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WAPD-TM-537 

In this report the practical use of the 
Chebyshev polynomial method of iteration 
is discussed. The convergence behavior of 
the Chebyshev method is given and a numer­
ical strategy is described which can be used 
to estimate the required acceleration parameters. 
Numerical examples are given and discussed. 

TEE CHEBYSHEV/ POLYNCMIAL METHOD OF ITERATION 

L. A. Hageman 

I. INTRODUCTION 

If the eigenvalues iĉ-i'̂'"-) of a real nxn matrix G are ordered such that 

f̂ 'n'— ^° -l' — °°° — '^?' — ^^1^' then a-, is called the dominant eigenvalue 

of G if \a-.\ > I CTp I. Many practical problems in applied mathematics require 

knowledge of this dominant eigenvalue and Its associated eigenvector. 

A standard iterative method for finding the dominant eigenvalue and its 

associated eigenvector is the well-known power method. For any matrix G with 

a dominant eigenvalue, the power method is a convergent process provided, of 

course, that the inicial guess vector has a nonzero component of the dominant 

eigenvector. However, when the dominance ratio a = !ff„t/|0, U °f "the matrix 

G is close to unity, the rate of convergence of the power method is very slow. 

Thus, one would like to find ways to accelerate the convergence rate of the 

basic power method» 

One such acceleration scheme is the Chebyshev polynomial extrapolation 

method. The improvenssnt achieved by Chebyshev polynomial extrapolation de­

pends strongly on the properties of the eigenvalues and eigenvectors of the 

matrix G. Normally^ in applying Chebyshev polynomials^ it is assumed that the 

eigenvectors of G span the associated vector space V (C) of G and that the 

eigenvalues of G are real. Often, however, Chebyshev extrapolation improves 

the rate of convergence even though the eigenvalues are not real and/or the 



eigenvectors do not span the vector space. For this case, thoxigh, the acceler­

ation achieved may be small. 

The convergence rate of the power method is uniquely determined by the 

properties of the matrix G and the initial guess vector^ whereas, the conver­

gence rate of the Chebyshev extrapolation method also depends on the choice 

of three parameters. The optimum parameter values, i.e., those values for 

the parameters which maximize the rate of convergence, are functions of the 

domain in the complex plane which contains the eigenvalues of G. Generally, 

the eigenvalue domain, and hence also the optimum parameters, is not known 

a priori. Thus, estimating the optimum parameter values is an important but 

often neglected problem in the practical application of the Chebyshev extrapo­

lation method. 

The purpose of this report is to discuss the practical use of the 

Chebyshev polynomial method of iteration. First, we define the method and give 

the well-known convergence properties of the Chebyshev iteration method 

assuming that the eigenvectors span the associated vector space and that the 

eigenvalues are real. We then discuss the convergence behavior of the Cheby­

shev method when these assiunptions on the eigenvalues and eigenvectors are 

relaxed. Practical numerical means by which to estimate the needed parameters 

are described and a numerical strategy given. Finally, numerical examples 

are given and discussed. 

Although this report is concerned primarily with the solution of the 

homogeneous eigenvalue problem, much of what is said is valid also for the 

inhomogeneous problem. The use of the Chebyshev polynomial method of iteration 

in the solution of the inhomogeneous matrix problem is discussed briefly in 

Appendix B, 
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II, THE CHEBYSHEV POLYNCMIAL METHOD 

Introduction 

U^TI' 
Let G be a real nxn matrix with eigenvalues i a. \.~-. and eigenvectors 

We assume that the matrix G has a dominant eigenvalue which is 

positive and thfi.'l the eigenvalues of G are ordered such that 

io i < ia J < ... < !â l < lâ l < 0̂  . n — n-1 — — 3 ~ 2 1 

We let X be the eigenvector associated with the eigenvalue a.} i.e., Gx. = o^x.. 

Unless the contrary is explicitly stated, we also assume that cfp is 

real and positive and that CT„ > I oJ for i > 3. 
2 1 — 

In this chapter, we are concerned with the problem of solving the homo­

geneous equation 

(2.1) Gx ffi ox 

for the dominant eigenvalue a~ and its corresponding eigenvector x,. 

2. The Power Method 

One may iueratively solve the eigenvalue problem (2.1) using the 

well-known power methoi. Given the real initial vector x(0) and eigenvalue 

a(0), the power method generates successive estimates for the eigenvector x 

and eigenvalue 0., by the process 

(2,2) 
[''^(k),v(k)] 

e(k) = 0(k = 1) - 7*- V f: TTT 
^ ^ ^ [v(k),x(k - 1)] 

, x(k) = T(k) , 

3 



where [£^£] denotes the scalar product of the vector r with the vector s, 

i.e., [r^s] = r £ and r is the complex conjugate transpose of the vector £» 

The integer k in (2.2) is the iteration index nijmber. 

There are many ways by which the eigenvalue may be estimated in the 

power method. The eigenvalue estimate 0(k) in (2,2) is obtained by the so-

called modified Rayleigh quotient [Bilodeau and Hageman (1957)]° Other 

techniques which may be used to estimate the eigenvalue are the Rayleigh 

quotient, the component sum, and the single component techniques. Unless the 

1 

matrix G is symmetric , it usually makes very little difference which tech­

nique is used to estimate the eigenvalue. 

For the power method of iteration, the eigenvector is more crucial 

and more evasive than the eigenvalue. Intuitively, this may be seen by con­

sidering the eigenvalue problem (2,1). Given the eigenvalue 0 , it is still 

a difficult task to determine x^ j whereas, given the eigenvector x.., it is 

easy to calculate 0 , Thus, for the most part, we shall concentrate on the 

convergence of the eigenvector. 

For any iterative process, the answers to several questions must be 

considered. For example, 

1, Does the iterative process converge? 

2, If the process is convergent, how fast or at what rate 
does it converge? 

3, What practical criterion may be used to terminate the 
iterative process? 

In this chapter, we shall be concerned with answers to the first two questions 

The third question will be discussed in a later chapter. 

If the matrix G is symmetric, the Rayleigh quotient and the modified Rayleigh 
quotient have certain advantages over the other techniques. 

k 



Since the matrix G has a dominant eigenvalue, it follows [F&ddeev and 

Faddeeva (I963)] that the power iterative method (2.2) is convergent, i.e.. 

lira 0(k) = 0, and lim x(k) = x . 
k^CD ^ k_cO 

The rate of convergence of the power method depends primarily on how 

well separated the dominant eigenvalue 0 is from the other eigenvalues of G. 

To see why this is true, let us first assume that the eigenvectors of G span 

V (C). Thus, the eigenvector estimate x(k ) after k, iterations may be written 

as 

n 

(2,3) x(k^) = x^ + ̂ c . x . 
X—X 

i=2 

where the c. are scalars, She corresponding error vector E(k,) for iteration 

k, can be expressed by 

n 

E(k-^) s x(k^) - x^ = X!*^i-i ° 
i=2 

For iteration (k + 1), we 

n 
G *̂ 1 V / ^i \ 

(2.4) x(k, + 1) - //. <• ic(k,) = —rr-X ^i + / /, ̂  c.x. . ' -̂  1 ^ 0(k ) -' 1̂  a(k.) -1 Z_ a(k ) 1-1 
•̂  i=2* ^ 

If we now assume that k, is large enough so that the eigenvalue estimates 

0(k, + r), r > 0, are sufficiently close to 0,, then for iteration (k, + r), we 

have 

"TPhis assufflption wi l l be abandoned only in the l a s t section of t h i s chapter. 
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(2.5) x(ki + ̂ ) - ( f-l ̂̂  V = ̂1 ̂ Z & ) W 

1=2' 

and 

n 
(2.6) E(k^ + r) «= ) ~ c^x^ . 

i=2 •"•' 

Thus, the rate at which the error vector E(k) approaches the null vector or 

equivalently the rate at which x(k) approaches x, depends on how well separated 

the dominant eigenvalue 0 is from the other eigenvalues of G. 

If the dominance ratio d of the matrix G is defined by 

\a,\ \aj 
(2.7) d = max 7 - ^ = 7-=^ , 

then the most slowly decaying contribution to the error vector is multiplied 

by a scalar of modulus d each iteration. Thus, d may be taken as the average 

reduction factor per iteration for successive error vectors. We define the 

average rate of convergence R for the power method as 

(2.8) R = - /n d . 

Roughly speaking, the reciprocal of R is a measure of the number of iterations 

required to reduce the initial error vector by a factor e, where e is the base 

of the natxiral logarithms. Thus, a natural criterion for the comparison of 

different iterative methods is the size of their respective rates of conver­

gence. For a more detailed discussion on convergence rates, see Varga (I962), 

page 62, 
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In the next section we shall describe the Chebyshev polynomial extrapo­

lation method which often may be used to accelerate the convergence rate of the 

basic power method, 

3. The Chebyshev Polynomial Extrapolation Method 

From Eq. (2.5) we see that the performance of r power iterations 

results in the most slowly decaying contribution to the error vector being 

multiplied by a factor of d""̂. We note that these r power iterations correspond 
ir 

^— ..... _.. _ .. ---ree to applying the mairix operator G r 
•— to the vector x(k-). Now if a r-th deg: 

1 h \ '"^^ ' 2 
matrix polynomial Q — were used to operate on x(k ), we could express 
x(k + r) as 

(2.9) i(k^ . r; . Qj|-U(ki) . Q̂ (l)x̂  + Z^rl^k^i " 
' i=2 

Hence, if we could choose the polynomial Q (y) such that Q (l) s 1 and 

^ Q —- c.x. = 0, then we would have x(k, + r) = x,, Even if such a polynomial 

i=2 •"" 

existed, it woula be a function of the c., x., and 0 , which generally are not 

known for all i. Therefore, such a special polynomial is usually out of the 

question. 

Suppose, however, thitl̂  the eigenvalues 0. of G are real and satisfy 
b <'aJo-, < d for 1 > 2.' ?hen we can try to choose for Q (y) that polynomial 

P (y) having the leasu maximum modulus over the range h < y < d and such that 

1 - ^ 
If Q^(y) - ^ \ y is of polynomial of degree r in y, then the matrix polynomial 

k=0 r ^ 
Q (B) in the matrix B is defined as Q (B) = Y, \ ^ ° 

a ^ ^ k=0 
v7e are still ass'sming that the eigenvectors x. of G span V (C). 
^In keeping with the asstumption made in Section 1 of this chapter, we assume 
that d > lb!. 
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P (l) = 1, Such a polynomial exists [Flanders and Shortley (1950)] an<3. can 

be given explicitly in terms of Chebyshev polynomials by 

(2.10) 
T 

(2y - d - b' 
r\ d 

"r'"' ' ^ 12 - d - b, ' 
rl d - b 

where T (w) is the Chebyshev polynomial of degree r. For r > 0 , 

f* /w) = cos[rcos~ w] if |wl < 1 and T (w) = cosh[rcosh~ w] if Iwl > 1. 

With Q (y) = P (y), the polynomial method of (2.9) is called the 

Chebyshev polynomial method and the matrix — 

a 
is called the argument matrix. 

The well known recurrence relation for Chebyshev polynomials 

(2.11) T^(w) = 2wT^_^(w) - T^_2(w) , r > 2 , 

where T^(w) = 1 and T,(w) = w, enables one to successively generate the poly­

nomials P (y) in a straightforward way [see, for example, Hageman (I963) p. 27]. 

Starting with x(k,), one may generate successively 

x(k^ + 1) = Pi(f̂ )2E(ki) 

x(k, + 2) = P^[^]E(\) 

^(^1 - -) = ^r(!^)^^^l) 

If w is any complex number, then T (w) may be expressed [Forsythe and Wasow 
(i960)] as ^ 

T^(w) = 1/2 (w + V w ^ - 1)^ + (w - V w ^ - 1)"^ . 



using the procedure 

(2.12) 

v(k^ + t) = T-iy 2E(^I + t - 1) 0(k, + t 

x(k^ + t) = x(k^ + t - 1) + ttj^ +t^l^\ + t) - x(k^ + t - 1)] 

0(k, + t) = 0(k, + t -

+ Pĵ  +t[x(k^ + t - 1) - x(k^ + t - 2)] 

[v(k^ + t) , v(k-̂  + t)] 

•"•̂  [r{k-^ + t),x(k^ + t - 1)] ' 

for t=l,2,3,... (The 0 calculation is included in (2.12) to take into 

account the fact that 0(k,) is not exactly equal to 0,.) a, . and p, , 
1 ^ 1 I / v+t k,+t 

are functions of d, b, and t and are given by 

(2.13) 

°=k̂ +l - 2 - d - b ' \ ^ 1 = 0 ̂ "̂i for t > 2 

T 
a. 

k H-ll d - b 
2 - d - b 

k-̂ +t. d - b ^ | 2 - d - b 
t\ d - b 

T, 
} p. 

