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Abstract. Although there are many strategies and techniques that can improve 

memory, cognitive biases generally lead people to choose suboptimal memory 

strategies. In this study, participants were asked to memorize words while their 

brain activity was recorded using electroencephalography (EEG). The 

participants’ memory performance and EEG data revealed that a self-testing 

(retrieval practice) strategy could improve memory. The majority of the 

participants did not use self-testing, but computational modeling revealed that a 

subset of the participants had brain activity that was consistent with this optimal 

strategy. We developed a model that characterized the brain activity associated 

with passive study and with explicit memory testing. We used that model to 

predict which participants adopted a self-testing strategy, and then evaluated the 

behavioral performance of those participants. This analysis revealed that, as 

predicted, the participants whose brain activity was consistent with a self-

testing strategy had better memory performance at test. 
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1   Introduction 

Memory underlies and supports all forms of high-level cognition and accurate 

memory is essential to good decision making. However, human memory is extremely 

fallible. Although there are many factors that can improve memory performance, such 

as selecting appropriate memory strategies, people are poor at predicting what they 

will or will not remember and tend to choose strategies that are suboptimal or 

counterproductive. In our research, we are investigating patterns of brain activity 

associated with good and poor memory performance. We are examining methods for 

improving human performance by identifying cases where learners are using 

suboptimal memory strategies. Through this effort, we hope to lay the foundation for 

closing the loop between recording brain activity and using those recordings to 

augment performance. 

As a part of this effort, one of our goals is to create a model of brain activity that 

can be used in a predictive fashion. Using brain activity recorded from participants 

who tried to memorize words under a variety of study and test conditions, we selected 

two conditions where the brain’s response to stimuli should be similar across all 
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participants. We used those two conditions to develop a computation model and then 

tested the model on a third condition in which participants’ brain activity should 

depend on their choice of study strategies. The model was used to predict which 

participants were using a more effective memory strategy. We then tested the 

predictions of the model by assessing the participants’ behavioral memory 

performance.  

1.1   Metamemory and Memory Strategies 

The term metamemory refers to a person’s judgments about the state of his or her own 

memory. Successful encoding and retrieval of information requires a number of 

metamemory decisions, such as deciding what information is worth remembering, 

what strategies should be used to encode the information, and whether or not 

information retrieved from memory is accurate. People typically develop 

metamemory skills over time, through experience with different kinds of learning 

situations. For example, after practice with sequences of study and test questions, 

people tend to get better at predicting which items they will remember later and which 

items need additional study [1]. Through experience, people learn memory strategies 

such as spending more time studying items that seem difficult to remember or using 

different study strategies depending on when and how the information will need to be 

remembered. However, the strategies that learners develop are often affected by 

cognitive biases and may not be optimal. Numerous studies have shown that people 

often fail to use appropriate memory strategies [2,3,4,5,6]. 

One memory strategy that can improve performance is self-testing, or retrieval 

practice [7]. A common example of retrieval practice is studying with flashcards. If a 

language student studies new vocabulary by quizzing herself with flashcards, she will 

be more likely to remember the new words than if she skimmed over the words and 

their definitions in a textbook. Retrieval practice is beneficial because it gives learners 

experience with retrieving the needed information from memory. It also provides 

learners with a more accurate sense of what they do and do not remember. The 

effectiveness of retrieval practice increases as the practice becomes more difficult [3]. 

Although retrieval practice is a highly effective strategy, it is not a strategy that 

learners are likely to adopt on their own. Studying with this strategy can be frustrating 

because learners feel that they are performing poorly and progressing slowly. In 

reality, they are developing accurate assessments of how well they have learned the 

material. However, learners tend to prefer study strategies that make them feel 

successful at the time of study, even when those strategies are less effective in the 

long run [2,3]. 

