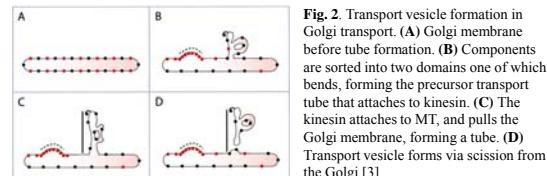

Abstract

Lipid tubules and vesicles are important structures associated with the transport of biomaterials in cells. Their formation is based on the pulling activity of membrane-bound kinesin processing on microtubule (MT) networks. We are inspired to build nanoscale transport systems modeled after biological processes using giant unilamellar vesicles (GUVs) coupled with the kinesin-MT complex. To generate transport vesicles we are exploring the use of membrane domains to achieve vesicle scission.

Background


Cell structure

Golgi bodies are integral components of the cell, responsible for organizing and packaging material for transport within the cell (Fig. 1).

Transport vesicles from the Golgi

In vitro studies with isolated Golgi showed transport vesicles formed through the pulling activity of membrane-bound kinesin on microtubules (Fig. 2).

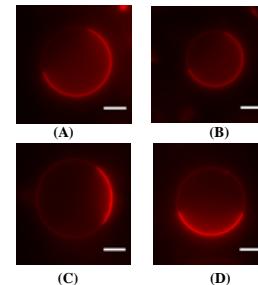
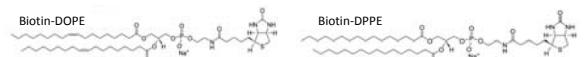
Kinesin-pulled Nanotubes

Others have shown that biotinylated kinesin bound to GUV membrane via streptavidin-coated beads are capable of generating lipid nanotubes (Fig. 3).

Artificial Transport Vesicles

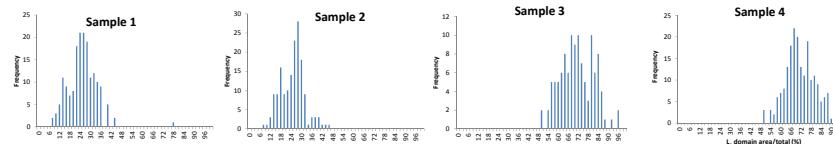
Stacey Lee ^{††}, George D. Bachand*, and Darryl Y. Sasaki*

*Sandia National Laboratories, Livermore, CA



[†]Department of Chemical Engineering and [‡]Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA

Results

In an effort to generate functionalized lipid domains in giant vesicles for kinesin-MT experiments we studied several biphasic membrane architectures. Using two commercially available biotinylated lipids our hope was to selectively partition biotin to either liquid ordered (L_o) or liquid disordered (L_d) regions, depending on lipid structure (Fig. 4).


Fig. 4. The L_d phase (bright red region of membrane) was enriched in DPhPC and membrane dye TRITC-DHPE (0.03%), while the L_o phase (dark) was enriched in DPPC and cholesterol. Biotinylated lipids biotin-DPPE and biotin-DOPE were expected to partition to the L_o and L_d phases, respectively. Scale bar: 5 μ m. Compositions are as follows:

- (A) Sample 1, 0.38 DPhPC / 0.04 biotin-DOPE / 0.24 cholesterol / 0.34 DPPC.
- (B) Sample 2, 0.38 DPhPC / 0.11 biotin-DOPE / 0.24 cholesterol / 0.27 DPPC.
- (C) Sample 3, 0.18 DPhPC / 0.02 biotin-DOPE / 0.40 cholesterol / 0.40 DPPC.
- (D) Sample 4, 0.14 DPhPC / 0.06 biotin-DOPE / 0.40 cholesterol / 0.40 DPPC.