2 - d - b 
t-2\ d - b 

k^+t - ^ / 2 - d - b 
tl d - b 

Since 

(2.14) max 1P (y)! 
b<y<d ^ 

Pr(d) = 2 - d 

we see that the most slowly decaying contributions to the error vector are 

multiplied by a factor of modulus P (d) in r iterations. For d close to 

unity, the Chebyshev polynomial method of iteration is an order of magnitude 

faster than the power method. Table 2.1 shows as a function of d the gain 

in speed of convergence one may obtain using the Chebyshev polynomial method of 

iteration compared to the power method. For Table 2,1, b is assumed to be zero. 



d 

.6 

.7 

.8 

.9 

.95 

.97 

.985 

.99 

.992 

.995 

.998 

1 ITERATION 

(d)^ 

.6 

.7 

.8 

.9 

.95 

,97 

.985 

.99 

.992 

.995 

.998 

Pl(d) 

.429 

.538 

.667 

.818 

.905 

.942 

.970 

.980 

.984 

^990 

.996 

3 ITERATIONS 

(ci)̂  

.216 

.343 

.512 

.729 

.857 

.913 

.956 

.970 

-976 

.985 

.994 

PjCd) 

.023 

.049 

.111 

.276 

.481 

,624 

.778 

.843 

.871 

.917 

.965 

5 ITERATIONS 

(a)5 

.078 

.168 

.328 

.590 

.774 

.859 

.927 

.951 

.961 

.975 

.990 

P^(d) 

,001 

10 ITERATIONS 

(d)^° 

0OO6 

,004 .028 

.016 

,076 

,204 

.337 

.539 

,647 

.700 

.792 

.908 

.108 

.349 

.599 

.737 

.860 

.904 

.923 

.951 

.980 

•"lot-^) 

___. 

.003 

,021 

.060 

,170 

,266 

.325 

.457 

.700 

TABLE 2,1 

From (2.14) we see that [P (d)] ' is the average reduction factor 

per iteration for successive error vectors of the Chebyshev polynomial method. 

Thus, the average rate of convergence for r iterations of the Chebyshev poly­

nomials method is defined [Varga (I962), page 134] as 

(2,15) M ^ r ^ ^ " ̂ '^CV'^)]^^'' ' 

From Eq. (2.14), it follows that Rj,[P_] increases monotonically with r and 

that [Varga (I962), page I39] 

10 



(2.16) R^[P ] = lim R [P ] 
CO r-' _„ r*- r-* 

r-00 
cosh 

1 2 - d - b 

In a later section, we shall discuss convergence rates in more detail. 

Thus far, we have assumed that the eigenvalue bounds d and b are 

known. This, of course, is not a realistic assiomption. If the estimates 

for d and b are denoted by d„ and b^, then we shall take P (y) to be the 

0 0 •''̂''o 

Chebyshev polynomial of degree r in which d and b are used as estimates for 

d and b. From Eq. (2.10), we see that P , (y) may be written as 

(2.17) >.d, (y) = 

^y - '̂ 0 - ^ 

^0-^0 

T 
2v - d - b \ ^ 0 0 

^o-\ I 

and hence 

(2.18) max IP , (y)l 
b<y<d '̂'̂ O 

max T 
b<y<d' ̂  

^y-%- ^0 

^0-^0 
/2 - d^ - b„\ 

0 0 
d - b 
0 0 ' 

From the min-max property of Chebyshev polynomials or by directly comparing 

(2.14), and (2.l8), we have 

max IP (y)l < max |P (y)| 
b<y<d ^ b<y<d ' 0 

with equality only if d = d and b = b. 

To illustrate how the effectiveness of the Chebyshev polynomial 

method depends on the estimate of d, let us consider a matrix G for which 

11 



d = ,9 and b = 0. If the estimates for d and b were correct, i.e., d- = d = .9 

and b„ == b = 0, then from Table 2.1 we have FAd) = ,076j whereas, with d = ,8 

and b = 0, we have from (2.18) that max |P (y)| = P_ , (<3) « .25. Thus, 
" b<y<d ^'% 5,dQ 

in 5 iterations the most slowly converging contributions to the error vector 

are multiplied by a factor of modulus .076 in the optimum parameter case 

as compared to .25 in the non-optimum parameter case. Hence, the use of 

non-optimum values for d and b can result in a sizable reduction in the con­

vergence rate of the Chebyshev method of iteration. Fortunately, as we shall 

see in the next chapter, practical numerical means exist for estimating these 

unknown constants. 

In addition to the basic assumption that G has a dominant eigenvalue 

0^, we have assumed, thus far, that the eigenvalues of G are real and that 

the eigenvectors of G span the associated vector space of G, In the next 

section we shall relax the assumption that the eigenvalues of G be real, 

4, Complex Eigenvalues 

In this section we will again assume that the eigenvectors KIS 
of G span the vector space V (C) but the assiunption that all the eigenvalues 

of G are real will be relaxed. We shall assume only that the dominant 

eigenvalue 0, is real and positive. 

We will present two approaches which, hopefully, will illustrate 

the effect of complex eigenvalues on the Chebyshev polynomial method of iteration. 

The first approach will be to show the effect of complex eigenvalues on the 

convergence rate when the Chebyshev polynomial of Eq. (2.10) is applied. We 

we have also assumed that 0-. and 00 are positive and that 00 > \ a^\ ^^r 
i > 3. These assiimptions, however, were made merely for reasons of simpli­
city and are not restricting. 

12 



note that the Chebyshev polynomial given in Eq. (2.10) is based on the assiomp-

tion that the eigenvalues of G are real. The second approach will be to change 

the argument of the Chebyshev polynomial so that the min-max property of these 

polynomials will be valid over part of the complex plane. 

A. Complex Eigenvalues and the Real Domain Chebyshev Polynomial 

Let the eigenvalues of G be denoted by -j 0. >.~ . As before, we take 

the dominant eigenvalue 0, to be real and positive but now we assume only 

l°lii=£ 
plex plane. The dominance ratio is again given by d = 10^1/0,. 

Now suppose that the Chebyshev polynomial defined by Eq. (2.10) is 

used in the polynomial method of (2.9). If d. and b are used as estimates 

for d and b in (2.10) then, as in Eq. (2.17), we let 

0 >i=n 
that the quantities •{ -î- f are contained in a connected region D in the com-

"....t̂ )=;). -X\ 
"•l ^o-'o / 

Thus, from Eq. (2.9) we see that in r iterations the most slowly decaying 

contributions to the error vector are multiplied by at most a factor of 

modulus f (D), where 

2z - d^ - b^\ 
• m l 0 01 

max T , rl d - b 
(2.20) f(D)=max|p ,(z)| ̂  ^^D V 0 0 

zcD ^̂ 0̂ " ^ l^-%- \ 

The effect of complex eigenvalues on Chebyshev extrapolation is also dis­
cussed by Wachspress (I966) and Wrigley (1963). 

13 



The average reduction factor per iteration is then 

(2.21) F̂ (D) = [f^O)]^/"" . 

We now wish to determine how F (D) is affected by the region D. 

If the eigenvalues of G are real and if d and b satisfy d > d and 

b < b, then the region D may be chosen to be the closed interval [b ,d ] and 

for this case we have 

(2.22) {v'tW^r=^ ,r^ i"'r,d(̂ )' = 
z.[bQ,d^] ' 0 J 

r 

2 - d„ - b^\ 
0 0 

d - b^ 
\ 0 0 1 

Without more knowledge concerning the eigenvalues of G, F ([b ,d ]) is the 

smallest average reduction factor which can be achieved by the Chebyshev poly­

nomial method of iteration. Thus, in seeing how F (D) is affected by the 

region D, we shall use F ([b ,d ]) as the norm. In what follows, we shall 

denote F̂ ([bQ,dQj) simply by F̂ . 

Let D (c) be the set of points in the complex z plane such that the 
.r 

inequality I P„ •, (z)| < J cF I is sat 

r 
(2.23) D̂ (c) =^z.iP^ ̂  (z)| 

isfied, i.e., 

-1 z; 1 r , 
0 

^HY) 

( c \ 
— except unity, are contained in D (c), then 
0 j r 

the average reduction factor per iteration achieved by the Chebyshev polynomial 

method will be less than or equal to cF . We are only interested in c over 

the range 1 < c < 1/F • For if c > 1/F , the Chebyshev method of iteration 

is divergent. If c < 1, the set D (c) consists of r separated regions which 
|2z - d - bQ\ 

are centered about the r real zeros of the polynomial T , r and 'r d, - b^ 
\ 0 0 

14 



thus not generally of practical interest. 

Obviously, if c is fixed, then D (c) is a function of r. If r = 1, 

the region D,(c) consists of all points on or interior to a circle with center 

I d + b^ 
^* o > 01 ̂ "̂ d radius c 

0 0 See Figure 2.1. 

The region D (c) consists of all points on or interior to the ovals 

of Cassini. A proof of this together with the region Dp(c) for an arbitrary 

c is given in Appendix A. The regions Dp(c) for c = 1 and c = l/Fp are given 

in Figure 2.2. Thus, if we choose to cyclically apply the polynomial 

G 
•2,d 

(z) and if all the eigenvalues of 
0 \ "1 

except unity, were contained in 

D (c), then the average reduction factor per iteration would be no greater 

than cFp. 

In the limit as r approaches infinity, the region D~-.(c) consists of 

all points on or interior to the ellipse 

(2.24) L ^ - 2 
•̂ 0 - ^ 1 

4 

"ol 

C + 
1 

2 

l[ 
C 

d - b \ 
0 O' 

L\ 

1 
c - — 

c 

= 1 • 

A proof of this is given in Appendix A. The regions DQ->(C) for c = 1 and 

c = l/Rj-.are given in Figure 2,3. Note that DQQ(1) is simply the line segment 

bQ < z < d^. 

We now shall give a more basic approach to the complex eigenvalue problem. 

Instead of letting r tend to infinity. 

"The limit of F as r—-oO can be expressed as 

F 00 ( d ^ . . b^) + 2 y ( i - d Q ) ( i - b Q ) 

This will be discussed in more detail in Section 5 of this chapter. 
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B. The Complex Domain Chebyshev Polynomial 

Suppose now that the quantities •l0./0,>-." are contained in the 

ellipse (see Figure 2.4) 

(2.25) 

d + b\ 

d - b\2 + -^ = -L , 

where 0 < € < — — — . Thus, the real eigenvalue premise used in obtaining 

Figure 2.4 

the polynomial (2.10) is not valid. For the complex case one would like to 

choose for Q (y) in Eq. (2.9) that polynomial P (y) having the least maximum 

modulus over the ellipse (2.25) and its interior. Clayton (I963) has shown 

that such a polynomial exists and that it is unique, real, and can be 

expressed in terms of Chebyshev polynomials by 



T 

(2.26) 

2y - d - b 

p (y) . ^ [ ( d - b ) ^ - 4 . ^ ] ^ / ^ 

T 
2 - d 

'̂ [(d - b)^ "̂ ;7F̂  

where the T (w) are again Chebyshev polynomials of degree r. When c = 0, 

P (y) reduces to P (y). We shall refer to the polynomial method of (2.9) as 

the complex Chebyshev polynomial method when Q (y) = P (y). 

The vectors x(k, + r) = P — x(k,) for the complex Chebyshev poly-
~ -L rl0, — J-

nomial method may be generated successively using the same procedure (2.12) 

as described for the real Chebyshev case. For the complex case, however, 

the parameters a and p are given by 

\ - . l = 2 - d - b ' \ ^ 1 = ° ^^'^ for t > 2 

T 

a ̂ ^+'^ ~ 777~ZT2 ,, 2,1/2 1 [(d-b) - 4e ] ' T 

2 - d - b 

"-^'f(d-b)"-4e"]V^ 
2 - d 

[(d-b)^ - 4€^]-^/^ 

[ 2 - d - b ' 

. . . ^-^ir(d-b)^ - 4c^iV^ 
' V * ' T f 2 - d - b 2 - d - b 

If we let D denote the ellipse (2.25) and its interior, then one may 

easily show that 

(2.27) 

T. -i 
20/2 

zeD 
[(d - b)"^ - 46"] 

20/2 

so 
~ / l/r that [P (d)] ' is the average reduction factor per iteration for successive 

error vectors of the complex Chebyshev polynomial method. 
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As before, we define the average rate of convergence for r iterations 

of the complex Chebyshev method to be 

(2.28) R^[P^] = - /n[P^(d)]^/^ . 

From Eq. (2.27) one may show that R [P ] increases monotonically with r and 

that 

(2.29) Rcx)[Pr) ̂  lim R^IP^] = cosh-1 ^ l ^ ' l 1/2 " "°"^" I . ^ 2 ^ 2 l/2 
r-*oo "̂  "̂  \[(d-b)^ - ke^y-'^l \[(d-b)^ - k^^y-'^ 

Since P (y) belongs to the set of polynomials from which P (y) was 

chosen, we must have that P^(d) < P (d) and hence R [P ] < R [P ] with strict 

inequality for all r > 2. Thus, the complex Chebyshev polynomial method does 

not achieve as great an improvement over the straight power method as does 

the real Chebyshev polynomial method. In the next section we will compare 

the quantities R, Q̂-jf̂ r-'' ^^^ ^00^^ ̂  when d is close to unity, 

5" Rates of Convergence 

As given previously, the average rate of convergence for the complex 

Chebyshev polynomial method increases monotonically with r to the limit 

RQQLPI.]. where 

r, r'S 1 ,̂-l( 2 - d - b I --if d - b 

Since cosh (y) = /n[y + v y - 1], we have 

2,1/2 R rp 1 / J (2 - d - b) -̂  [(2 - d - b)^ - (d - b)^ -K 46^]^/^ 1 
ĈO"- rJ - f^^\ d - b + 2e J 

19 



or equivalently 

(2.30) Roo[?r] = - (-\ ^-^±.±^ ^ ^ \ 
"" 12 - d - b + 2 [ ( i - d ) ( i - b) + €^r^j 

Similarly, for the real Chebyshev polynomial method we have 

(2.31) ^C^] = - M — 7"̂-̂  172V 
^ "^ L2 - d - b + 2 [(1 - d)(l - h)r^'^J 

We recall that the quantities d, b, and e are assumed to satisfy 

(2.32) d < l , | b l < d , a n d € < ^—-^ 

The average rate of convergence for the power method does not 

depend on r and from Eq, (2.8) is given by 

(2.33) R = - /nd . 

We will now comi)are these convergence rates when d is near unity 

or equivalently when 5, where 

(2.34) 5 = 1 - d , 

is near zero. Since - /n y = (1 - y) + -—^ ' + -—^ -•-— + ... 

we may write Eq. (2.33) as 

?̂2 =.3 
(2.35) R = 5 + 5 - + | - + . 