1.2   Event-related Potentials 

When a person’s brain activity is recorded using electroencephalography (EEG), 

different patterns of activity emerge for passive study and for active retrieval of 

information from memory. In EEG research, a participant’s brain activity is recorded 

using sensors placed on his or her scalp. The EEG data provide an ongoing record of 



the brain’s electrical activity with very high temporal resolution. To separate out the 

brain activity related to a particular type of processing, the EEG data are time-locked 

to the presentation of events of interest and events of the same type are averaged 

together. The averaging process should average out any ongoing processing that was 

not related to the experimental stimuli, leaving only the activity that was elicited by 

the events of interest. These averaged waveforms are called event-related potentials 

(ERPs). 

Researchers have mapped the relationships between different ERP waveforms and 

different types of processing in the brain. The ERP component of interest in the 

present study is the late positive component (LPC). The LPC is thought to be related 

to explicit processing, such as the process of deliberately searching memory for a 

particular piece of information [8, 9, 10, 11, 12]. 

When a learner is presented with an item to study, the LPC elicited by that item 

will be small. However, when the learner is tested on an item and has to retrieve it 

from memory, the presentation of that item will elicit a large LPC. In the absence of 

an explicit memory test, a participant’s self-induced retrieval practice should also 

produce a larger LPC. It is likely that use of retrieval practice as a memory strategy 

will be reflected in participants’ brain activity during study. 

1.3   Modeling Event-related Potentials 

The EEG data selected for modeling was taken from a study in which participants 

were presented with a list of words and asked to remember them for a later memory 

test. Some of the words were studied once, some words were studied twice, and some 

were studied once and then quizzed once during the study session. All of the words 

appeared again on a subsequent memory test, intermixed with an equal number of 

new words. We hypothesized that participants would have the worst memory for the 

words that were studied only once and the best memory for the words that were 

quizzed during the study sessions. The quizzes provide an opportunity for retrieval 

practice that should benefit subsequent memory performance. 

For the words that were studied twice but not quizzed, we hypothesized that some 

participants would engage in retrieval practice on their own. Even though the words 

were not explicitly tested, participants might recognize them as previously studied 

words and retrieve the first presentation of the word from memory. This self-testing 

should benefit subsequent memory performance much like explicit testing. Since, as 

discussed above, most people are unlikely to adopt a strategy such as retrieval 

practice on their own, we expected that the average performance across all 

participants would be lower for the twice-studied items than for the quizzed items. 

However, we expected that a subset of the participants would use more effective 

memory strategies and would perform better on this condition than their peers. 

The design of the EEG experiment allowed us to model each participant’s brain 

activity in two “known” conditions: the first presentation of each studied word, which 

should not elicit an LPC, and the words that were quizzed during the study block, 

which should elicit a large LPC. We applied the model to ERPs from an unknown 

condition, the second presentation of repeated study words. The words in that 

condition should elicit an LPC only for the participants who engaged in retrieval 



practice. We used the model to classify the ERPs from the unknown condition as 

being more like passively studied words or more like explicitly tested words. We then 

tested the predictive power of the model by comparing the subsequent memory 

performance for participants in those two groups.  

2   Experimental Methods 

Participants. Twenty-four University of Illinois students participated in this study 

and were paid for their participation. Half of the participants were male and half were 

female. The average age of the participants was 21. 

 

Materials. The materials used in the experiment consisted of 320 common nouns that 

served as study items, and 320 nouns that were matched in terms of length and 

frequency and served as new items at test.  The average frequency was 57.6 for the 

study items and 50.9 for the new items; the average word length was 4.6 letters for 

both sets of words (frequency data was taken from the Kucera and Francis, 1967; 

norms included in Balota et al., 2002; a frequency value of zero was assumed for 

items not appearing in the database). 

