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seams, and deep (>2500 feet) saline formations are being explored as targets for large scale . o < < o If (as would be expected) the energy requirements for CO,
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Il. WECSsim© ¢ Methods: Brine Extract
( The Water Energy & Carbon Sequestration Simulation Model ) CO, Avoided Emissions Supply Curve CO, Avoided Emissions Supply Curve Extraction of brine from the target storage formation May  preceure in Reservair
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First order analysis of source to sink pairings for CCS evaluates each least cost pairing independently of other sources. This leads to the overly optimistic supply curves in the top row of the matrix above. In a more realistic scenario, source operators will
obtain rights to storage volume in a given sink, and that portion of the formation will no longer be available for storage of CO, by any other operator. The order in which sources implement CCS and gain rights to the sinks is beyond the scope of this analysis,
but initial analysis using an arbitrary power plant order resulted in the supply curves in the bottom row of the matrix above. Competition for sinks changes the economics very little if our current estimates of geologic resource size and quality are
B WECSSl m © | N p Ut an d O Utp Ut reasonable (red lines), however, if current estimates are overly optimistic however (darker grey area), competition for sinks becomes very important and could substantially reduce the economic efficacy of CCS to avoid emissions of CO.,.
WECSsim model inputs include power plant information, level of carbon capture desired, and type of power plant E MEthOdS' U ncertainty
used to make-up for parasitic losses (make-up power). Most Power Plant Module and CO, Capture Module inputs . .
have default values which change based  wecssim: s dynamic anaiysis too Previous analysis’ has shown that CO, capture costs are dominant in a CCS cost breakdown, but that estimates of geologic parameters can create substantial cost variability. Here we expand this result by varying capture costs and parasitic energy losses by
on the power plant type and cooling " summary >/ Pl connze ) S +- 40%, and the geologic parameters of formation porosity and permeability by +- 100%. The grey shading in the supply curves above were generated by applying these changes to each parameter individually and thus represent only a first order
technology utilized. With output from ﬁ)(il)ule Input e ——————— \apprommatlon of uncertainty. Ongoing work will incorporate a more rigorous Monte Carlo approach with statistical distributions of the input parameters of interest to refine these estimates. /
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the best available (least cost) target Power  Costs ¢ Hypattietical 90 % ’
SequeStration formation' ThIS formation Carbon Capture and Storage (CCS) with Saline Water Extraction: Where and How Much? o
|S used to populate defaUIt |nputs to the Sequestration Formation: SECARB - Tuscaloosa Group - Tuscaloosa Group F. ConC| USIOnS
CO2 Stored: 11.04 Mmt/yr base 14.39 Mmt/yr total (w makeup power ccs) . . . . . . . . . . . .
CO, Storage Module and the Extracted CCS Cost per Mass CO2: $60.1 per tome stored $81.1 per tonne of avoided emissions The two supply curves developed without competition for geologic storage sinks (top row of supply curve matrix) represent an estimate of potential costs to implement CCS at any single power plant in the U.S. before any substantial CCS effort is underway
Water Module.  WECSsim then uses Added Energy Cost: . ot e B nationally. These no-competition supply curves show little sensitivity to changes in geologic quality or brine extraction. This is because CCS, if considered only one source at a time, is not constrained by current estimates of geologic quality and quantity. (For
default or user specified inputs to all five | o rescate output graph aves | these runs, the distance between source and sink is not restricted by WECSsim). The bottom supply curves thus represent a more realistic analysis of what costs might look like if large scale CCS were implemented in the U.S. With many large sources
modules to calculate energy, water, and Location of Formation & Power Plant | [ s o/ I onmes LCOE competing for geologic pore space, the sinks are more limited. In the default case (red lines), the available storage resource is sufficient that brine extraction is not necessary from a reservoir management perspective. However, if current estimates of
economic costs associated with the = e s s e D e i geologic quality are overly optimistic with respect to porosity and permeability, the reduced availability of high quality sinks drives up costs substantially. Under this scenario, brine extraction is a very important tool in managing the available CO, sinks. Thus,
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selected carbon Capture and i iﬁef_jﬂ’k o for large scale CCS, active reservoir management using brine extraction should be considered not just in areas of water scarcity®, but in all sinks, as a hedge against overestimates of the overall geologic resource.
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