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Introduction:

Grain Boundaries
and
Grain Boundary Properties




What is a grain boundary?

« A grain boundary is the atomic-scale interface between crystals of unlike
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« Because atomic bonds are unfulfilled at the interface, grain boundaries have
positive free energy.

* Atomic rearrangements at the interface can permit grain boundary motion in

response to a driving force; thus, grain boundaries have finite mobility.

f(\}:]a{[lln)al * Both energy and mobility can vary with grain boundary structure.
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Why study grain boundary properties?
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To understand how grain boundaries behave in a microstructure, we need to
know their atomic-scale properties.

Goal: Efficiently measure the energy and mobility of a large set of grain
boundaries.

Tools: Because energy and mobility are atomic-scale properties, use
atomistic simulation techniques: molecular dynamics.



Determining atomic scale properties:
Step 1: Build grain boundaries

Method: Build a catalog of 388 minimum-
energy grain boundary structures

- Includes all boundaries that can fit inside a
periodic box of size 15a,/2.

- For each boundary, we minimize hundreds

or thousands of configurations to find the
lowest energy structure.

Results: Publicly-available survey of grain
boundary structures and energies

- We can observe trends in energy as a
function of boundary structure.

- Calculated energies have been validated
against experimental data for Ni and Al.

[Olmsted, Foiles, Holm, Acta Mater. 57 3694 (2009),

N Sandia Holm, Olmsted, Foiles, Scripta Mater. 63 905 (2010),
National  Rohrer et al., Acta Mater. 58 5063 (2010),

' laboratories Holm et al., Acta Mater. 59 5250 (2011)]
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Determining atomic scale properties:
Step 2: Calculate grain boundary mobility

« Method: Use synthetic driving force molecular
dynamics to calculate the mobility of each grain
boundary in our catalog.

— 5 temperatures: 600, 800, 1000, 1200 and 1400K
— Up to 4 driving forces: 0.005, 0.010, 0.025 and

0.050 eV/atom
— 10,718 total mobility measurements 10000
: : : 1000
* Results: Publicly-available survey of grain
boundary mobilities 100 %

- Largest survey of boundary mobilities ever

Mobility + 1 [ (m/s)/GPa |

Othe
performed. % aias
10 < Sigma 5
. . . . . . Sigma
- We are just beginning to mine this deep and rich Wil
—MD zero
dataset' 1 W4 466 & € O ¢ ¢ 6 000
0 15 30 45 60

Disorientation angle (degrees)

[Janssens et al., Nature Materials 5[2] 124 (2006),
Olmsted, Foiles, Holm, Scripta Mater. 57 1161 (2007),
Olmsted, Holm, Foiles, Acta Mater. 57 3704 (2009)]




Mythbusting, Part 1:

Grain Boundary Mobility
Mechanisms and Phenomenology




What is the grain boundary mobility?

« Grain boundary mobility is the material constant that scales the velocity of a grain
boundary with the driving pressure applied to the boundary: v=M P

For a given initial grain
structure. ..

Uniform boundary |
mobility results in
normal grain growth.

Widely varying grain
boundary mobilities
can cause abnormal
grain growth.
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Conventional wisdom:
Grain boundary motion is thermally activated

« Textbooks agree that grain boundary motion
is a thermally activated process.

M =M, exp(;_?]

- May be a single atom or multiatom
process

- For low angle grain boundaries,
thermally activated dislocation climb is

K'T (cm’ K/sec)

8 10 12 14 16 18
assumed to be the relevant process
Fig. 5.4. Variation of boundary mobility parameter K* with temperature and
T'he activation energies (Q in kJ/maol) for cach

misorientation for 99.999% copper.

group of boundaries are also shown, (after Viswanathan & Bauer 1973)

“..the important process...appears to be the thermally activated
transport of atoms across boundaries and the migration would seem
to be controlled by the activation energy for this process.”

