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SUMMARY
52,5 T
Full wavefield inversion (FWI) requires careful and accurate /\ Q=50 ——
forward modeling in order to yield meaningful results. To ob- % /
tain high fidelity wave propagation solutions, viscoelastic and 51.5
anisotropic wave equations must be employed in order to ac- 51 /
count for dissipative and fractured media. An accurate and ef- / \ / \
ficient time-domain method for viscoelastic wavefield simula- %08 / \ / \
tion and inversion in orthorhombic media has been developed. 50
The inversion engine computes gradients for both the velocity 195 / \ / \
models as well as the attenuation (Q) models. The objective of \ \
this study is to present frameworks for multi-parameter FWI, 4 /
isolate key pitfalls related to parameter sensitivity and compu- 485
tational cost, and propose potential solutions. ” \ /
47.5

INTRODUCTION
Figure 1: Q plotted as a function of frequency (Hz) using the
A challenging aspect of viscoelastic FWI is accurately model- GMB method.
ing the wave equation. Linear viscoelasticity provides a gen-
eral framework to describe the anelastic wave propagation.
The wave equation is typically based on a rheological model
which accounts for anelasticity. This rheology must have the
capacity to model linear viscoelasticity, in other words, a near-
constant Q as a function of frequency. The General Maxwell
Body (GMB) rheology, presented in Emmerich and Korn (1987)
and further explained in Moczo and Kristek (2005), and the
General Zener Body (GZB), outlined in Carcione (1993), are
most commonly used. Time-domain finite-difference imple-
mentations have been developed for the GZB rheology uniquely.
The GMB model, however, was found to produce more accu-
rate Q-values. Based on verification testing with semi-analytic
solutions, the GMB rheology is used to initally parameterize
Q-models. GMB parameters are then translated to GZB pa-
rameters for the finite-difference formulae based on the equiv-
alency relations outlined in Moczo and Kristek (2005). Fig-
ure 1 shows Q as a function of frequency, calculated using the
GMB method, for a Q-value equal to 50.

Forward Modelling:
In n-dimensional media the equation of momentum conserva-
tion is
.90y 0
pu; = axj + fi (

where u; are the displacement field components, o;; are the
stress tensor components and f; are the body force compo-
nents. For linear viscoelastic media, the relation between the
components of the stress tensor o;; and strain tensor &g is

given by the Boltzmann’s superposition principle (Christensen ®
(1982)):
Oij = Wijke * ke kt=1,...,n ) Figure 2: Vertical component synthetic seismograms using the
) ) ) ) (a) elastic wave-equation, (b) viscoelastic wave equation with
where ;¢ is a fourth-rank tensorial relaxation function. The 0 = 20.

asterisk denotes time convolution, and repeated indices im-
ply summation. The wave motion is found by substitution
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of equation (2) into equation (1). Using y;; to denote the
relaxation functions in two-index Voigt notation, and replac-

ing the strains with spatial derivatices of displacement where

du; | 9
&j = 3(50 + 5it)

orthorhomblc media can be written:

the stress-strain relations for viscoelastic

c; o Dl + 8uy+_ L e
o = Wil ox Yo 9y Vi3 oz

duy duty du,
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duy duty du,
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Oyz = Vg * (zTZ + Ty)
0 0
Oz = W5 % (al; + %)
duy  duy

The Boltzmann’s superposition principle is not easily imple-
mented in time-domain wavefield simulations due to the con-
volutional kernels in equation (2). Carcione et al. (1988b,a),
Robertsson et al. (1994), Charara (1996) and Hestholm (1999)
all indicate how to implement a series of memory variables in
place of the relaxation mechanisms in order to be rid of the
convolutional kernels. Figure 2 shows two vertical-component
synthetic seismograms. The first corresponds to propagation
in elastic media, the second corresponds to viscoelastic propa-
gation with O = 20.

Inversion:

The inversion methodology was developed from the works of
Charara (1996) and Royle (2010). In the inversion framework,
the O-models are parameterized by the relaxation functions
whereas the velocity models are parameterized by the Lamé
parameters. Because seismic data is significantly more sen-
sitive to Lamé parameters than to relaxation functions, FWI
is substantially more successful for velocity models than for
O-models. Gradient computations calculated using the L;-
norm are based on the magnitude of the energy in the residual
wavefield. Figure 3 illustrates a simple experiment to illus-
trate this point. A viscoelastic wavefield is propagated through
homogeneous V), Vs, Qp and Qs models. A perturbation of
1% of the initially homogeneous model is inserted, one model
at a time, for each of the four models. The wavefield is re-
propagated. The difference between the initial wavefield and
the final wavefield corresponds to the amount of residual en-
ergy in (a) the horizontal components velocity which is read by
the horizontal component seismometer (a) and vertical com-
ponent velocity, read by the vertical component seismometer.
This indicates that the gradient calculations preferentially up-
date velocity models, and that Q-model updates are poorly de-
fined in comparison.

DISCUSSION

A series of synthetic 3D experiments will illustrate how the
completeness of the physics in the wave equation impacts the

.-
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(b)

Figure 3: (a) Horizontal-component velocity field result-
ing from perturbations of 1% of the model. (b) Vertical-
component velocity field resulting from perturbations of 1%
of the model.
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accuracy of the wavefield, and in particular, alters the results
from FWI. Experiments will compare scenarios for acoustic,
elastic, and viscoelastic wavefields in both isotropic and or-
thorhombic media. Comparisons of results will be based on the
completeness of the wave-equation, accuracy of the wavefield
simulation, accuracy of the FWI result, and computational ex-
pense. Complications that arise from multi-parameter inver-
sion will be presented and potential remedies proposed. Exper-
iments will include 3D problems that are designed to contain
properties of realistic reservoir environments.
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