2 3 

for 0 < y < 1, 
5 -

20 



Thus, for small 5, a good approximation for the rate of convergence of the 

power method is 

(2.36) R w 5 . 

Similarly, RQOLP ] ™ay '̂e expressed as 

(2.37) 
i5[P ]f ib[P ])^ 

Rm[pj = 5[Pr3 + —f~" — r ~ ^ ĈOL̂ r-

where 

5[P^] = 1 
d - b 

2 - d - b + 2[(1 - d)(l - b)] 172 = 2 
5-^ [5(1 - ^)] 

1/2 

5 + (1 - b) + 2[6(1 - b)] 172 

Since 1 - b > 0, we may write 5[P ] as 

(2.38) 5[P^] = 

2 ^ / 5 . + 2( ^ 
1 - b U - b 

1 + 2 ^ A - ^ + S 
1 - b 1 - b 

In most practical applications b will range from 0 to -d so that 1 - b usually 

varies from 1 to 2. Thus, for small 5 it is reasonable to assume that 5/(1 - b) 

is also small. Hence, for small 5, a good approximation for the rate of con­

vergence of the real Chebyshev polynomial method is 

(2.39) Pcot^r^*^ 2^^1 - b 

Note that as b varies from 0 to -d, RfY>[P ] varies only from 2y^ to v ^ * v 5 

Thus Rfv-)[P ] is not greatly affected by the value of b. 

21 



For the complex Chebyshev polynomial, RQO[P ] raay be expressed as 

{5[P J } ^ {5[P J ) ^ 
(2.40) ^oo^^r^ = ^f^r^ + " ~ r + 3 + - ° ' 

where 

5[P ] = 1 ^ " ^ -̂  "^ ^ ^ = 2 
^ 2 - d - b + 2[ ( l -d) ( l -b)+ € ] ^ 

5 - € + [5(l-b) + €^]^^^ 

5 + (1-b) + 2[S(l-b) + €^]^^^ 

If we l e t K̂  = € ^ / [ ( l - b )5 ] , then 5[P ] may be wri t ten as 

(2.41) 
2V 1 - b VI . K 2 K + 2 

SLP^] = 1 - b 

1 , 2 V y - ^ ^ VI Tf2 5 
^ •̂  1 - b 

Now € must satisfy 0 < € < — 5 — so that K must satisfy 0 < K < 
•/b 

d - b 

L2V'l - b 

Thus, for small 6, K may take on large values. For e = 0 (K = 0), 5[P ] is the 

same as 5[P ] and thus for small 5 r 

(2.42) 
^CD^^v\^0-^'-l-^ 

For 6 = V6(l - b)(K = 1), we have for small 5 

(2.43) Ôot̂ r'Jg = ̂ ^^^ - ̂^ *" .828V1 

Thus, as € varies from 0 to only v5(l - b), the rate of convergence of the 

complex Chebyshev method varies by more than a factor of 2. We now shall see 

what happens to P^i\] as c approaches ^ or equivalently as K approaches 

22 



1 d - b 

V^ 2-v/l - b 

With 6 > 0 and using the fact that e = K'v/5(l - b), Eq. (2.4l) may 

be written as 

5 
r2K[v^ + K^ - K] + 2 K v f ^ 

(2.44) 5[PJ = ^ : '^-Z-^ y ^ ^ {f(K)) b_ ^^ 5 

For K > 0, f(K) is an increasing functionl of K and f 

d - b 

/ 1 d - b d - b 

Thus, f(K) < 1 for all 0 < K < — 
.2^1 - b, 

Hence, for e > 0 and small 6 we 

have 

(2.45) R^[P ] < - . 00'- r-' € 

As € approaches — - — , we have from (2.44) a«d the above that 

(2.46) 6 d - b 
Bs — •:: •; fa 

25 
^oo'-^r^ d - b ~ € l - b + 5 ~ l - b + 5 

If b = - d, note that RJYN[P ] approaches the convergence rate of the power 

method as e approaches d. This agrees with the well-known result [Varga (1957)] 

that as the ellipse containing the normalized eigenvalues {̂ i/̂ ijLj tends to a 

circle, the min-max polynomial defined by (2.26) tends to 

y when b = - d. 

/d + b̂  . . 
y - ( g ) or Just 

1̂ .̂ This may be easily shown from the derivative f'(K) 
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From expressions (2.36), (2.39) > and (2.i<-5) we have for 5 = 1 - d 

close to zero 

(2.1+7) '^''^"vm^' 
and for € > 0 

(2.1+8) R R^[P ] < -
CD*- r-' ~ € 

Table 2.2 indicates how the different convergence rates vary as a function 

of d, b, and €. 

d 

.8 

• 9 

•95 

•99 

•995 

R 

.225 

.101+ 

.051 

.010 

.002 

b=0 

.963 

.651+ 

.1+55 

.200 

.11+6 

^Oot^rl 
-b=- . 1 

.911 

.622 

•^33 

.191 

.136 

b = - . 3 

.829 

• 569 

• 397 

.176 

.125 

^CD^^r^ 

b = - . l 
€=.166 

.621 

• 376 

.225 

• 055 

.012 

b = - . 3 
6=.1+ 

.386 

..213 

.111+ 

.021+ 

.005 

TABLE 2.2 

VARIATION IN CONVERGENCE RATES WITH d, b, AND g 

21+ 



Thus, when the eigenvalues are real and d close to unity, the real 

Chebyshev polynomial method is an order of magnitude faster than the power 

method. For the complex eigenvalue case, the complex Chebyshev polynomial 

method is likely to achieve a much smaller, though still welcome, increase 

in convergence rate over the power method. 

We remark that the comparisons given above are based on R and not 

R . As mentioned previously, R increases monotonically with r and is bounded 

by RT < R < R,^. For r = 1 and for d close to unity we have 
1 — r — (X) 

(2.1+9) 

R. [PT 3 «= I'- 1-' 1 - b + S 

R^[P^] ^ R^[P^] . 

R and 

In the next section we will discuss the case when the eigenvectors do 

not span the associated vector space of G. 

6. An Incomplete Set of Eigenvectors 

In the previous material we have assumed that the set of eigenvectors 

of G spans the associated vector space of G- In this section we abandon this 

requirement. Before proceeding, we first give a preliminary discussion on 

the concept of principal vectors. 

A. Principal Vectors 

As used in this report, a vector is simply an ordered collection of n 

complex numbers. The totality of all such vectors with n elements or components 

is called the n-dimensional vector space over the complex niomber field and is 

denoted by V (C). Since the nxn matrix G with complex elements operating on a 

25 



vector X in V (C) merely transforms x into another vector y in V (C), we say 

that V (C) is the vector space associated with the matrix A. 

The set of vectors \y. l.~, are said to span the vector space V (C) 

if every vector in V (C) can be written as a linear combination of y . If 

the setjy. r""* spans V (C), then [Perils (1952)] t > n and the set|y.|^^* 

contains precisely n linearly independent vectors, i.e., any set of n + 1 

vectors from j y l~ is dependent. 

If the set of n vectors -I y. y~ ^^ linearly independent, then this 

set spans V (C) and is said to form a basis for V (C). Thus, any set of n 

linearly independent vectors forms a basis for V (C) and hence also spans 

V (C). We now wish to define a basis for V (C) in terms of the eigenvectors 

and principal vectors of the matrix G. 

An nxn matrix G with complex elements has precisely n eigenvalues 

associated with it. These eigenvalues are defined to be the n roots of the 

characteristic eqtxation 

(2.50) 1G - zl I = z" + ĥ _̂ z'̂ "-'- + ... + h z + h^ = 0 

The roots of (2.5O) are not necessarily distinct. The number of roots to 

(2.50) which have the same value is called the multiplicity of that root 

or eigenvalue. For what follows, let the eigenvalues of G be denoted by 

(2-51) (-l)m/(-2V--(-i)m.---(-tW ' 
1 2 1 t 

By 1G - zll, we mean the determinant of the matrix (G - zl). 
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where CT,,0 , ...,a{. are all distinct and m. is the multiplicity of the eigen-
t 

value a. and where 
1 

i=l 
Zm. = n. 

1 

With each eigenvalue or- ot G we may associate at least one nonzero 

vector X. which satisfies the homogeneous equation 

(2.52) Gx. = a.x. 

or equivalently 

(2.53) (G - a^I)x^ = 0 

The existence of at least one nonzero vector x. is assured since IG - \ll = 0. 

Any nonzero vector which satisfies (2.52) is called an eigenvector of G corres­

ponding to the eigenvalue a-- From the set of eigenvectors for G, we would 

like to pick n linearly independent vectors to form a basis for V (C). But, 

as we shall see, this is not always possible. 

If the matrix G is normal , then it is known [Perils (1952)] that 

it is possible to find a basis for V (C) consisting of eigenvectors of G. 

(In fact, one may choose the vectors of this basis to be mutually orthogonal.) 

' 2 If the matrix G is not normal, it may not be possible to find a basis for V (C) 

from the set of eigenvectors of G. However, it is always possible to find a 

basis for V (C) from the set of principal vectors of G. 

1 ft 3fe _* 
The matrix G is normal if G G = GG , where G^ is the conjugate transpose of G. 
Note that all Hermitian, skew-Hermitian, real symmetric, and real skew matrices 
are normal. 
2, 'One need only consider the matrix (_ 1 to show this. 
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Any nonzero vector y. which satisfies 

(2.51+) (G - a^l)\ = 0 

but for which 

(2.55) 
p-1 

(G - a^lV y^ ^ 0 

is called [Householder (1953), page 32] a principal vector of grade p corres­

ponding to the eigenvalue a^^' Note that the set of eigenvectors is included 

in the set of principal vectors since eigenvectors are principal vectors of 

grade 1. 

The following theorem is a restatement of results given in sections 

57 and 58 of a book by Halmos (1957). 

Theorem 2.1; For each of the distinct eigenvalues a^^ of (2.51) > there exists 

positive integers q,P-| >Pp̂  • • • ̂ P ^^^ nonzero vectors y, ̂ ypj"»'^y such that 

the m. vectors 
1 

(2.56) 

Pn-1 
' i^,{Q - a.I)y3̂ ,...,(G - 0^1) ^ y^ 

Po-l 
y2,(G - a^l)y^,'",iG - o^I) ^ ŷ  

P -1 
<1 y.,(G - cJil)ĵ ,...,(G - a^l) '̂  y 

-q. 

are linearly independent. Moreover, 

(G - a^I) V^, = (G - 0.1) '̂ ŷ̂  = ... = (G - 0.1) \ = 0 
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and PT + Pr, + • • • + P = m., where m. is defined in (2.51)° 1 2 q 1 1 \ y I 

It is easily seen that the m. vectors given by (2.56) are principal 
P.-l 

vectors of G corresponding to 0. and that the q vectors (G - 0.I) "̂  Zi ̂  

j=:l,...,q, are eigenvectors of G corresponding to 0.. If for each distinct 

eigenvalue 0. we let Y. denote the set of m. vectors given by (2.56), then 

[Halmos (1957), pg. 113] the set of n vectors -i Y. \.~^ are linearly independent. 

Hence, for any matrix G, the set of principal vectors must include a basis 

for V (C). 

The integers q,?.^P^'•••^P of Thra. 2.1 may also be given in terms 
1 c- q 

of the elementary divisors of G. Corresponding to the eigenvalue 0., the 

matrix G has the q elementary divisors 

^1 ^2 ^a 
(2 = 57) (z - 0.) \(z - 0̂ ) "̂,...,(2 - 0.) ^ . 

Thus, the p.'s, j=l,...,q, are simply the degrees of the elementary divisors 
J 

associated with the eigenvalue 0.. If all the elementary divisors of G are 

linear, then the principal vectors of G are also eigenvectors and thus, 

for this case, the set of eigenvectors includes a basis for V (C). 

For simplicity reasons, we shall limit ourselves mainly to a dis­

cussion of the simplest case which illustrates the character of the changes 

that occur when the matrix G has nonlinear elementary divisors. Suppose 

that the matrix G has only one nonlinear elementary divisor and that this 

nonlinear divisor is of degree 2 and is associated with the eigenvalue 0 . 

As a basis for V (C), we shall use 

(2.58) 2Ex'iE2'° °"'—s'^'—s+1'°" °'~n-l ' 
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where the vectors x. are eigenvectors of G with corresponding eigenvalue 0. 

and satisfy Gx. = 0.x.. The vector y is a principal vector of grade 2 corres 

ponding to o and satisfies 
5 

(2.59) (G - 0gl)y = Xg • 

The existence of such a basis is guaranteed by Theorem 2.1. In what follows 

we shall asstjme that the eigenvalues of G are real and that \a-.\ > 1 Opl > 1 or. 1 

for i > 3. We now shall see how the vector y affects the convergence rates 

of the power and Chebyshev polynomial methods of iteration. 

B. The Power Method 

The eigenvector estimate x(^n) after performing k-, power iterations 

may be expressed in terms of the basis vectors (2.58) as 

(2.60) x(k^) = x^ + ^c^x^ + hy , 

1=2 

where h and the c. are scalars. If k, is large enough so that the eigenvalue 

estimates 0(k̂  + r), r > 0, are sufficiently close to 0 , then for iteration 

(k-j + r) we have 

r 
y (2.61) x(k, . r) , \^J-(H) - ii * Zj^f^lil * A^T] 

The corresponding error vector E(k, + r) = x(k, + r) - x, maybe expressed as 

(2.62) E ( k ^ . r ) . ^c.|l-jx^.h|^|y 
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From (2.59)J we have that Gy = 0 y + x . Thus, 

G y = G[0 y 4 X ] ̂  (0 ) y + 20 x 
s—s 

and in general 

(2.63) G y =̂  (0 ) y + r(0 ) X 

— ' s' — s' -s 

Hence, E(k-, + r ) may be expressed as 

(2.61+) E(k, + r ) ^ y c . / ^ f x . J ^ y h r / ^ s T ^ 
-^ 1 ' t-^ i — - 1 + h — y + — — X 

i=2 W\ Wll " ^iWl/ " ' 

Since lim ra = 0 if 1 a I < 1 , we have that lim Efk-, + r) = 0. Thus, the 
r-.00 r-«00 

power method is still a convergent process when principal vectors of grade 2 

are present. 