-F. J. Humphreys and M. Hatherly,
@ Sandia Recrystallization and Related Annealing Phenomena
National



Observations of low temperature grain boundary
motion contradict thermal activation

boundary velocity V = Mp 10 nm grains
.
driving pressure P < 60 MPa

boundary mobility M = M, exp(-Q/KT)
2 N
10 m/s_ MPa 1 eV

strain-free PLD Cu film, 6 years, R.T.
(D. Follstaedt, SNL)
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T = 0.7 T, (annealing temperature) -> V~ 12 um/s
T=0.3 T, (room temperature) > V~2x 107 nm/s
T=0.1T,, (cryogenic temperature) > V~6x 10 nm/s

@ Natocs *How did these grains grow?
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Mining the boundary mobility data set

» Used synthetic driving force molecular dynamics
to calculate the mobility of 388 boundaries o IRy

— 5 temperatures: 600, 800, 1000, 1200 and et §od "
14OOK _ %‘6 08 1 12 14 16 ‘ 0‘64 66 68 7 7.2‘ gl‘)o 800 1000 1200 14‘00
1000/T (K] Ln(T [K]) T
3 . DatalD: 92 (PID: 336) TDT Sigma: 51
— Up to 4 driving forces: 0.005, 0.010, 0.025 " | L |
and 0.050 eV/atom : J I 3o |
i 1097]‘8 tOtal mObility measurements d %-.6 08 1 12 14 18 o:s'u 56 68 7 ?'e: goo 800 1000 12?00 n}uo
[Olmsted, Holm, Foiles, Acta Mater. 57 3704 (2009)] R  sm
* Plotted data in a variety of ways to probe for . o Joo
trends in mobility versus £ |
— Temperature R A v
— Shear coupling g o
— Crystallography (symmetry, sigma, D I I | e B
1000T [K) Ln( T[K]} TIK

misorientation, etc.)



Results:

Thermally activated grain boundary motion

K]
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¢ 0.025

» Constant activation energy over the range of temperature

* No driving force dependence

» Moderate mobilities: 50-150 m/GPa_s
« 11 of 388 boundaries exhibit this behavior




Results:
Two thermally activated motion regimes

K] Driving Force
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» Thermally activated motion over the range of temperature, with a change in activation
energy, presumably due to a change in motion mechanism

 Activation energy at high T > activation energy at low T

e Has been observed experimentally [Maksimova, Shvindlerman, Straumel, Acta Metall. 36 1573 (1998)]

@ Sandia « 10 of 388 boundaries exhibit this behavior
National



Results:
Thermally activated with boundary roughening

K] Driving Force
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» Thermally activated with moderate mobilities at high temperatures

 Sudden drop in M at a characteristic T, corresponds to a transformation from atomically
rough to atomically smooth [Olmsted, Foiles, Holm, Scripta Mater. 57 1161 (2007)]

 Often, the roughening transformation is driving force dependent, i.e. kinetic roughening

@ Sandia - 200 of 388 boundaries exhibit this behavior



Activation energy trends
In thermally activated grain boundary motion
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» We observe an essentially normal distribution of activation energies, Q
- There is no single, characteristic Q
- Q’ s are lower than experimentally measured, consistent with other MD studies
* Mean activation energy <Q> increases with the roughening temperature T,
- Reasonable to correlate tendency toward smooth boundary structure with high Q
r ”- Suggests that most or all boundaries can kinetically roughen



Summary:

Thermally activated grain boundary motion
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» Thermally activated grain boundary motion occurs in 57% of our grain boundaries

* The vast majority of these undergo thermal roughening at a characteristic temperature

* Roughening temperature and activation energy are strongly correlated
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boundaries move?

How do the remaining 43% of grain




Results:
Thermally damped grain boundary motion
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= 1o 800 1000  1400|| [eV/atom]
» 3 (721)(21 1) 0.005
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* M decreases as T increases, such that M oc 1/T — boundaries move faster as T decreases!
» Suggests a phonon-damped motion, similar to dislocation glide
« All thermally damped boundaries we have observed are X3 boundaries

* M is exceptionally high (800-4000 m/GPa_s) and not driving force dependent
@ Vol * 25 of 388 boundaries (25 of 41 £3 boundaries) exhibit this behavior
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Results:
Anti-thermal grain boundary motion
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» M decreases as T increases, but M is not proportional to 1/T. Instead, M is concave in T,
with or without a local maximum.

» None of these boundaries are >3 boundaries.

* M 1s moderate (150-700 m/GPa_s), lower than X3 thermally damped boundaries, and
comparable to thermally activated boundaries at high T.

