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OVERVIEW - RESULTING NETWORK - DiscrepaNCY FUNCTION

We can characterize the independence of edges and vertices through
a discrepancy function that measures the instantaneous mutual
information between the vertices V and edges E:

Problem

» Complex networks are at the core of much of our world:
technological (worldwide web), biological (metabolic pathways),
and of course, social networks.

» [dentifying clusters or communities within the structure of the
network is critical to understanding the functional characteristics of
the network.

» Questions in the structural investigation:
» How well is our model performing at identifying communities?
» Are there unique or significant clusters? How similar are the communities
within a network?
» Can we measure similarity between communities across networks?

ur(on, Elk) = H(L|k) — H(Llvy, k)

Approach

» Use a hierarchical Bayesian model to identify communities

» Posterior predictive checking to statistically assess the community
identification model

» Explore various discrepancy functions for gaining insight into the
structure of the network

DISCUSSION

The first term in p;, H(L|k) is the edge entropy:

» The more edges that are associated external to a community, the
higher the entropy H(L|k), but
> If edges are limited to a few communities then the edge entropy is

low
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CONCLUSIONS

BAYESIAN MODEL CHECKING

» A very general information based approach to determining the
statistical significance of communities within a network has been
developed and used to investigate a well understood problem as
proot of concept.

» Subsequent efforts will involve application to more complex
networks and comparison with the algorithm developed by
Lancichinetti, et al

Posterior predictive checking can be used to assess the validity of a
Bayesian model without specifying an alternative model [Gelman et

al 1996].

A discrepancy function based on mutual information is used to compare
the value of the distribution function presented by the data and the
distribution implied by the posterior.
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