cl).
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As for the eigenvalue problem, the rate of convergence of the Cheby-

shev iterations (B.4) is greatly affected by the estimate for ¢ In practice,

1°
two basic approaches are often used to estimate oy One approach [see, for
example, Varga (1962), Wachspress (1966), Forsythe and Wasow (1960), and Hageman
and Kellogg (1966)] is to obtain an estimate for 6, prior to carrying out the
Chebyshev iterastions. For example, an a priori estimate for oy may be obtained
by using the power or Chebyshev iteration method on the matrix B. The seccnd
approach is to obtain estimates for oy while carrying out the Chebyshev iter-
ations. In what follows we shall describe a Chebyshev strategy, similar to that
given for the eigenvalue problem, which may be used to obtain estimates for

o1 while carrying out the Chebyshev iterations.

As before, numerical estimates for will be cobtained by observing

!
the decay rate of the residual vector y(k)

v(k) - x(k - 1), where

v(k) = Bx(k - 1) + s. We will again use the residual vector quctient

Hy (el
(B.6) Q(k) = TFCEIl]

to measure the decay rate and the same Chebyshev strategy as described in
Chapter II in obtaining estimates for oy°

An initial estimate for oy can be obtained by doing a few Jacobi
iterations before starting the Chebyshev iterations. For the Jacobi method

we have 1lim Q(k) = ¢ This follows from the fact that the residual vectors

k00 1
for the Jacobi method satisfy

Bkwl

y(k) = By(k - 1) = vy .
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Suppose novw that a Chebyshev polynomial using do as the estimate for
o1 is started on iteration k1 + l. Then for iteration kl +r+ 1,

Z(kl +4r+1l) = (B - I)lc_(kl + r) + s and since s = (I - B)x we have

(B.7) z(kl + 17+ 1)

it

(B - )E(k; + 1) -
Using (B.5) we then get
Z_(kl +r+1)=(B- P, 4 (B)E(k;) -
e

But from (B.7), E(kl) = (B - I)'lz(kl + 1) and since B - I commutes with

Pr,do(B) we have
(B.8) y(ky + v+ 1) = P},dO(B)l(kl + 1) .

Thus, for kl large enough we have

Pr d (01)
(B.9) ok, + r 4 1) =~ > 0
1 Peo1,a (9])
24y
and
(Bolo) QI'-!'l £ |Pr,do(al)l 3

r+l
where Q , = I IQ(kl +[). Note that Eqs. (B.9) and (B.l0) are the same as
[=2

¢
those obtained for the eigenvalue problem. Thus, as before, one may obtain

& new estimate for 01 by solving Eq. (B.10) for oy
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If the eigenvalues of B are real but now satisfy

lo | <o, ;1 < eee < |05| <lgyl =0 <1,

%
where Oy = = 03, then the above procedure can still be used provided the
following changes are nocted.
First redefine Q(k) as
Il y(2k)ll

(-6) UE) = e - O

Then for the Jacobi iterations we have lim Q(2k) = (01)2 and in place of (B.9)
k@O

we have

(B.9") (ky + 2r + 1) 22 Y
.9! Q + 2r + | = .
1 Fa(r-1),4,' %

Equation (B.1l0) should be replaced by

Hl(kl + 2r + L

~ |

P a )l .
2r,d0( l)

In the next section we shall consider the special cyclic Chebyshev

polynomial method.

l. The Cyclic Chebyshev Method

In this section we assume that the matrix B is written in the special

ovU

cyclic form B = (L 0

) and that Eq. (B.1l) is written in the form

ok



o]
]

(]
]
1o

(B.11) = .
=2 -2

]
(-
[
tad
(]

The cyclic Chebyshev method of iteration is then defined [Varga (1962),

pg: 150] to be

zl(k + 1) ak+l[!1(k + 1) - §i(k)] + 51(k) , where zl(k + 1) = U§2(k) + 8

il

(B.12)

i}

ze(k + 1) Bk+1[ze(k + 1) - §e(k)] + ge(k) , where v (k + 1) = L§1(R+l) + 8, -

2
The sequences Ayl and Bk+l are given by Q = 1, 61 = 2/(2 - al) and for k> 1

T S B = 1
eyl = 5 ’ kel = 5 ’
o %
PPy T |

It can be shown [Varga (1962)] that the error vectors §l(k) = El(k) - X and

gb(k) = §Q(k) - X, satisfy the equations

(B.13) B, (k) = §_;(U)UEL(0) , Ep(K) = R (IE,(0)

where Sk(UL) and Rk(LU) are polynomials of degree k in UL and LU, respectively,

I. Also

i

and where SO(UL) = RO(LU)

(B.14) R (v) = B, (w) and wS,(v)) = By ()

where Pk(w) is given by (B.5).
Since s, = - IX, + x,, the residual vector Zé(k + 1) = za(k + 1) - fe(k)

can be expressed as
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zé(k + 1) = IEl(k + 1) - Ix) + %, - 52(k) = ;gl(k + 1) - Ey(k)
and using (B.1l3) we get
(B.15) Yok + 1) = [1S,(UL)U - R, (10) JE,(0)

or equivalently since ge(o) = (W - I)nlzé(l)

¥,(k + 1) = [18, (VL)U - R, (10) ][IV - 1]’122(1) .

This expression is not quite as nice as the corresponding expression (B.8)

for the normal Chebyshev method. However, if 4  is the estimate for 0y used

0

in the generation of the o and f sequences and if 4, < Oq5 then for k

0
sufficiently large we still have

Pék,do(Ul)

Pek-e,ao 9

where Q(k + 1) = 1y, (k + l)“/HZQ(k)Ho But now

¥k + 1)

k+1 "ZQ(1M| 1’70 2k,do 1’

where f(ol,do) is some function in oy and d.

An alternate approach 1s the following: let the error vector Ee(kl)
at the end of k, iterations be given by (B.13), i.e., Ea(kl) = Rkl(LU)ge(o).
Now suppose on iteration kl + 1, a new Chebyshev polynomial 1s started, i.e.,

the q and B sequences are started over in (B.12). Then from (B.15) we have




y.(k, + 1) = (W0 - I)E_(k,) = (W0 -~ I)R,_ (LUYE_(O) .
Yol Eplky R, 2

But E,(0) = (LU - I)"’lze(l) so that

Zé(kl +1) = Rkl(LU)Zé(l) .
Hence, under suitable conditions we have

Z,(k, + DI

(Bol6) “}:2(13” = Pakl,do( Ul) °

The alternate approach has the disadvantage that the generation of the
Chebyshev polynomial must be terminated in order to obtain a new estimate for

0y However, the effect of this should be small if proper care is taken.
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