The most slowly decaying basis "i-ector in (2.61+) will depend on the 

magnitude of {0 / 0 , i and is likely to vary with r. After r power iterations, 

the X vector has a coefficient of 
—s 

0 \r-l r 0 
/ f s p ^ r ^ _h_ 

as compared with a coefficient of c at the beginning of these r iterations. 

Hence, the x vector has been multiplied by a factor of 

(2.65) M = r -^ 
r 10, 

\r-l r 

ro-, ^ 1 % 
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in r power iterations. The multiplication factor for the other basic vectors 

in the error vector expansion is, as before, {a./a-,)' • We note that the 

vector X is being built up if the multiplication factor is greater than 
•mmQ 

unity and being reduced when this factor is less than unity. 

Although lim M - 0, initially M may increase with r. For 
r-CO ^ ^ 

example, if I0 /a^\ = "99 and h/a-,c = loO, then M^ is an increasing function 

of r for r < 90 and is greater than unity for r < 61+0. If the ratio I0 /aJ — — s X 

is small, however, then M goes to zero very rapidly. For example, if 

0 = 0 , then M =• 0 for r > 2. Thus, for the power method of iteration, the 

effect of principal vectors of grade 2 depends rather strongly on the value 

of the corresponding eigenvalue. 

C. The Chebyshev Polynomial Method 

Suppose that the r~th degree real polynomial given by (2.10) is 

applied to the eigenvector estimate 3c(k-|). We may write this as 

(2.66) x(k-̂  + r) = P^[g(G)]x(k^) , 

where g(z) = ^ |^ ^ ̂ ^ - ^—^ and P^[g(z)] = ^^^^^~j^ , and where T^(g) is 

the Chebyshev polynomial of degree r in g. We note that the notation used in 

(2.66) is slightly different from that used previously. We have introduced 

the dependent variable g merely for notational ease later. 

With the vector x(k..) given by (2.60), the vector x(k, + r) can be 

written as 

(2.67) x(k^ + r) = x^ + E^i^rCs^'^'^fei + hP^lg(G)]y 

î 2 
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and the error vector E(k-| + r) as 

(2.68) E(k^ + r) = '^c.P^[g(G)]x. + hP^[g(G)]y 

i=2 

Since the x. are eigenvectors, the sum ^ c.P [g(G)]x. can be written as 

Z i=2 
c.P [g(0.)]x-° ^® ^°^ want to see what happens to the term P [g(G)]y 

i=2 
Since P [g(G)] is a polynomial of degree r in g(G), we may write 

(2.69) P^[g(G)J = a^ + a^[g(G)] + a^[giG) f + .•• + a^[g(G)]' 

Now 

g(G)y = 
2G d + b 

a,(d - b) - d-TT ^ - 6(03)1 + (d - b) 2Es 
. i J 1 

Thus, 

[g(G)]2y= [g(a^)]\. g[,^(d - b) g(a )x s'—s 

and in general 

(2.70) [g(G)]"y= [g(0^)]"y. rl /alb)kg(^s^l"'2£. 

Since r [a^i^ - b) 

(2.70) that 

.-i .^aMiU 
dz 

, we have from Eqs. (2.69) and 

z-a_ 

(2.71) Pr[g(G)]y=. P^[g(a3;]y+ \^^ ° X 
—s 



We also have 

(2.72) 
d{Pr[g(<T3)]) ,̂g d[P^(g)] 

dz az dg aj^{d - b) 

1 <i[Vg)] 
~di 

^Tjg) 
But [National Bureau of Standards (1952), page ix] —jr— = rU ..(g), where 

U ,(g) is the Chebyshev polynomial of the second kind. U (g) is a poly­

nomial of degree r - 1 and is given by 

(2.75) u^.i(g) = ̂ i ^ ^ ^ = [ly-^ 
Vi - ĝ  

Thus, using (2.71) we may write (2.68) as 

I r\ r-5,T 2. | r \ r-5,, 2>2 

|̂ |g f̂i-s ) + l̂ l̂  (1-e ) + 

Vlt«^-s)3 
(2.71+) E(k^.r) = ^c.P^[g(0^)]x^ . hP^[g(,^)]y, hrf-fj^j • J l f ^ ^ x 

i=2 \ 1 / r 1 

Since b < 0 < d, g(0 ) can lie between -1 and +1. Thus, from Eq. (2.73) we 
^ S ~" s 

see that !U -,(g(0 ))l < r. Since 1/T [g(aT)] behaves as a , where \a\ < 1, 

we have that lim E(k, + r) = 0. Thus, the Chebyshev polynomial method is 
r-pOO 

still a convergent process when principal vectors of grade 2 are present in 

the set of basis vectors. 

The most slowly decaying basis vector in (2.7!̂ ) will depend on the 

values of 0 and r. Except for the vector x , ail basis vectors in the expan­

sion (2.7I+) are modified in the normal Chebyshev way. In applying the r-th 

degree Chebyshev polynomial to x(k,), we see from Eq. (2.7I+) that the x vector 

has been multiplied by a factor of 

^ 



(2-75) "rtfrJ = - ^ ; r i r 3 ^ | H r : : 7 r i r 5 j T * v?5-r-by 

where we assume that U T[g(0 )] ̂  0. 
I*™ X s 

In Table 2.3, we give the values of M and M [P ] when d = .99; 

b = 0, and h/c 0- = 1, In the first case we take 0 s: 0 and in the second case 
s X s ^ 

we take 0 = 0 . Note that the magnitude of the multiplication factor of the 
s 

Chebyshev polynomial method did not change much for the two cases whereas 

that corresponding to the power method did. Also from Table 2.3, we see that 

the Chebyshe-v polynomial iterations would diverge if a polynomial of degree 

less than 1+0 were repeatedly applied. 

The presence of principal vectors of grade 2 or higher in the set 

of basis vectors also makes it very difficult to estimate the parameters needed 

for the efficient use of the Chebyshev polynomial method. In general, it is 

felt that extreme caution should be exercised when using the Chebyshev poly­

nomial method of iteration if the set of eigenvectors for G does not span the 

associated vector space. 

V e remark that Mj.[Pj.] would be much smaller for the 0^ = 0 case if we had taken 
b = - d. 
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r 

1 

2 

3 

1+ 

5 

10 

20 

1+0 

80 

i6o 

320 

61+0 

CASE 1} 

M r 

1.990 

2o960 

3-911 

ljto81+2 

5-75^4 

lo.oi+o 

17-3^1 

27.698 

36.611 

32.370 

12.965 

i.oi+o 

03 = 02 

M^[P ] r"- r 

2 .960 

8.396 

16.163 

2I+.87I 

35-878 

55-615 

29"255 

1-277 

.003 

CASE 2 

M 
r 

1.000 

.000 

.000 

oOOO 

i 0^ = 0.0 

M^IP.J 

1.000 

-6.5'+7 

l i t . 1+78 

-23.378 

31+.585 

-53-087 

-29.161 

- 1.276 

- .003 

?ABLE 2.3 

D. Principal Vectors of Grade Greater Than Ifwo 

Suppose now that the nonlinear elementary divisor of G is of degree 

m + 1, where m is arbitrary. For this case we take as a basis for ? (C), the 

n vectors 

(2.76) Xi.E2>"'' >\'IVIQ' ''' '4i'̂ s+l̂  ' " , \ , 

where the vectors x. are eigem-'ectors of G with corresponding eigenvalue 0. 

and the vector y,,j=l,2,...,m is a principal vector of grade j + 1 corresponding 
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to the eigenvalue a • I'he vectors y. satisfy the relationship y = (G-0 I) y 

or equivalently 

(2.77) 

^̂  ' ^sD^. = ̂ ^1 

^̂  - ̂ ŝ '4,̂ 1 = 4^2 

(G - cr̂ I)ŷ  - y. 

(G -" a^I)y, X 

The existence of such a basis is giaaranteed by Theorem 2.1. We also assixrae 

that the eigenvalues of G are real and that I0 I > [0 1 > I0 I for i > 3. 

In terms of the basis vectors (2.7o), the eigenvector estimate after 

k, iterations may be expressed as 

(2.78) 

i=2 

where we again assume that the eigenvalue estimates 0(k + r) , N > 0, are 

sufficiently close to c-i. 

For the power method of iteration, the error vector E(k, + r) may 

be expressed as 

E(k^ + r) « 

m 

i=2' ^ j=l* 

which after some manipulation may be written as 
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(2.79) E(k, + r) » 

1=2 

m 

^0^s + 
j=l 

where 

m-j 

^^1^ k=0 

, J=0,1,...,m , 

and where h_̂  is taken to be zero. Since 0 , 0 , m, and the h 's are indepen-
U X S J 

dent of r and finite, there exists nonnegative constants D. such that 

(2.80) ID.I < D.|j) , j=0,l,...,m 

Thus, since lim (r) (0 /a,) " = 0, again we have that lim E(k-[̂  + r) = 0 • 

From (2.79) and (2.80), we see that the coefficient of the x basis 
—s 

vector in the expansion (2.78) goes to zero as 

(2.81) 
. 0 \r-m 

r \ I si 
m M 0̂  

Thus, for large m, the presence of principal vectors of grade m may greatly 

reduce the convergence rate of the power method. 

If the eigenvector estimate x(k, + r) had been obtained by applying 

the r-th degree polynomial P [g(G)] of Eq. (2.66) to x(k,), then the error 

vector E(k + r) may be expressed as 

m 
(2.82) E(k-̂  + r) ̂  ^c.P^[g(G)]x. + ^h^P^[g(G) ]y. 

1=2 j=l 
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In a manner similar to that given pre,^ioasly for the case m = 1, we obtain 

m 

1=2 J=.l 

d{P^[g(a3)]} 
+ ... + h — , — — • y , m dz -m-l 

To show that the error vector given by (2.83) approaches the null 

vector as r approaches infinity, one needs to show that 

d'^{P^[g(c3)]} 
(2.81+) lim ^ . . = 0 

r-«CO dz" 

for j=0,l,...,m. With g(0-|) > 2.0 or equivalently with d < — + — , one may 
•'- 3 5 

easily show that (2.81+) is true. With d < 1.0, we conjecture that (2.81+) is 

true. 

We now turn to the practical problems of estimating the constants 

d and b, and of terminating the iterative process. 



III. THE ESTIMATION OF THE DOMINANCE RATIO d AND THE TERMINATION 
OF THE ITERATIVE PROCESS 

In this chapter we shall give a criterion for terminating the iterative 

process (2.12) and shall specify a nvimerical means by which to estimate the 

dominance ratio d. For the purposes of this chapter we shall assume that the 

eigenvalues of the nxn matrix G are real and are ordered such thas 

On< 'n^l- '" < <^3< ^2 < ^1 

and that the .set of eigenvectors for G incluies a basi^ for V (C) . We also 

assume that 0, > 0_ > i .j. | for i > 3-

1. The Estimation of d and b 

As mentioned previously, the use of non-optimiom values for d and b 

can result in a sizable reduction in the convergence rate of the Chebyshe*; 

method of iteration. Thus, one is faced with the problem of determining 

these unknown constants in order to use the Chebyshev polynomial method 

efficiently. 

Since we have assiomed that d > i b i, the rate of convergence of 

the Chebyshev polynomial method will be governed primarily by the value of 

d. Thus, the estimate for d appears to be the more important estimate. Hence, 

in what follows we assume that enough is known about the eigenvalues of G so 

that an estimate b for b may be picked tc satisfy b^ < b and lb 1 < d. We 

O J o 

remark that these conditions on the choice of b^ are not irpprac'̂ ical. for if 

the eigenvalues of G are all positive, then b > 0 and b _ 0 is a satisfactory 

choice. If nothing is known about b, then one may apply the Chebyshev poly-

nomial method with the argument matrix G instead of G. Since the eigenvalues 

1+0 



of G must be nonnegative, zero is a lower bound for the eigenvalues of G . 

We remark that the effective convergence rate of the Chebyshev polynomial 

2 
method with argument matrix G differs very little from that with argument 

matrix G. In fact, if b = - d, then the effective convergence rates of the 

two are identical. This follows from the identity T (x) - T (2x - 1). 

The rate of convergence will not be critically affected by the 

estimate b if b satisfies the above two conditions. This then is why we 

feel justified in assuming that b satisfy only the two conditions given 

above and that an accurate estimate for b is not essential. Thus, hence­

forth, we will be concerned only with estimates for d. 

In order to obtain an accurate estimate for d, we propose the 

following strategy. Before starting the Chebyshev method of iteration, do 

a few (say 5 or 10) power iterations in order to obtain an initial estimate 

for d. (These initial power iterations also provide a reasonable estimate 

for 0, for use in the initial Chebyshev iterations.) Then apply repeatedly 

low degree Chebyshev polynomials so that the estimates for d may be con­

tinuously updated. After a good estimate for d is obtained high degree poly­

nomials may be applied, if needed. 

Numerical estimates for d may be obtained by observing the decay 

rate of the residual vector y(k) = v(k) - x(k - 1), where v(k) and x(k - 1) 

are defined by (2.12). We define the residtxal vector quotient as 

It is essential, though, that a bo < b be used. For if bQ > b + (l - d), 
then the Chebyshev polynomial method will diverge. 