@ i - 33 of 388 boundaries exhibit this behavior
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Results:
Athermal, constant grain boundary motion
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* Moderate M, constant over the range of T, with no driving force dependence
* Indicates an athermal, undamped motion; potentially a velocity saturation effect
A high fraction of these boundaries exhibit shear coupled motion

« Athermal M has been observed in faceting boundaries and attributed to a speed of sound
:l_ip}itation [Kopetskii, Sursaeva, Shvindlerman, Scripta Metall. 12 953 (1978)]

@ + 210f 388 boundaries exhibit this behavior
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Summary:

Non-activated grain boundary motion
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» Non-activated grain boundary motion occurs in 20% of our grain boundaries.

 The mechanisms of non-activated motion are unknown.

« Non-activated motion offers the possibility that a substantial fraction of grain
boundaries could be mobile at very low temperatures.
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Temperature dependence of mobility
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» At a given T, the <M> varies with mobility mechanism
« At high T, all mechanisms (excluding thermally damped motion) converge

« At low T, thermally damped and thermally activated mobilities differ by 2 orders of
magnitude

« As T decreases, the importance of non-activated boundaries increases
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The final 23%:

Miscellaneous motion mechanisms
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* 14% move by a combination
of mechanisms

* The observed combinations
are reasonable

» Roughening appears possible
for all boundary types
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Ln( mobility [m GPa™" s7'])
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* 6% are immobile at all
temperatures

* We can force motion using
extremely high driving forces

 Possibly includes boundaries
that roughen at temperatures
above 1400K
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* 3% move in ways that are
simply unclassifiable



Grain Boundary Mobility Myths: BUSTE])

Myth: Grain boundary motion is thermally activated.

— Fact: Thermally activated motion occurs in just over half of boundaries —
and most of those undergo a thermal roughening transition.

Myth: Grain boundaries are slow at low temperatures.

— Fact: Non-activated motion can yield high mobility at low temperatures in
almost a quarter of boundaries.

Myth: Grain boundary motion is relatively simple.

— Fact: About a quarter of boundaries are mixed mode, immobile, or
otherwise unclassifiable.
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Mythbusting, Part 2:

How complex grain boundary motion mechanisms
affect microstructural evolution.




The longstanding problem of grain growth
stagnation at high temperatures

The equilibrium state of crystalline materials 1s a
single crystal.

However, grain growth only rarely proceeds to the
single crystal state.

— Stagnation is pervasively observed in
experiments

— Assumed — without physical justification — in
most grain growth models

the cost of Si photovoltaics
would decrease dramatically.

Conventional wisdom attributes grain growth dR 11

stagnation to solute drag or particle pinning, T V(E—R—J

even in high purity materials. ¢
Most grain growth models

assume a maximum

attainable grain size.
Sandia
National
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Atomic-scale simulations reveal the pervasive
phenomenon of thermal roughening

* A thermal roughening transition has been observed with all boundary motion
mechanisms except thermally damped motion.

High T. —— |
Atomically rough
Highly mobile
Continuous motion
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Roughening
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T
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Low T:

Atomically smooth
Nearly immobile
Stepwise motion



How thermal roughening affects the distribution of
grain boundary mobilities

« At a given temperature, grain boundary mobilities fall into two groups:

-Rough, mobile boundaries (M > 100 m/s_GPa at 1400K)

-Smooth, immobile boundaries (M ~ 0 m/s. GPa)

[Olmsted, Holm, Foiles, Acta Mater. 57 3704 (2009)]
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The roughening temperature varies widely;
smooth/slow boundaries are always present

0.4

* Data mining provides the distribution of
grain boundary roughening temperatures
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* The cumulative distribution of roughening
temperatures gives the fraction of
smooth/immobile boundaries as a function
of temperature.
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Experiments suggest further study

* Yoon and Cho [J. Mater. Sci. 40 (2005) 861] surveyed boundary roughening:

“1n many metals and oxides, abnormal and normal grain growth behaviors
were observed to be correlated with grain boundary roughening. ”

Faceted (smooth) boundary
at 1100° Cin 316L SS

Unfaceted (rough) boundary
at 1350° Cin 316L SS

= How does grain boundary roughening affect grain growth in polycrystals?
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Incorporate boundary roughening data into
microstructural evolution simulations

Begin with an equiaxed polycrystalline
microstructure

— uniform boundary energies
— slightly pre-coarsened

— 100x100x100 lattice
Assign boundary mobilities at random

— smooth boundaries M ~ 0
— rough boundaries M ~ 1

— fraction of smooth boundaries f,

depends on T 800 0.7
Allow system to evolve via normal grain 1000 035
growth physics