The study words were divided into eight counterbalanced lists. The experimental 

lists were subdivided into four study blocks and four test blocks.  Each study block 

contained 80 of the experimental items. Of those items, 20 were studied once, 20 were 

studied twice, 20 were studied and then tested within the block, and 20 were paired 

with a synonym.  For the items that were studied twice or studied and then tested, half 

of the items were repeated at a short lag, defined as one intervening item, and half 

were repeated at a long lag, defined as nine intervening items.  For the items that were 

paired with synonyms, half of the synonyms were presented at a short lag and half 

were presented at a long lag. In addition, half of the synonym items were tested at 

each lag. 

Each study block was followed by a test block in which all of the nouns from the 

block were re-tested, intermixed with an equal number of new, unstudied items. 

 

Procedure. The participants were instructed that they would be tested on their 

memory for a list of study words.  They were not given any information about 

different types of memory strategies and were not asked to use a particular memory 

strategy. As discussed above, the study list was broken into four parts in order to 

make the task easier for the participants.  Each study block contained a total of 140 

study words and each test block contained a total of 160 test words. 

Throughout the experiment, there was a white fixation cross in the center of the 

computer screen.  The participants were asked to keep their eyes on the fixation cross 

at all times during the experiment.  All of the study words were presented 

immediately above the fixation cross in white 38-point Helvetica font on a black 

background. Within the study blocks, each word was preceded by a pound symbol (#) 

that was presented above the fixation cross for one second.  Participants were 

instructed that they could blink or move their eyes while the pound symbol was on the 

screen, but that when it disappeared they should refrain from blinking and prepare to 



see the next study word.  For the tested words, the pound symbol was red, indicating 

that the next word would be tested. For the words that were only studied, the pound 

symbol was white.  The study word was presented 500 ms after the pound symbol 

disappeared and remained on the screen for one second.  The tested words were 

followed by a red question mark that remained on the screen until the participants 

pressed a response button to indicate whether or not that word had appeared earlier in 

the study block. The same test procedure was used in the test blocks that followed 

each study block. In the test blocks, all of the words from the study block were tested 

or retested, intermixed with an equal number of new words. The participants took 

short breaks before starting each new study block in order to reduce interference from 

the preceding blocks. 

The electroencephalogram (EEG) was recorded from 26 silver/silver-chloride 

electrodes embedded in a geodesic arrangement in an elastic cap (EASY-cap). Five 

additional free electrodes were placed on the left and right mastoids, on the outer 

canthus of each eye, and below the left eye.  The three free electrodes near the eyes 

were used to record blinks and horizontal eye movements (vertical and horizontal 

EOG).  The scalp electrodes were referenced on-line to the left mastoid.  Following 

the experiment, the scalp electrodes were re-referenced off-line to an average of the 

left and right mastoids.  All of the electrodes were tested before recording begins to 

ensure that their impedance was below 3 KOhms.  During the experiment, the EEG 

from all electrodes was amplified through a bandpass filter of 0.02-100 Hz and 

recorded at a sampling rate of 250 Hz. 

ERPs were computed at each electrode for each experimental condition by 

averaging the EEG data from 100 ms before the onset of a word until 920 ms after 

word onset.  Trials containing blinks were corrected using the blink correction 

procedure described by Dale (1994) and trials containing artifacts such as excessive 

eye movement, signal drift or muscle activity were excluded from the averages.  The 

mean amplitude of the ERPs within time windows of interest was calculated using 

data digitally filtered off-line using a bandpass filter of 0.2 to 20 Hz. 

3   Experimental Results  

Behavioral Results. Memory accuracy was assessed using the percentage of correct 

answers on the memory tests. Only the data relevant to the computational model will 

be discussed here. On average, participants were 39% correct for words that were 

studied only once, 50% correct for items that were studied twice with a long lag 

between the repetitions, and 66% correct for items that were studied once and quizzed 

at a long lag during the study block. These results were consistent with the prediction 

that retrieval practice during study would benefit subsequent memory performance. 

The difference in performance between the twice-studied words and the quizzed 

words also supports the hypothesis that most participants would not use retrieval 

practice when presented with repeated study words. 