(5.4 Q(X) - 1'^""" 
y(k - 1)11 ' 

where II II denotes some suitable vector norm. For the power method, it is 

known that lim Q(k) = d. To see why this is true, let x(0) be expanded in 
k^OO 

terms of the eigenvectors of G as 

x(0) = X, + \ c.X-

1=2 

Thus, we have 

,k-l 

I(^) - ̂ (^ - ^) = 0(o5!!!0(k - 2) { ( ^ " ^ 1 ^ 1 ^ ( ^ ^^""'^2^2 

Vl-T-^i—^ iK^f'^x 
£_, l0(k - 1) ' \ ^il 1~1 + 

i=5 

Since lim ©(k) = 0., and I0.I/0., < d for i > 3, we have that lim Q(k) = d. 
k^CO 1 1 1 - ĵ _̂OQ 

Thus, an initial estimate for d may be obtained by doing a few power iterations 

before starting the use of Chebyshev polynomials. 

Estimates for d may also be obtained every Chebyshev iteration by 

comparing the convergence rate actually being obtained with the theoretical 

convergence rate one would obtain if the d being used were correct. If a 

Chebyshev polynomial using d_ as the estimate for d is started on iteration 

k, + 1 and if 

1+2 



( 3 ^ 2 ) <̂  

( i ) 0(k, + r) i s suff ic ient ly close to 0̂  for a l l r > 0 

and 
n 

( i i ) I I ^ P j . <i (0^/0^)c^xjl is small r e l a t ive toJlP^^^ (d)c2X2ll, 

1=3 

then from Eq. (2.9) we may approximate x(k, + r) by 

Pr,d ^^^ 
x(k, H- r) . Pr^, (1)^ X, + r V T T T ' 2 ^ 4 ' 

0 I r , d Q > 

where P , (y) is given by Eq. (2.I7). Since P (1) = 1, the residual 
-^A r,d. 

vector y(k-, + r + 1) may be approximated by y(k, + r + 1) » (d - l)Pr ^̂  (̂ )̂ o2Ep 

and the residual vector quotient by 

(3-3) Q(k^ + r + 1) 
Pr d ̂'̂) 

P /, (d)' r-l,d^^ ' 

r+l 

where P^ ^ (y) = 1. With Q̂ _̂ ^ s | |Q(k-ĵ  + / ) , it follows that 

=2 

(3-î ) ^r.l-l^r,d,(^)' • 

Thus, Q , gives a measure of iP (d)! and one may obtain a new 
r+ X r,a 

estimate for the dominance ratio by solving (5.I+) for d. We now shall describe 

how one may obtain a new estimate for d from (3.I+). 

Case 1; ^>^r.l>^r,d^(V 

From Figure 3.I, this case implies that d > d and we are not obtaining the 

expected convergence rate from the present estimate d^. Thus, a new estimate 

^3 



for d should be obtained for possible use in the generation of a new Chebyshev 

polynomial. To obtain this new estimate for d we make use of (3»^)- Using 

P , (d) as defined in (2.17)^ we may express (3.I+) as 

T 

(3^5) ^ + : 

/2d - d^ - b^i 
0 0 

l^-^o' \' 
1̂ 0̂ - 0̂ 

or e 
(2 - dQ - b I 

q u i v a l e n t l y s ince P^ , ( d . ) = I . O / T —5 r-—-
r,dQ 0̂  / r\ dQ - b^ ^ 

(3^6) T '̂̂  - '̂ 0 - ̂ 0 

The right side of (3.6) is greater than one so that the largest positive solu­

tion to (3.6) can be expressed as 

(3.7) 
0 0 /cosh 

cosh •l|_5r.l 

^0 - ̂ 0/ 

This solution may then be used as the new estimate for d. One may easily show 

that the d given by (3.7) satisfies the inequality d < d < 1. 

Case 2: Q T < P , (dj 
^r+1 ^^^0 G' 

From Figure 3.I, we see that this case implies that d < dQ and we 

are getting a convergence rate which is greater than that expected from using 

d^. For this case the right side of (3.6) is less than one and a solution 

to (3.6) is 

1+1+ 



(3.8) 0 0 
cos 

cos 

If the principal value is used for the inverse cosine, then the resulting d 

estimate satisfies p. < d < d , where \x is the largest positive root of 

P„ ̂  (y) = 0. (See Figure 3.1.) 

Case 3: 0,^1 > 1-0 

This case implies that there has been no error reduction. If the 

error is not being reduced, then one or more of our assiomptions are not 

being satisfied. This can happen 

(a) if 0(k, + r) is not a sufficiently good approximation 

of 0^, 

(b) if the set of eigenvectors of G does not span V (C), 

(c) If the eigenvalues of G are not all real, or 

(d) if b < b^. 

If the assumptions given in (3.2) are valid, expressions (3'7) and 

(3.8) normally will give a good estimate for d. Obviously, these assump­

tions do not always hold. However, they may be reasonable under certain con­

ditions. The Chebyshev strategy given below is designed toward this end. 

2. Chebyshev Strategy 

Basically, the Chebyshev strategy can be divided into three parts, 

as follows: 



+=-
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(a) Initially, at least four iterations of the power type are 

carried out in order to obtain an initial estimate d„ for d and a reasonable 

estimate for 0.. . We note that these power iterations will practically elimin­

ate from the eigenvector guess x(0) those eigenvector modes corresponding to 

the smaller eigenvalues. (See Eq. (2.5)). 

(b) Tne use of Chebyshev polynomials is then started on iteration 

5, say, using d^ as the estimate for d. Low degree Chebyshev polynomials 

are repeatedly applied with the estimates for the dominance ratio being con­

tinuously updated. If the low degree Chebyshev polynomials are generated 

with the dominance ratio under-estimated, these polynomials will greatly 

reduce all the eigenvector modes in the guess vector x(0) except those with 

the larger eigenvalues. For example, if d =: .889 and if a 5-th degree Cheby­

shev polynomial is generated with d = .8, then all eigenvector modes x. with 

(a^/a-,) < .8 are multiplied by a factor smaller in magnitude than .OI7, while 

the Xp eigenvector mode is multiplied by a factor of only .211. Thus, generating 

a polynomial with the dominance ratio under-estimated results in assumption 

(ii} of (3.2) being more nearly satisfied. One may impose upper bounds on 

the initial d estimates in an effort to make these estimates less than d. 

For example, one may insist that d < .9 , d- < -925, etc. 
0 — X -̂  

(e) As (5°2) becomes more nearly satisfied giving relatively good 

convergence towards the corre:.t d, high degree Chebyshev polynomials may be 

applied, if needed, to reduce those eigenvector modes with the larger eigen­

values. 

In summary, the Chebyshev strategy is fco first eliminate the more 

rapidly decaying eigenvector modes from the g'uess x(0) and then concentrate 

on the most slowly decaying modes. This generally enables the estimates for 

d to converge to the correct value. 

^1 



The decision whether to terminate the present Chebyshev polynomial 

and start the generation of a new polynomial using an improved estimate for 

d can be made by comparing the convergence rate actually being obtained with 

the theoretical convergence rate one would obtain if the estimate for d were 

correct. 

The convergence rate for iteration k is defined to be 

l|E(k)|| 

(5-9) ^(^)"-^"||E(k-l)|| 

where E(k) = x(k) - x, is the error vector for iteration k. If a Chebyshev 

polynomial using d^ as the estimate for d is started on iteration k+1, then 

from Eq. (2.9) we may write E(k + r) = > c.P (j./0,)x, . Using assijmpti 

1=2 ""̂  ° ' 
(3.2) and Eq. (3'3)> ©(k + r) may be approximated by 

G(k + r) « - (n 
^r d (̂ ) 
r,°-Q _ _ _ _ _ _ 

r-l,dQ^ 

« - /n[Q(k+ r + l ) ] 

Now if dj-j = d, the Chebyshev theory of Chapter II implies that the theoretical 

convergence rate for iteration k + r should be - /n[P (d)/P ,(d)] or equiva­

lently - /n[T^_^(a)/T^(a)], where a = (2 - d^ - ^Q)/i% - b^). Thus, 

f • lr^^ -nCi ^̂  /n[0(k + r + 1)] 

^̂•'•"̂  "̂ '̂ -̂̂  '̂  = MVl(a)/T^(i)] 

may be used to compare the actual convergence rate with the theoretical con­

vergence rate for iteration k + r. 

The decision whether to begin a new Chebyshev polynomial using a new 

estimate for d can be based on R(k). For example, one could start a new 
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polynomial on iteration k + r + 1 if R(k + r + 1) is less than .7- It is 

often helpful to insist that all polynomials generated be at least of degree 

r , where r may be taken to be 3 or i<-o 

5° Terminating the Iterative Procedure 

Let the relative sum errorA(k) for iteration k be defined as 

llE(k)|| 

(3=11) ^ ( ^ ) " - f i j ! 
_2 

2 

where by||r|L is meant the Euclidean or /_ norm of the vector r, i.e.. 

In order to obtain a computable approximation for A(k) let 

||v(k) - x(k - 1)IL 

We now assume k is large enough so that x(k - 1) may be approximated by 

(3.13) x(k - 1) s= x^ + CgXg 

Thus A(k) may be expressed as 

f (1 - d,)^c^x ,x "̂  /^ 
(3.li+) A(k) ^\ „2:£__2_ 

Using (5»13)^ we have E(k - 1) = x(k - 1) - x^ « CgX̂  so that A(k - 1) 

Icgl •IIX^II/IIXJLH and 



A(k) ^ A(k - 1) 
(1 » d) 

{1 + y + [A(k - l)f) 27172 

where y = 2Cp[x ,Xp]/[x,,x,]. Using Schwarz's inequality we have 

lyl < 2A(k - 1). Thus, if A(k - 1) < 1, we have 

(3.15) [1 -A(k - i)]<i2—l^-Jl< ri+A(k - 1)] 

Hence, for k sufficiently large we have 

(5.16) A(k) m. (1 - T i A(k) ̂  ^(^ - ̂) ̂  (1 - dS^ A(k) 

Another possible meastire as to how well x(k) approximates x̂  is 

what we shall call the relative point error X(k). If e. is a vector of order 

n whose j-th component is unity and all other components zero, then the rela­

tive point error for iteration k is defined as 

(3»1T) X.(k) = max 
J 

[ij.E(k)] 

where the subscript j varies only over the set of indices for which (e .,x,) ^ 0. 

To obtain a computable approximation for X(k), we let 

(3.18) 6(k) s max 
J 

[£j.l(k)] 

1 - tej,x(k.l)J 

where the subscript j again varies only over the set of indices for which 
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(ej,x(k - 1)) ̂  0.^ 

Again assuming that k is sufficiently large and using Eq. (5.13), we 

have 

[ej,x(k - 1) ] ** (ej,x^) + %(^y^) 

and if (e^>x,) ^ 0, then 

(3.19) 
[ej,v(k)] (1 - d)aj 

[ej,x(k - 1)] ** ' 1 + aj 

where 

j = "2 (ej,x^) a. = c, 

Thus, 6(k) may be approximated by 

(3.20) 5(k) » (1 - d) max 
1 + a. 

Using (3.13), X.(k - 1) may be approximated by X(k - 1) « maxja.! . Thus, if 
J ^ 

maxla.l < 1, we have 

(3.21) 
X(k - 1) §(k) U k - 1) 

1 + \(k - 1) ~ 1 - d ~ 1 - \(k - 1) 

In practice, one usually may avoid those J for which (ei^Xl) = 0 ̂ y allowing 
the indices j in (3.18) to vary only over those j for which [e^,x(k - 1) > 
7{max[e.,x(k - 1)]), where 7 is some fixed small ntimber. 
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and 

('•̂' ' (I - fl 5(M ̂ "'•- - ̂  i (1 - T- 5(M 

Thus, one could terminate the iterative procedure (2=12) by using 

A(k) and/or 6(k) modified in some way by a function of d to measure the 

relative sum and point errors. We note that the relative sum error is an 

aggregate measure of the error vector E(k) while the relative point error 

is a pointwise measure. 

A(k) may also be used to estiMite the relative eigenvalue error 

T(k), where 

(3.23) T(k) S sin 
< ^ 1 

From Eq. (2.12), a(k + l)/0, is given by 

a(k . 1) a(k) ili^-^)>l(\-])l %-^'^^^-^'^^ 
Ol "= a^ [v(k+ l),x(k)] [G_3,(k)^x(k)] 

°1 

and hence 

[|-x(k),(|-x(k) » x(k))] 

(3.21,) £(i.t_il.i..il !l , 
''I [S-x(k),x(k)] 

If k is large enough so that the vector estimate x(k) can be written as 

x(k) « x^ + c-x̂  then (5.24) can be approximated by 

(3.25) 
a(k f 1) , _ _ ^ - 1) [x̂ x̂g ^ Cgdxg,xg] 
- i — L - 1«, _ 

1 -l̂ -̂ Ei + ^2^^ ' ^^-l'-2 •*• ^^2*^2^-2 
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But [A(k)]^« c|[X2,Xg]/[x^,x^] so that 

g(k -I- 1) ^ ^ < (1 - d)A(k) 1 + dA(k) 
(1 - dA(k)(l =A(k)) 

and using (3.15) and the fact that d < 1, we have 

(3.26) 
a(k + 1) 

Of, 
< A(k + 1) 

The inequalities (3.16), (5.22), and (5.26) are based on the assump­

tion that k is large enough so that 

1. the eigenvalue estimates o(k) are sufficiently close 

to (T̂  and that 

2o the eigenvector expansion of the error vector E(k) con­

sists of one predominant eigenvector. 