— Monte Carlo Potts model 1200 0.2
— 16 independent runs for each f 1400 0.1

— SPPARKS parallel code package
http://www.sandia.gov/~sjplimp/spparks.html

O
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Grain growth kinetics

100 13

o

P

D /D

grain radius R
stagnant grain size

0.1 1
time (MCS) smooth boundary fraction f,

» Grain growth stagnates in the presence of smooth boundaries
» The stagnant grain size has a power law dependence on smooth boundary fraction f

 Not all boundaries must be immobile for the structure to be stagnant
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Mesoscale simulations connect atomic-scale
phenomena to microstructure

Atomistic results +  Mesoscale simulations = Microstructural insights
oo 1 10 8
c S =
'% 08 g“ QQ 7
g g Q
?0.6 2 ﬁ 6
5 £ N
S o4 g, a 5
& £ £
S0 ©
é 0.2 % ‘u-, 4
o o e L s
03 04 05 06 07 08 09 1 L 1 % 3
homologous temperature T/T smooth boundary fraction £, =
E? 2
o

03 04 05 06 07 08 09 1
homologous temperature T/T

 Grain growth does not proceed to completion
at any temperature

» The stagnant grain size increases with T

Gy —Boundary roughening may play a critical
@ Nationa role in grain growth stagnation.
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Coupling back to atomistic simulations
provides physical validation

Direct MD simulation of annealing of nanograined Ni

3-D Cubic cell with periodic boundary conditions
— 55 o0r 110 a;, (~20 or 40 nm) on a side

Initial structure

— 100 or 800 randomly centered and oriented
Voronoi grains

— Initial average grain diameter: ~5 nm

— 650k or 5.2M atoms

Visualization key:

Foiles-Hoyt EAM Potential for Ni
» Temperatures: 0.85 Ty, 0.75 Ty, 0.65 Ty,
— Ty = 1565 K for this potential

Sandia
’1‘ National
Laboratones

Color reflects local orientation of fcc
neighbor shell

Red: HCP configuration of nearest
neighbors

Black: Unidentified neighbor
structure



Time evolution of microstructure differs with
temperature

Sandia
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T=0.85Ty T=0.65Ty
0.6 ns 10.0 ns



Time evolution of microstructure differs with
temperature

T =0.85T,,, initial 0.2 ns 0.4 ns 0.6 ns

T =0.65 Ty, initial 10 ns
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Atomic-scale results support mesoscale model for
roughening stagnation

16 /Tzo'85 T = 0.75 ;
- sy
<. /S
§ 10 // T s
=

o
o
wv
=
[y
wv
N

2.5 3 3.5

stagnant grai

sqrt(t) (ns)

1

03 04 05 06 07 08 09 1
homologous temperature T/T

* 0.65 and 0.75 T,, samples stagnate at grain sizes consistent with the predictions
of the microstructural simulation.
« Sample size is too small to reach stagnant size predicted for 0.85 T\, sample.

o —>Atomistic simulations quantitatively validate microstructural
@ Natonal  —results and support the roughening stagnation model.
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Grain Growth Stagnation Myth: BUSTE])

« Myth: Grain growth stagnation is caused by impurities.

— Fact: Smooth grain boundaries stop grain growth, even in perfectly pure
materials.

E. A. Holm and S. M. Foiles,
Science 328 1138 (2010).
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Next steps in Mythbusting:
Anomalous low temperature boundary motion

« Conventional Wisdom: Grain structure is frozen in at low temperatures.

— Fact: We observe substantial grain growth at 4K in indented Cu that
contains large numbers of £3 boundaries.

— Many incoherent 23 boundaries have very high mobility at low temperatures due
to the thermally damped motion mechanism. Coincidence or not?

Sandia
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Conclusions

* Most of what we’ve presumed about grain boundary mobility is wrong — at least for
some boundaries at some temperatures.

*  Our new understanding of grain boundary motion answers longstanding questions
about microstructural evolution.

«  We move beyond the old myths by integrating new results from atomistic simulations
with mesoscale models and experimental results.