 

ERP Results. The LPC was measured by computing the mean amplitude of the 

ERPs in a time window from 500-900 ms post stimulus onset. Repeated measures 



ANOVAs were used to test the results, with degrees of freedom adjusted using the 

Greenhouse-Geisser correction.  All effects are significant at or above the p = 0.05 

level unless otherwise specified. 

The LPC was significantly larger for the words that were quizzed during the study 

block than for those that were not, as shown in Figure 1. As predicted, this indicates 

that participants actively searched their memory for the words that were explicitly 

quizzed. However, for the words that were studied twice, most (if not all) of the 

participants studied the words passively. They did not search their memory to retrieve 

the previous presentation of the words, so the second presentation of the words did 

not elicit and LPC. 

Although the majority of the participants did not engage in retrieval practice when 

they were not explicitly tested, we developed a model to identify whether or not there 

were any subgroups of participants who did employ that strategy. 

 

 

Fig. 1. Grand average ERPs to first presentation of studied words (black line), second 

presentation of twice-studied words (gray line), and quizzed words (dotted line). ERPs are 

shown at the midline central (MiCe) electrode.  

4   Computational Modeling 

Our goal was to construct a computational model that would classify ERPs elicited by 

the words in the twice-studied condition based on the brain activity associated with a 

particular study strategy (retrieval practice or passive study). This was achieved by 

constructing a naive Bayes classifier trained on the known study and test conditions 

and applying this classifier to the unknown ERPs. A significant challenge faced when 

constructing computational models from EEG signals is the low signal-to-noise ratio 

due to the presence of simultaneously recorded brain activity that is unrelated to the 

event of interest. This is often addressed by averaging all single-trial EEG recordings 

to form a grand average ERP. However this approach removes most of the trial-to-



trial variability and can result in the formation of a classifier that is not robust to 

variances present in the ERPs from the "unknown" condition. 

To overcome these obstacles, we developed an approach that better balances 

variability and signal averaging. Our approach combines ensembling classification 

results from multiple models and randomized signal averaging of individual trial 

ERPs. Randomized signal averaging was accomplished using an n-choose-k approach 

to create a new set of ERPs for use in the classifier training step. We examined 

maximized signal averaging by using k=39 to select and average single trial EEG 

recordings in a time window from 100 ms pre-stimulus to 900 ms post-stimulus  to 

create 40 ERP samples for each of the two known conditions (study and test). For the 

study condition (the first presentation of all studied words), there were 278 single trial 

EEG recordings available from which to choose and for the test condition (the words 

that were quizzed during the study block) there were 40 single trial EEG recordings. 

The resulting ERP samples were then transformed via principal component analysis 

and the scores of the first five principal components were used as an uncorrelated 

feature set to train a naive Bayes classifier. The classifier was implemented by using 

MATLAB's [13] classify function provided in the Statistical Toolbox with the 

"diaglinear" discriminant function. This process was then repeated 50 times using a 

new random seed to randomize the single trial EEG recordings chosen for signal 

averaging from the n-choose-k trial selection process. In this way, each model was 

exposed to different signal averaging in the unknown condition ERP samples while 

maintaining a balanced number of training examples across the two known 

conditions.  

5   Modeling Results 

The performance of the classifier was estimated using sample-out cross validation. 

For this work, single trial data was available from twenty-three of the participating 

subjects. 

The mean area under the receiver-operator curve (AUC) for sample-out cross 

validation over all models and all subjects was 0.99. The standard deviation of the 

mean sample-out cross validation AUC for each subject was 0.01. These cross 

validation results provide confidence that the feature extraction and classification 

methods are well suited to model the brain activity related to passive study or retrieval 

practice strategies.  

For classification of the unknown ERPs, a full model was constructed with all 

samples from each of the 50 randomly constructed training sets described in section 4. 