The conditions given above were needed in order to give some mathematical basis 

for these inequalities. It is felt, however, that the indicated bounds are 

realistic under much less stringent conditions. In using (5.16) and (5.22), 

it is important that one have a good estimate for d. This is especially true 

when d is close to unity. 

We note that the inequality (5.26) may be sharpened somewhat if the 

matrix G is symmetric. For this ease the set of basis vectors may be chosen 

to be orthogonal. Thus, since x-, # ^ s 0, Eqs. (3.14) and (3.25) may be 

expressed as 

'L=i''5i ''* ^QS.O'£X> [1+ (A(k))̂ ]̂  
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and 

g(k - 1) Cgd(d - l ) x g , j ^ d(d - l ) [ A ( k ) r 
X jw A «* •—̂  2 

Hence, since d < 1, we get 

(3.28) p ( k •»- 1 ) . 1 . [A(k+ 1)1' 
~ 1 - d 

In the next chapter, we shall discuss some numerical results= 

3k 



IV. NUMERICAL EXAMPLES 

In this chapter we give numerical eseamples which illustrate certain 

points concerning the behavior of the Chebyshev polynomial method. 

We seek to solve the homogeneous problem 

(î .l) ^A o'X 

for the dominant eigenvalue a, and its corresponding eigenvector x^. The 

Chebyshev iterations are carried out using the procedure 

(h^2)< 

v(k^ + t) ^ 

0(k + t) = 

5c(k, + t) 

G -p- 3f(k + t - 1) 

[v(k̂  + t),v{k^ + t)] 

x(k^+t=l) + a 
1 

cr(k, + t - 1) 

0(k, + t) - ^ 1 ^ 
- x(kj^ + t - 1) 

P, Ki+it 
3£(k, ̂ + t - 1) - x{k^ + t - 2) 

where a, . and p . are given by (2.13)- The above procedure differs from 
1 1 

(2.12) only in trn nci ••.!>r \̂ ,̂ . 4 f* tn the extrapo­

lation. For convergent problems, numerical experiments indicate that both 

procedures (2.12) and (ko2) gire essentially the same results. 

'Ihe Chebyshev strategy is basically that as described in Chapter III. 

The generation of a Chebyshev polynomial is terainated and a new polynomial 

started on iteration k if 
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(i) the degree of the polynomial to be terminated is 

(̂ .3) < greater than or equal to 5, and if 

(ii) R(k) < .6 , 

where R(k) is given by (3.10). If it is decided to terminate the n-th poly­

nomial then d ,, the estimate for d to be used in the generation of the 

(n + 1) Chebyshev polynomial, is usually taken to be the d as determined from 

(3.7) or (3.8). However, the following restrictions are placed on d .t 

dQ < .95, d^ < .985, dg < .995, and d^ < .99995 for n > 3. 

In the ntwerical data given below, we let 

k = the iteration index. 

CT(k) = the estimate for CTT after k iterations. 

d(k) = the estimate for d after k iterations. 

r = the degree of the Chebyshev polynomial which has been generated at the 
end of the k-th iteration, r = 0 implies that the k-th iteration is a 
power iterate. 

R(k) = the ratio of the actual convergence rate to the theoretical convergence 
rate for iteration k - 1. R(k) = 1.0 if iteration k - 1 was a power 
iteration; otherwise R(k) is as defined by (3.10). 

A(k) = the error estimate as defined by (3.12). 

S(k) = the error estimate as defined by (5.18). 

For problem 1, the matrix G of (4.1) is a symmetric, positive semi-

//1 2 definite matrix of order 99 whose nonzero eigenvalues are a/ = [cos njf/100] , 

jf=l,2,.. .,49. Tbe remaining 50 eigenvalues of G are equal to zero. Thus, 

0^ = ,999013 and d = 0 /a, = .99704. Since the matrix G is symmetric for this 

problem, the set of eigenvectors for G includes an orthonormal basis for the 

associated vector space. Thus, the real Chebyshev polynomial method of 

Chapter II may be rigorously applied. 
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Three different iteration strategies were used to obtain the dominant 

eigenvalue for problem 1. First the problem was run using the Chebyshev 

strategy described above. Then the dominant eigenî 'alue was obtained using 

only power iterations and finally the problem was solved using only one high 

degree Chebyshev polynomial with the correct value for d being input. The 

numerical results for problesa 1 &re given in Tables 4.1-4.5- Graphs of A(k) 

vso k for the three iteration strategies are given in Figure 4.1. 

Comments on Problem 1; 

From Table 4.1, we see that the Chebyshev strategy worked as expected 

for this problem. 

The odd behavior of R(k), A(k), and 5(k) in Table 4.3 around the 25th 

and 5C'th iterations is probably dtie to the relationship between the eigen­

values af, of G and the zeros and/or peaks of the Chebyshev polynomials of 

degree 24 and 49. Generally, if a high degree Chebyshev polynomial using 

an input value for d which is too large is generated early, the behavior 

of the R, A;, 5 and d quantities is much store erratic. This is illustrated 

in probleiE 3 below. 



PROBLEM 1 

CHEBISHEV ACCELERATION 

k 

2 

5 

7 

8 

9 

10 

11 

13 

14 

16 

17 

20 

21 

25 

26 

32 

55 

41 

42 

50 

51 

60 

61 

62 

90 

r 

0 

1 

5 

1 

2 

3 

1 

3 

1 

5 

1 

4 

1 

5 

1 

7 

1 

9 

1 

9 

1 

10 

11 

12 

40 

R(k) 

1,00 

1.00 

.41 

.25 

.55 

.41 

.28 

,60 

.47 

.68 

.59 

.69 

G(k) 

.989613 

.993801 

.995651 

.996157 

.996404 

.996810 

.997113 

.997455 

.997679 

.997869 

.998cei 

.998247 

.60 .998549 

.65 

.58 

.65 

060 

.64 

.59 

.998545 

.998604 

.998784 

.998814 

,998921 

.998952 

.64 j .998971 

.60 

.80 

.78 

.76 

.60 

.998976 

.998997 

.998999 

.999001 

.999015 

A(k) 5(k) 

.04652 .24965 

.01917 .09994 

1 d(k) 

.35550 

,82201 

.01066 j .05517 .89142 

.00872 .08706 ,90706 

.00787 .02740 ,94661 

.00651 ,02602 .95272 

.00555 .ce:!4T ^95726 

.00455 

,00588 

,01367 

,01092 

.00558 .01086 

,00297 .00927 

.00240 

.00214 

.00166 

0 00151 

.00105 

.00095 

.00057 

.00052 

.00056 

.00034 

.00022 

.00921 

,00625 

,00559 

.00418 

000362 

.00226 

.00197 

.00126 

.00111 

.00073 

.00065 

,00048 

,00046 

.00019 .00045 

.00002 .00CQ5 
___ 

,97211 

.97454 

,98144 

.98258 

,98687 

.98758 

,99097 

.99152 

.99545 

.99560 

.99501 

.99511 

,99658 

.99645 

.99696 

.99697 

.99698 

=99704 
.__4 

TABLE 4,1 



PROBLEM 1 

PCWER ITERATIONS 

k 

2 

5 

7 

8 

9 

10 

11 

15 

14 

16 

17 

20 

21 

-25 

26 

52 

55 

41 

42 

50 

51 

60 

61 

90 

r 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

500 0 

R(k) 

1.00 

1.00 

1.00 

1,00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1,00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

a(k) 

,989615 

.995801 

.994808 

.995155 

.995459 

.995678 

.995885 

.996215 

.996555 

.996588 

.996689 

.996945 

.997017 

,997260 

.997512 

-997567 

.997602 

.997856 

.997860 

,998026 

,998040 

,998182 

.998195 

,998475 

.998955 

A(k) 

.04652 

.01917 

.01442 

.01292 

.01175 

.01077 

.00998 

.00875 

.00825 

.00741 

.00706 

.00621 

,00598 

.00522 

^00506 

.00450 

.00420 

.00554 

.00547 

,00505 

,00298 

.00262 

.00258 

,00187 

.00055 

5(k) 

.24965 

.09994 

.07129 

,06256 

.05542 

.04987 

,04552 

05855 

.05558 

.05112 

.02928 

.02486 

,02567 

.01986 

.01909 

.01547 

.01500 

.01205 

.01174 

,00985 

_ .00965 

.00815 

,00802 

,00555 

,00129 

d(k) 

.55550 

.82201 

.87426 

.89595 

.90854 

.91841 

.92654 

.95851 

.94294 

.95056 

.95559 

.96057 

.96249 

,96858 

.96980 

.97546 

,97620 

.98077 

.98121 

.98411 

.98441 

.98661 

.98681 

.99061 

^993^ 

TABLE 4 , 2 
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.001 

.0001 

.00001 

HIGH DEGREE 
CHEBYSHEV 

ITERATIONS 

FIG.4.1 

GRAPH OF A(k) VS ITERATIONS 
FOR PROBLEM I 
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For problem 2, the matrix G has the same eigenvalues as those for 

problem 1 but the set of eigenvectors for this problem does not include a 

basis for the associated vector space, A nonlinear elementary divisor of 

degree 50 is associated with the eigenvalue zero and thus, principal vectors 

of grade 50 are present in the set of basis vectors for G. The numerical 

results obtained from this problem are given in Tables 4.4-4.7. In Tables 

4.6 and 4.7, the quantity Q(k) is defined by Eq.. (5.I), 

Comments on Problem 2; 

The power iterations for problem 2 were almost identical to those 

of problem 1. This would not have been the case, however, had the nonlinear 

divisor been associated with some rather large nonzero eigenvalue. 

Note the rapid divergence property of the Chebyshev iterations. The 

results of the Chebyshev high degree acceleration problems do not necessarily 

imply that the conjecture of (2.84) is false. In (2,84) it is assumed that 

an infinite degree Chebyshev polynomial is generated and that the time 

dominant eigenvalue is used as the normalizing factor in the Chebyshev 

extrapolation. In an attempt to see the effect of the normalizing factor, 

the high degree Chebyshev acceleration problem of Table 4.6 was rerun using 

the true dominant eigenvalue in the Chebyshev extrapolation, i.e., the 

x(k., + t) term in (4,2) was ccsnputed using [a(k + t - l)/a,]y(k.^ + t) instead 

of [a(k, + t - l)/c(k^ + t)]v(k, + t), As seen from Tables 4.6 and 4.7, this 

change seemed to affect only the eigenvalue estimates. The reason for the 

relative stability of the R(k), d(k), and Q(k) quantities in Tables 4.6 and 

4.7 is not known. 

The numerical results of problem 2 show that the presence of nonlinear 

elementary divisors can drastically affect the behavior of the Chebyshev 
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polynomial method. We remark, however, that the Chebyshev polynomial method 

often may be used to good advantage when the nonlinear divisors are associated 

with very small eigenvalues and when the strategy used makes provisions for 

the presence of principal vectors in the set of basis vectors. For a dis­

cussion of this, see Hageman and Kellogg (I966). 
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PROBLEM 2 

POWER ITERATIONS 

k 

2 

5 

7 

8 

9 

10 

11 

15 

14 

50 

51 

90 

500 

r 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

R(k) 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1,00 

1.00 

1.00 

1.00 

1.00 

c(k) 

.988755 

.995656 

.994710 

.995074 

.995571 

.995620 

.995851 

.996174 

.996515 

.998015 

.998055 

.998465 

.998929 

A(k) 

.04155 

.01712 

.01501 

.01170 

.01067 

.00983 

.00915 

.00805 

.007584 

.00287 

.00282 

.00179 

.00049 

5(k) 

.24904 

.09975 

.07125 

.06232 

.05539 

.04984 

.04530 

.03852 

.05557 

.00985 

.00965 

.00555 

.00128 

d(k) 

.58662 

.82724 

.88355 

.89970 

.91187 

.92157 

.92900 

.94048 

.94492 

.98443 

.98471 

.99068 

.99543 

TABLE 4,5 



PROBLEM 2 

CHEBYSHEV (HIGH DEGREE) ACCELERATION d ^ .99704 

TABLE 4.6 



PROBLEM 2 

CHEBYSHEV (HIGH DEGREE) ACCELERATION 
INPUT d = .99704 
INPUT a-ĵ  = ^999015 

k 

5 

5 

7 

8 

9 

10 

11 

25 

26 

27 

51 

52 

55 

100 

101 

102 

200 

201 

202 

298 

299 

500 

r 

1 

5 

5 

6 

7 

8 

9 

25 

24 

25 

49 

50 

51 

98 

99 

100 

198 

199 

200 

296 

297 

298 

R(k) 

1.00 

- . 9 5 

19.06 

18.44 

16.55 

14.41 
• 

11,68 

.10 

.18 

' . 24 

.74 

.75 

.75 

.89 

.89 

.89 

.95 

.95 

.95 

.97 

.97 

.97 

a(k) 

.991 , 

.996 

.998 

1.000 

1.021 

1.219 

- .789 

57.687 

45.995 

4.244 

42.202 

55.643 

23.402 

52.409 

11.303 

60,198 

97.918 

85.801 

76.197 

55.751 

50.082 

28.078 

Q(k) 

.6421 

1.0165 

2,1268 

2.4895 

2.5941 

2.6002 

2.3534 

.9898 

,9810 

.9745 

.9226 

.9219 

.9212 

.9077 

.9076 

.9074 

.9018 

,9018 

,9017 

.9001 

.9000 

,9000 

5(k) 

.1662 

.5151 

1.4248 

1.1609 

1.7265 

1.5255 

5.8515 

1.0560 

1.0015 

1.0265 

1.0015 

1.0177 

1,0418 

1.0049 

1.0027 

1.0027 

I0OOI7 

1.0125 

1.0025 

1.0027 

1.0002 

1.0008 

d(k) 

.99704 

.94677 

.99805 

,99804 

.99805 

.99752 

.99752 

.99752 

TABLE 4.7 



For problem 3, the matrix G is not symmetric but the set of eigen­

vectors for G is known to include a basis for the associated vector space. 