Beyond Grain Boundaries:
Computational Materials Science at the Mesoscale

* Mesoscale models link structure, processing and properties.

abnormal grain growth
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static and dynamic recrystallization

1000 cycles

brittle fracture

thermomechanical fatigue and failure
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percolation phenomena
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Step 1. An automated grain boundary
energy method

(1) Choose a periodic box size (here, 15a,/2). |+ For most boundaries:

(2) Determine which orientation pairs can fit | 5111 grain boundary, EAM N
inside the y-z periodic box (here, 388 pairs)

(3) For each pair of grains, construct and
minimize boundaries for

-A sampling of offset vectors spread
uniformly in the DSC cell (here, either

Energy (/mA2)

Ve -

0.5

1 1 1
0 1000 2000 3000 4000

8 Or 27 Offsets) Sorted by increasing energ.y
--Each non-equivalent boundary ) mFor a .feW boundarlgs
plane placement in the x direction

---Three different atom removal
methods, each over a range

of cutoff radii

i

Energy (J/mA2)

» For typical boundaries, we minimize 147125 <001> it boundary. normale <100-<¢30>, -
several hundred to several thousand e
0 - c Sorted by increasing energy
configurations.

= Careful boundary construction is
critical to finding the minimum
energy configuration.




An efficient boundary mobility
calculation method

* Apply a synthetic driving force for boundary motion:

Additional free energy per atom
drives the unfavored grain to
shrink; thus the boundary moves.
@ = QEAM ®=@eam T U This energy is of undetermined,
arbitrary origin.

For an atom in the For an atom in the
favored/growing grain:  unfavored/shrinking grain:

» Define the excess free energy function as:

0 i < Mow . »
F grain grain
u(r)=1 E(I—COSZa)i) Mow < 7T < Thigh 1 )
\ F 77high < 77i 7 O e ]
2 Thigh = Mow 0 ; -
low ” high
* Now, we just run molecular dynamics:
: 20§
— Our potential: (1) = @gam () +U(r) and force: f(r)=- o)

A
s <=, WWe implement these in Sandia’ s LLAMPS code for MP MD.

-r:‘u |




Position (angstrom)

Atomic-scale evolution of flat grain boundaries via a
synthethic driving force

v=0.73 Alps/

Bt

50
Time (ps)

100

Qualitatively:

*Fully periodic system;
26,057 atoms; 2.3
mixed-type boundary

*Grain 2 in the center;
boundaries move
towards the center

Quantitatively:

* To calculate M, we input F, measure v, and use
v=MF

» Constant velocities over time, well below the
speed of sound

* M does not change with F, with ensemble
(NVE, NPT) or with direction of motion

* M agrees with results from simulations with
physical driving forces (i.e. stress driven)



Are the results realistic?

» Compare our artificial driving force calculations to realistic elastic driving force
calculations [H. Zhang, M.I. Mendelev, D.J. Srolovitz, Acta Mater. 52 (2004) 2569

* We use the same interatomic potential (Voter-Chen Ni), the same range of driving forces,
the same temperatures, and the same 25 <100> asymmetric tilt boundary.
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The artificial driving force gives realistic results.
@ Wational . D. Olmsted, S. M. Foiles, E. A. Holm, Scripta Mater. 57 1161-1164 (2007).



What do the mobility clusters represent?
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 High T: high mobility, atomically rough, continuous motion
* Low T: low mobility, atomically smooth, stepwise motion

» Each boundary has a characteristic roughening temperature T,
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Can we measure roughness directly?
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* We measure roughness as RMS
displacement.

 For large systems, we observe a
transition in roughness at a
characteristic temperature Tg.

* T; from roughness measurements
agrees with T, from mobility
analysis.

 For small systems, we cannot resolve
a transition in roughness, though the
change in mobility is evident.

“1We use the abrupt change in mobility
as the signature of the roughening
transition.



What factors affect roughening?
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At low driving forces, boundaries roughen at a characteristic
roughening temperature — thermal roughening.

At high driving forces, boundaries remain rough at all temperatures —
kinetic roughening.

. .. * Thedriving force for kinetic roughening is typically much larger than
Natio the driving force for grain growth.




Mixed mobility modes

Results:

low temperature

high temperature

f, (%)

thermally
activated

anti-
thermal

athermal

immobile

thermally
damped

thermally
activated

5%

3%

52%

anti-
thermal

8%

5%

3%

athermal

2%

5%

0.5%

immobile

6%

thermally
damped

6%

» About 14% of boundaries move by a combination of mechanisms
- TA—>A, AT>TA, A>AT, I-AT, I->A (14%)
- Thermal roughening (I>TA) (51%)

» While not all combinations are represented in our data, the observed
mechanism combinations are reasonable

~ * Roughening appears possible for all boundary types