This model was then used to classify the unknown ERPs as belonging to the study or 

retrieval groups. Examination of the number of models classifying the unknown ERPs 

as belonging to the study group identified eighteen subjects whose brain activity was 

consistent with their previously used study strategy. For this group of eighteen 

subjects, more than 97% of the models for each subject identified the unknown ERPs 

as belonging to the study class. Another group of five of the subjects exhibited brain 

activity that was consistent with the retrieval practice elicited by the quizzed words. 

The number of models identifying the unknown ERPs as belonging to the test class 



varied with subject and ranged from 22% to 80% of the 50 models constructed for 

each subject (Table 1). This variation is indicative of individual differences and may 

indicate that the retrieval practice strategy was employed with different frequency by 

each subject. 

Table 1. Percentage of models indicating a retrieval practice strategy for each subject. 

Subject 

Percentage of models 

indicating retrieval 

strategy 

Percentage of twice-

studied words 

remembered at test 

27 80% 73% 

15 78% 78% 

2 54% 58% 

12 52% 88% 

3 22% 63% 

22 2% 33% 

5 0% 43% 

7 0% 18% 

8 0% 13% 

9 0% 58% 

10 0% 45% 

11 0% 58% 

13 0% 45% 

14 0% 80% 

16 0% 68% 

18 0% 28% 

19 0% 38% 

20 0% 63% 

21 0% 58% 

26 0% 38% 

28 0% 23% 

29 0% 55% 

30 0% 58% 

 

 

To test the model’s classification performance, we compared the behavioral 

memory performance across the two groups of participants. As predicted, the 

participants whose brain activity in the unknown condition was consistent with their 

brain activity in the retrieval practice condition had better memory for the twice-

studied items than participants whose brain activity was consistent with passive study.  

On average, the participants in the former group correctly recognized 28.6 out of 40 

words (71.5%) from the twice-studied condition, while the participants in the latter 

group correctly recognized 18.1 out of 40 words (45.2%). Welch’s t-test showed that 

the performance of the two groups was significantly different [t(9.4) = 3.82, p < 0.01]. 

Figure 2 shows the grand average ERPs for the unknown condition and the test 

condition for the two groups. 

 

 



 

 
    Passive Study Participants                Retrieval Practice Participants 

 

Fig. 2. Grand average ERPs to the unknown condition, the second presentation of twice-studied 

words (black line), and the test condition, the quizzed words (gray line). ERPs are shown at the 

midline central (MiCe) electrode. The participants whose brain activity was consistent with 

passive study in the unknown condition are shown on the left and the participants whose brain 

activity was consistent with a retrieval practice strategy are shown on the right. 

6   Discussion 

The results of this experiment indicate that ERPs elicited under known conditions can 

be modeled and used to classify ERPs from an unknown condition. In this 

experiment, the known conditions included a passive study condition and a condition 

in which participants were quizzed on previously studied words, leading the 

participants to engage in retrieval practice. The unknown condition was the second 

presentation of repeated study items. For those items, participants might retrieve the 

first presentation of the word from memory, adopting a retrieval practice strategy on 

their own. Previous research on study strategies and cognitive biases led us to predict 

that few participants would spontaneously engage in retrieval practice, but those that 

did would outperform the other participants for the words in that condition. 

As we predicted, the average memory performance across all participants was 

lower for the words that were studied twice than for the words that were studied and 

then quizzed. Using the model, we identified a group of five participants whose brain 

activity was consistent with use of a retrieval practice strategy. That small subset of 

participants performed significantly better than the other participants on the 

subsequent memory test. 

The experiment and model described in this paper represent the first steps toward 

using recorded brain activity to improve human memory performance. We have 

identified patterns of brain activity that are associated with the use of an effective 

memory strategy and developed a model that can predict which participants are using 

that strategy and which are not. In future research, we hope to expand on these results 

and investigate ways to coach people on the effectiveness of their study strategies as 

they attempt to learn new information. 
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