Determining the L_o to L_d area ratio

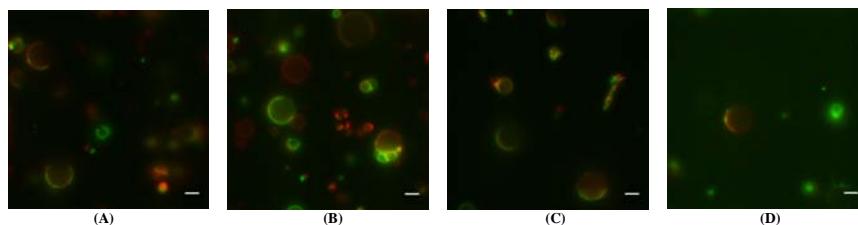
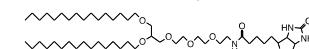

ImageJ software was used to measure the surface area of the L_o domain to the total vesicle area (Fig. 5).

Fig. 5. Distribution of surface area ratios. Samples 1 (n=174) and 2 had similar distribution profiles, peaking between 20 and 30%, consistent with the compositions. Sample 2 (n=163) contained more biotin-DPPE. The distribution of samples 3 (n=115) and 4 peaked between 65 and 75%, also consistent with the compositions. Sample 4 (n=201) contained more biotin-DOPE.

Avidin-FITC binding to lipid domains

FITC-labeled avidin was used to assess specificity of binding to lipid domains. Avidin-FITC bound preferentially to the L_d domain for samples 1-3, despite where the biotinylated lipids were predicted to partition (Fig. 6). Sample 4 vesicles showed no domain selectivity for protein binding.

Fig. 6. Two-color (false) fluorescence images showing the membrane (red) and membrane-bound avidin-FITC (green). The ratio of L_o to total vesicle area did not change after addition of protein. (A) Sample 1. Protein and membrane fluorescence were colocalized in the L_d domain. Protein was expected to bind to the L_o (dark) domain. (B) Sample 2. Protein and membrane fluorescence were colocalized. Some vesicles did not exhibit protein fluorescence. Protein was expected to bind to the L_o (dark) domain. (C) Sample 3. Protein and membrane fluorescence were colocalized. Some vesicles only had protein fluorescence. Scale bar 5 μ m. (D) Sample 4. Protein and membrane fluorescence were colocalized. Some structures only had protein fluorescence. Scale bar 5 μ m.


Conclusions

Vesicle domain ratios were found to be consistent with membrane composition and did not vary following protein affinity. However, protein binding specificity to lipid domains was not achieved. Interestingly, avidin-FITC preferentially bound to L_d domains regardless of the type of biotinylated lipid. This suggests that either biotin-DPPE does not selectively partition to L_o domains or the protein favors L_d phase membranes.

Future Directions

Improved control over biotin localization

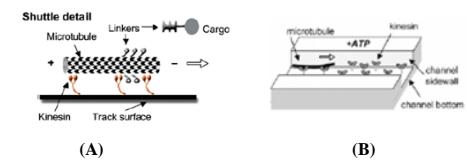

Based on previous work we have designed a new lipid, which should partition selectively to the L_o domain (Fig. 7).

Fig. 7. Novel glycerol-ether linked lipid, DP-biotin, is proposed to preferentially partition to the L_o domain of GUVs.

Inverted motility assay with domain-structured GUVs for transport units

Further development of system for cargo transport to specific destinations. Kinesin is strategically placed in structured surfaces to guide MTs bound with cargo pulled from GUVs (Fig. 8).

Fig. 8. Transport system. (A) Cargo is bound to MTs and is transported by kinesin-MT interaction. (B) Kinesin is strategically placed in channels to guide loaded MTs to destination [5, 6].

References

- [1] <http://www.macalester.edu/astronomy/research/sonya/lifetoday.html>
- [2] Molecular Biology of the Cell, 4th ed., Alberts, B., et al.
- [3] Polischuk, E. V. et al. *Mol. Biol. Cell.* 14, 4470-4485 (2003).
- [4] Roux, A. et al. *PNAS* 99, 5394-9399 (2002).
- [5] Hess, H., et al. *NanoLetters*, 3, 1651 (2003).
- [6] Clemmons, J., et al. *Lab Chip* 4, 83 (2004).

Research for this work was supported by the U.S. Department of Energy, Division of Materials Sciences and Engineering.