It is also known that the eigenvalues of G are nonnegative. The dominant 

eigenvalue^ a-,, for this problem appears to be ,999886, The numerical results 

are given in Tables 4.8-4,10 and graphs of A(k) vs. k for the three iteration 

strategies are given in Figure 4.2. 

Comments on Problem 3°. 

Using Table 4.9, the inequality (3.22) for the relative point error 

after 5OO power iterations gives 

.365 < M299) < 1.26 . 

One component 'of the eigenvector estimate after 3OO power iterations had a 

relative point error of .55. Thus, the inequality (3.22) can give realistic 

bounds for \(k). In using (5.22), it is well to keep in mind that a 

sufficiently good estimate for d is needed. For example, using d(k) as the 

estimate for d, inequality (5.22) gives for iteration 73 

^^^ ̂  .00118 ^ w^oN ^ .00118 ^ 

which obviously is not correct. 

In Table 4.8, note that a Chebyshev polynomial of degree 12 with 

d- = .97689 was used early and after that low degree polynomials were again 

used. This implies that the initial guess vector had a rather large error 

component associated with an eigenvalue cr., where a./a, » .98. This fact is 

also implied from the power iterations since from Table 4.9 we see that the 
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estimate for d from iteration 30 to iteration 75 varied between only .978 

and .980. One of the nice properties of the Chebyshev polynomial method 

is that the method, if properly used, can pick out large components in the 

error vector and reduce them efficiently. 

The high degree Chebyshev problem with input d = .99976 is converging 

at a slower rate than the Chebyshev problem with the strategy. This is due 

to the fact that the error components associated with smaller eigenvalues 

are being reduced in the high degree problem at a rate dictated by the second 

largest eigenvalue Op. The erratic behavior of A(k) for the high degree 

Chebyshev problem can be easily seen in Figure 4.2. 
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PROBLEM 5 

CHEBYSHEV ACCELERATION 

k 

5 

7 

8 

10 

11 

22 

25 

25 

26 

29 

50 

52 

55 

58 

59 

42 

45 

45 

46 

52 

55 

" 65 

75 

85 

95 

105 

110 

r 

1 

5 

1 

5 

1 

12 

1 

5 

1 

4 

1 

5 

5 

5 

1 

4 

1 

5 

1 

7 

1 

8 

18 

28 

38 

48 

55 

R(k) 

1,00 

.52 

.22 

.40 

•55 

.65 

.55 

.58 

.55 

,65 

.55 

.48 

.59 

.61 

.58 

.61 

.55 

.49 

.46 

.60 

,56 

1.61 

2.54 

>57 

5.45 

9.76 

26.46 

0(k) 

,997095 

,997686 

.997975 

,998555 

,998594 

,999695 

.999708 

.999718 

.999727 

.999740 

.999748 

.999751 

.999755 

.999759 

.999760 

.999762 

.999765 

.999764 

.999764 

.999768 

.999769 

.999772 

.999788 

.999815 

.999842 

.999867 

.999881 

A(k) 

.002691 • 

,002080 

,001820 

.001559 

,001551 

,000168 

,000142 

.000135 

.000126 

.000114 

,000108 

,000105 

,000102 

,000100 

,000099 

,000098 

,000097 

,000097 

.000097 

,000095 

.000095 

,000094 

,000088 

.000076 

. 000055 

.000028 

. 000009 

6(k) 

.Q0495 

.00566 

.00545 

.00515 

.00285 

,00052 

,00025 

,00CE5 

,00024 

,00022 

.00021 

,00021 

.00021 

.00020 

.00020 

.00020 

.00020 

.00(^0 

,00019 

.00019 

,00019 

,00018 

.00015 

.00011 

.00007 

.00005 

.00001 

d(k) 

.90000 

.95686 

.95000 

,97550 

,97689 

.97979 

,98006 

,99110 

.99194 

.99425 

.99470 

.99707 

.99856 

.99904 

,99908 

.99941 

.99945 

.99971 

.99975 1 

.99982 

.99985 

.99991 

.99988 

.99985 

.99982 

.99979 

.99976 

TABLE 4 . 8 



PROBLM 3 

POWER ITERATIONS 

k 

2 

5 

7 

8 

25 

50 

45 

44 

45 

52 

55 

65 

75 

85 

95 

105 

110 

150 

200 

250 

300 

r 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

R(k) 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1,00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

a(k) 

.996539 

.997095 

.997525 

.997421 

.998585 

.998655 

,999001 

.999022 

.999042 

.999166 

.999182 

.999516 

.999416 

.999492 

.999551 

.999597 

.999625 

.999709 

.999748 

.999760 

'9991^G 

A(k) 

,00406 

.00269 

.00242 

.00251 

.00146 

.00125 

.00095 

.00095 

.00091 

.00079 

.00077 

.00065 

.00051 

.00042 

.00054 

.00029 

.00025 

.00015 

.00011 

,00010 

,00010 

5(k) 

.00899 

.00495 

.00577 

.00574 

.00505 

.00269 

.00215 

.00209 

.00205 

.00179 

. 00176 

.00144 

.00118 

.00096 

.00078 

.00064 

.00056 

d(k) 

.44954 

.92902 

.95161 

.95665 

.97595 

.97820 

.97946 

.97949 

.97951 

.97959 

.97959 

.97967 

,97990 

,98056 

.98108 

.98209 

,98298 

,00026 1 ,99005 

.00021 

.00020 

.00019 

.99691 

.99910 

.99967 

TABLE 4 .9 
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For problem k, the only fact known concerning the matrix G is that it 

has a positive dominant eigenvalue. The purpose of this problem is to illus­

trate the behavior of the complex domain Chebyshev polynomial method described 

in Chapter II. The numerical results for this problem were obtained from a 

progiram designed for a different purpose and, hence, the strategy employed is 

slightly different and fewer numbers are available as output. 

The complex domain Chebyshev method requires the use of the three 

parameters b, d, and € of Figure 2.4. For this problem, b was assimied equal 

to -d. The problem was run three times using complex Chebyshev acceleration; 

first with fixed s = .1, then with fixed c = .5, and finally with fixed g = .75. 

In Tables if.ll-lf.lî , r and d(k) are defined as before. However, 5(k) is now 

defined as 

5(k) = max 
[ej,x(k)3 

^ " [ej,x(k - 2)J 

and Q(k) as 

^^^) = lfy(k - 2)y 

where y(k) = v(k) - x(k - 2). The 5(k) and Q(k) defined above have the same 

basic meanings as given previously, i.e., 5(k) is still a meastire of the 

relative point error and Q(k) can be used to estimate d. For power iterations 

we have lim Q(k) = d , In the Chebyshev accelerated problems, the estimate 

k-. 
for the dominance ratio is not updated at each iteration. 

Graphs of 6(k) vs. k are given in Figures l̂ .J and l4-.î  = 

Ih 



Comments on Problem k: 

The Q,(k) quantity in Table ij.»ll indicates that the matrix G for this 

problem has rather large complex eigenvalues= To see why this is so, we 

shall assume that G has some large complex eigenvalues and show that the 

behavior of QXk) is the same as that of Table il-.ll. 

Let the eigenvalues of G be ordered such the-t 0, > o^ > la^l = 
L c. 5 

1 ffuI > |oJ> '"' } where Oj = a,, i.e., we are assiaming a, and a. to be com­

plex eigenvalues. Also, let x. be the corresponding eigenvectorso Now if k 

is sufficiently large so that x(k - 2) can be approximated by 

x(k - 2) « X, + 2Ep "̂  E^ ••• ^^ ̂  then y(k + m) can be approximated by 

(k.k) y(k + m) « d'̂ Cd'' - l)x^ + z^iz"^ - l)x + z™(z" - l)x^ , 

where z = oJa-.- If we denote the j-th component of the vector (z ''l)^^ ̂ y 

a e "̂  and the j-th component of the vec 

component of y(k + m) can be written as 

a e "̂  and the j-th component of the vector (d - l)2Ep ̂ y ̂ i^ then the j-th 

m. ^ m (î «5) y,(m) « d"'[x. + 2r a,cos(ra0 + p.)] , 

where z s I z l e and r = 1zl/d» Thus, we have 

| | y ( k + m)l|2 = ^ [ y j ( m ) f « '^^'"X^t^j + r"bjCos(m9 + Pj) ] , 

J J 

2ffi 2 
where b . = 4a .x . and where we have assigned t h e r term i n [y^(m)] t o be 

negligible.. Thus, we have 



[Q(k + m)f^ d^ 

1 + r ^ c cos(ffi0 + P J 

J 

1 + r ° / e.cosfim - 2)9 + p.) 

/r—' 2 m 
where c . = ' t ' l / / ^ v Again neglecting terms of order great»^r than r , we have 

J 

[Q(k + m) ]2 « d^ fl + r""'^ ^ c , [ r (cos(m0 + p.) - cos((m - 2))e-f p . ) ] 

which may be written as 

[Q(k + m)]^ «= d^[ 1 + r""^[s{cos me) + t;(sin IP6) ] | 

where s = > c [r cos p - cos(e -29)] and where t ^ \ c.[sin(p -29) - r sin p.]. 

J J 
o o P P 1 /p 

If s + t ^ 0, then s(cos m9) + t(sin B) - Y sinfmQ +• 6), where v = (s + t ) ' 

and 9 = sin' s/c. Thus, we have 

{^'6) [Q(k + m) ]^ « d^[l ̂  vr^'"^sin(m9 + ^) ] 

Thus, Q(k + ra) will oscillate about d with a period of 2jt/9. Since we have 

assumed r < 1, the amplitude of this oscillation becomes smaller with m. This 

is precisely the behavior of Q(k) in Table 4.11. The peaks in Q(k) have been 

underlined in Table 4=11 

From Table 4.11, we see that the period is between 38 and 42 so that 

the argument 9 of z{scJa-,) is roughly between 8.5° and 9»5°' The numerical 

data of Table 4.11 also implies that the modulus of z is about .95. The Chebyshev 

76 



data given in Tables 4.15 ^^^ 4.14 imply that the normalized complex eigen­

values of G lie interior to the ellipse 

2 2 

(.946)^ (.75)^ 

but exterior to 

2 2 

(.968)^ (.5)^ 

1 (2n/^0) The complex number z = .95^ 'is interior to both ellipses but 

z = .9556 ' •' is interior to the ellipse of (4.7) and exterior to the 

ellipse of (4.8). 



PROBLEM 4 

POWER ITERATIONS 

0000242 .900857 I 
l' 

'897555 1 166 .0000218 

168 .0000198 .894574 

170 

172 

0000180 

.0000164 

.892085 

890686 

174 .0000150 .890124 

176 0 .0000156 .890562 

178 .0000124 .891785 

180 0 .0000112 .895693 

d 182 

184 

186 

0 .0000102 

.0000092 

.0000082 

.895988 

.898412 

.900865 

188 

190 

192 

0 

0 

.0000074 

.0000066 

.0000059 

.902887 

.904489 

905595 

194 

196 0 

.0000052 

.0000047 

TABLE 4.11 
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PROBLEM )4 

COMPLEX DOMAIN CHEBYSHEV ACCELERATION - FIXED € = =5 

k 

10 

18 

20 

22 

58 

40 

42 

44 

46 

48 

50 

52 

54 

56 

58 

60 

62 

64 

66 

68 

70 

72 

108 

110 

112 

158 

198 

r 

0 

8 

0 

2 

18 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

0 

2 

38 

0 

2 

48 

58 

&(k) 

«954786 

.427459 

.290486 

.207921 

o022285 

0 018444 

0 019464 

1 .025491 

.029178 

.028055 

.017541 

.012640 

.011752 

,006478 

,012880 

.009910 

.008962 

.007952 

.008748 

.006889 

.007055 

.004470 

,001512 

,000825 

,000701 

.006667 

.001256 

Q(k) 

"590 

,809 

»758 

d(k) 

,768 

,906 

,867 

.541 

»547 

«549 

1.405 

1,116 

1 

•967 

' 

,890 

A79 

1.528 

1,601 

1,104 

1,221 

= 972 

,404 

1.084 

1 = 592 

= 509 

2,764 

.886 

2.097 

,594 

= 768 

,854 

.451 

,900 

,968 

80 TABLE 4,15 



PROBLEM 4 

CCMPLEK DOMAIN CHEBYSHEV ACCELERATION - FIXED e = -75 

k 

10 

18 

20 

22 

58 

40 

42 

44 

r 

0 

8 

0 

2 

18 

0 

2 

4 

46 1 6 

48 

50 

52 

54 

56 

58 

60 

62 

64 

66 

68 

70 

72 

108 

110 

112 

158 

160 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

0 

2 

58 

0 

2 

48 

0 

5(k) 

.9547860 

.4150640 

.5155640 

.2454250 

,0231445 

,0193948 

.0156790 

.0154278 

,0128705 

.0118865 

.0120340 

.0128080 

.0127994 

Q(k) 

• 590 

,827 

.844 

.864 

.975 

.825 

,840 

.845 

,751 

.750 

.741 

,768 

.805 

,0119710 .841 

,0105050 .885 

,0082678 ,954 

,0065066 .984 

,0046881 1.019 

,0054826 1.050 

,0026561 1,014 

,0020156 

,0019455 

,0002086 

,0001729 

.0001714 

,0000110 

0 0000085 

,911 

•947 

,870 

.766 

.865 

,886 

.805 

d(k) 

,768 

.899 

,900 

,941 

.946 

.946 

TABLE 4,14 
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FIG.4.4 
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APPENDIX A 

THE REAL DOMAIN CHEBYSHEV POLYNOMIAL 
AND COMPLEX EIGENVALUES 

In this appendix, we wish to find the set of points,.D (c), in the 
• r 

complex z plane which satisfy the inequality 

(A = l) |P^ ̂  (z)l < {cFj"" , 

where 1 < c < 1/F , 
— — r 

/2z - d^ - b^ 
T 0 2 
rl d^ - b^ 

(A = 2) P ^ (z) = \ ° %• , 

-I ^0 - ̂ 0 I 

and 

(A. 5) F^ = 
l/i 

^ ' ^ J ^ ^ A : ^ ' 
0 0/ 

From (A.2) and (A.5), the set of points D (c) may also be expressed as 

(A-M V')-M^rf'"d'°-?„°|U°'} 

We shall consider the special cases of r=l,2 and the limit as r approaches 03. 

CASE 1: r = 1 

Since T.,(s) = s, we seek those z which satisfy the inequality 

"^ - "̂0 - ̂ 0 

"̂0 - ̂ 0 
< c . Since b < d ,d - b > 0 and hence we may write 
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(A.5) . . , !C^li<o[Vlo 

Thus, the set D^(c) consists of all z on or interior to the circle with 

center at 0 , <^0^^0 and radius c 0 0 
2 1 "-.̂^ j.a,^^u.a ui I . Using the maximum modulus 

theorem, one may easily show that no z exterior to this circle satisfies (A.5) 

CASE 2: r = 2 

For 

(A.6) 

this case T2(s) = 2s - 1 and thus we seek those z which satisfy 

|

2z - d^ - b^l^ 

d - b 
If we let a = , then we may write (A,6) as 

2v^ 

-0 ̂  \\V 2 - a < c 

or equivalently 

(A.7) ..I^C^UalL 1̂0*̂° < (ac)' 

If z = X + iy, then (A,7) becomes 

(A.8) X -
^0 ̂  ôl 

+ a> + y '^o^^o^-' 
-ay + ŷ  < (ac)^ 

The points (x,y) satisfying the equality in (A,8) lie on the ovals of Cassini. 

See Figure A.l. 
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Figure A,1 

Thus, again using the maximum modulus theorem, the set .Jp(c) consists of all 

z on or interior to the ovals of Cassini. 

CASE 5; r—. 00 

If we let 

(A.9) s = 

0 0 

d̂  - b 
0 0 

,2z » d - b 
then the Chebyshev polynomial T ^ r- 1 may be expressed [Porsythe and 

n 0̂ - 0̂ 
Wasow (i960), p. 228] as 

T̂ (s) = I {(s+V^^ _ ̂ r̂ ̂  .̂  2 -,^^^ s - 1) ) 

or equivalently as 

(A.10) T^(s) I {(s + ŝ - 1)^ + (s + A/S - 1) ) 
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Now l e t 

(A,11) W = S + / v / s - 1 

Thus, IT ( s ) | < c^ when I l/2[w''^ + w" ] I < c or e q u i v a l e n t l y when 

(A,12) ( - ) ' " - K - ^ l < 2 
c / X r 

( w c ) -

As r approaches 00 , the inequality (A.12) is satisfied if and only if 

- 1 < 1 and I — I < 1 
c I — I wc 

or equivalently if and only if 

(A,15) I w I < c and | w | > = l/c 

Hence, w must lie in the closed annulus between the circles lw| = l/c and 

|wl = c. We now shall proceed to get the corresponding z region. 

Solving Eq. (A.11) for s gives 

(A.14) s = l/2{w + l/w) 

If c > 1, then the annulus 

The if part is obvious. To show the only if part, one need only show that 

if — or l/lwcl is greater than unity, then 

lim 
r—00 

{-f + i-f ^c' wc CO 
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l/c < ! w 1 < c 

in the w plane is mapped [Kober (1957), Pg<> 62] onto the closed region 

I T I I T I ^ c -h l / c 
| s - l l + | s - h l | < — - — 1 ~ 

in the s plane and onto the closed region 

(A. 15) 
(<i, 

z - d I + I z - b-1 < 0 
V ( = - ^ ) 

in the z plane. See Figure A.2. If z = x + iy, then the closed region 

described by the ineqtiality (A, 15) is simply the ellipse 

2 

(A, 16) 
x 

"̂ 0+ ^ 

ll^ll-f 11=̂1 ( ''^\\--i 
= 1 

and its interior. 

If c = 1, the circle |w| = 1 is mapped onto the line segment 

- 1 < s < 1 in the s plane and onto the line segment b < z < d in the z 

plane. Thus, in the limit as r approaches Infinity, the region DQQ(C) con­

sists of all z on or interior to the ellipse (A.l6). 

The regions D,(c), 0^(0), and DQQ(C) for c = 1 and c = 1/F^ are given 

in Figures 2.1, 2,2 and 2.5. 

A similar type result is given by Wrigley (1965) 
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APPENDIX B 

THE INHQMCGENEOUS PROBLEM 

In this appendix we shall describe briefly the use of the Chebyshev 

polynomial method of iteration in the solution of the inhomogeneous matrix 

problem 

(B,l) Ax = s , 

where, for convenience, we asstime that the nxn nonsingular matrix A is giv=-n 

f ^ is^n 
by A = I - B, We shall also assume that the eigenvalues lo^V of I are 

real and are ordered such that 

(B,2) lô l < |0̂ _̂ 1 < ... < I02I < 03_ < 1 

and that the set of eigenvectors for B span the associated vector space. 

The matrix problem (B,l) may be solved iteratively using the well 

known Jacobi method 

(B,5) x(k+ 1) = Ebc(k) + s , 

where k is the iteration index number. If E(k) = x(k) - x is the error 

vector after k iterations, then it follows from (B,l) and (B,5) that 

E(k) = BE(k - 1) = B^(0) , 

Expanding E(0) in terms of the eigenvectors of B gives 

E(k) = B^ 

Li 
E'i^i = E^̂ ^̂ '̂î i 
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Hence, for the Jacobi method of iteration, we see that the most slowly decay-

ing contribution to the initial error vector goes to zero as (a^) . 

To solve (B.l) using the Chebyshev polynomial method of iteration, one 

can use [Varga (I962), pg. I38] the iterative procedure 

(B.4) x(k + 1) = t^+iClCk + 1 ) - x(k - 1)] -I- x(k - 1) , 

where v(k + 1) = Bx(k) + s. The sequence w. , is given by w = i and 

2T,. 

V i = ' : i . . k > 1 
'l"k+l a 

where T, (w) is the Chebyshev polynomial of degree k in w. The error vector 

fk) 
E' ' after k Chebyshev iterations can be [Varga (I962)] given by 

(B.5) E(k) = Pj^(B)E(0) 

where 

T, 
1 ''i.(') ^ r i r t 

^.1^ 
Thus, the expansion of E(0) gives 

E(k) = Pĵ (B) Î i-̂  = Z^k^^i^^i^i 

Hence, we see that the most slowly decaying contribution to the initial error 

vector for the Chebyshev iterations goes to zero as Pi.(crn)' 
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As for the eigenvalue problem, the rate of convergence of the Cheby­

shev iterations (B.4) is greatly affected by the estimate for a^> In practice, 

two basic approaches are often used to estimate cr,. One approach [see^ for 

example, Varga (1962), Wachspress (I966), Forsythe and Wasow (i960), and Hagenian 

and Kellogg (1966)] is to obtain an estimate for a-, prior to carrying out the 

Chebyshev iterations. For example, an a priori estimate for a-, may be obtained 

by using the power or Chebyshev iteration method on the matrix B. The second 

approach is to obtain estimates for a-, while carrying out the Chebyshev iter­

ations. In what follows we shall describe a Chebyshev strategy, similar to 

given for the eigenvalue problem, which may be used to obtain estimates for 

0, while carrying out the Chebyshev iterations. 

As before, numerical estimates for a-, will be obtained by observing 

the decay rate of the residual vector y(k) = v(k) = x(k = 1), where 

v(k) = ^(k - 1) + s. We will again use the residual vector quotient 

to measure the decay rate and the same Chebyshev strategy as described in 

Chapter II in obtaining estimates for a-, • 

An initial estimate for 0, can be obtained by doing a few Jacobi 

iterations before starting the Chebyshev iterations. For the Jacobi method 

we have lim Q(k) = o,. This follows from the fact that the residxial vectors 
k_00 

for the Jacobi method satisfy 

y(k) = By(k - 1) = B^"^y(l) . 
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Suppose now that a Chebyshev polynomial using d^ as the estimate for 

0, is started on iteration k, -»- 1. Then for iteration k, + r -̂  1, 

y(k.. + r -h 1) = (B - I)x(k, + r) + s and since £ = (l - B)x we have 

(B.7) y(k^ + r + 1) = (B - I)E(k^ + r) . 

Using (B.5) we then get 

y(k^ + r -I- 1) = (B - I)P^^^ (B)E(k3̂ ) . 

But from (B.7), E(k-) = (B - I)" y(k + 1) and since B - I commutes with 

P , (B) we have 
^ 0 

(B.8) y(k^ -̂  r + 1) = P^^^ (B)y(k^ + 1) , 

Thus, for k, large enough we have 

(B,9) Q(kĵ  + r + 1) «= 

and 

(B.IO) Q^^^« '̂ r,do('̂ l)' ' 

r+1 

where O , = n^^l * ̂ ^" ^°^® ^'^^ Eqs. (B.9) and (B.IO) are the same as 

those obtained for the eigenvalue problem. Thus, as before, one may obtain 

a new estimate for q, by solving Eq. (B.IO) for 0 . 



If the eigenvalues of B are real but now satisfy 

n — n~i _ _ ^ ^ x 

where a^ = ~ cr-i > then the above procedure can still be used provided the 

following changes are noted. 

First redefine Q(k) as 

(B.6') Q(2k) = 
IIZ(2k)ll 

Then for the Jacobi iterations we have lim Q(2k) s (0 ) and in place of (B.9) 
k_00 

we have 

(B.9') Q,(k̂  + 2r + 1) « 
'2r,d. C'^i) 

'2(r-l),do T^ 

Equation (B.IO) should be replaced by 

(B.IO') 
l|y(k^ + 2r + 1)11 

lly(kl + 1) 2r ,d 0 
(a,)I . 

In the next section we shall consider the special cyclic Chebyshev 

polynomial method. 

1. The Cyclic Chebyshev Method 

In this section we assume that the matrix B is written in the special 

cyclic form B = ̂  Q| and that Eq. (B.l) is written in the form 
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(B.ll) i-Mpsi 

The cyclic Chebyshev method of iteration is then defined [Varga (1962), 

pg. 150] to be 

x^(k + 1) = Oĵ  ifcCk + 1) - X (k) ] + x, (k) , where v^(k + 1) = Ux2(k) + s 

(B.12) < 

X2(k + 1) = Pk+l^^^^ * ^) " ̂ 2^^^ ̂  * -2^^^ ' ^^^^^ ^^^ + 1) = IX3_(k+l) + s^ 

The sequences a. -, and p. ^ are given by a.. = 1 , p, = 2/(2 -a-,) and for k > 1 

a. k+1 p. 
'̂l 

k+1 

1 - "1 
-TTVI 

It can be shown [Varga (19^) ] that the error vectors E (k) = x (k) - x and 

E„(k) ̂  x.(k) - x_ satisfy the equations —a —2 —2 

(E.I5) E^(k) = Sj^_^(UL)U^(0) , ̂ (k) « Rĵ (LU)]̂ (0) , 

where S, (UL) and R (LU) are polynomials of degree k in UL and LU, respectively, 

and where 3^(1^) = Rj.^) = !• Also 

(B.14) Rĵ (ŵ ) = P2ĵ (w) and wSĵ (ŵ ) = P2k+1̂ '') 

where P, (w) is given by (B.5). 

Since £ = - I^ + 3^, the residual vector ^(Is. + 1) = Vg(k + 1) - 3^(k) 

can be expressed as 
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y^(k + 1) = Ijc^(k + 1 ) - Lx^ + xg - ^ ( k ) = I£^(k + 1) - E2(k) 

and u s ing (B.15) we ge t 

(B.15) yg(k + 1) = [LSj^(UL)U - Rj^(nJ)]E2(0) 

or equivalently since E^(0) = (LU - I)" y (l) 

y2(k + 1) = [LSĵ (UL)U - Rĵ (nj) ][LU - I]" y^{l) 

This expression is not quite as nice as the corresponding expression (B.8) 

for the normal Chebyshev method. However, if d is the estimate for 0, used 

in the generation of the a and p sequences and if d. < 0 , then for k 

sufficiently large we still have 

Q(k + 1) « 
^k^d^K) 

2̂k-2,dô '̂ l̂  

where Q(k + 1) = |ly_(k + l)ll/||yp(k)l|. But now 

Qi 
iiyp(k + 1)11 _ "Ji2 

k+l 1122(1)11 - ^('^l^*0)P2k,dJ^l) 

where f(0..,d ) is some function in 0, and d . 

An alternate approach is the following; Let the error vector Ep(k,) 

at the end of k̂^ iterations be given by (B.I5), i.e., ]̂ (kĵ ) = Rĵ  (i;u)^(0)o 

Now suppose on iteration k, + 1, a new Chebyshev polynomial is started, i.e., 

the a and p sequences are started over in (B.12). Then from (B.I5) we have 
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y2(k^ + 1) = (UJ - I)4(k^) = (LU - 1)R^ (UJ)^ (0) 

But ̂ (0) = (LU - I)"-̂ 22(1) so that 

y2(k^ + 1) = \ (̂ "̂ 22̂ ^̂  

Hence, under suitable conditions we have 

l|ye(ki + 1)11 

The alternate approach has the disadvantage that the generation of the 

Chebyshev polynomial must be terminated in order to obtain a new estimate for 

0^. However, the effect of this should be small if proper care is taken. 
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