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Abstract. Although there are many strategies and techniques that can improve
memory, cognitive biases generally lead people to choose suboptimal memory
strategies. In this study, participants were asked to memorize words while their
brain activity was recorded using electroencephalography (EEG). The
participants’ memory performance and EEG data revealed that a self-testing
(retrieval practice) strategy could improve memory. The majority of the
participants did not use self-testing, but computational modeling revealed that a
subset of the participants had brain activity that was consistent with this optimal
strategy. We developed a model that characterized the brain activity associated
with passive study and with explicit memory testing. We used that model to
predict which participants adopted a self-testing strategy, and then evaluated the
behavioral performance of those participants. This analysis revealed that, as
predicted, the participants whose brain activity was consistent with a self-
testing strategy had better memory performance at test.

Keywords: Memory, computational modeling, electroencephalography

1 Introduction

Memory underlies and supports all forms of high-level cognition and accurate
memory is essential to good decision making. However, human memory is extremely
fallible. Although there are many factors that can improve memory performance, such
as selecting appropriate memory strategies, people are poor at predicting what they
will or will not remember and tend to choose strategies that are suboptimal or
counterproductive. In our research, we are investigating patterns of brain activity
associated with good and poor memory performance. We are examining methods for
improving human performance by identifying cases where learners are using
suboptimal memory strategies. Through this effort, we hope to lay the foundation for
closing the loop between recording brain activity and using those recordings to
augment performance.

As a part of this effort, one of our goals is to create a model of brain activity that
can be used in a predictive fashion. Using brain activity recorded from participants
who tried to memorize words under a variety of study and test conditions, we selected
two conditions where the brain’s response to stimuli should be similar across all



participants. We used those two conditions to develop a computation model and then
tested the model on a third condition in which participants’ brain activity should
depend on their choice of study strategies. The model was used to predict which
participants were using a more effective memory strategy. We then tested the
predictions of the model by assessing the participants’ behavioral memory
performance.

1.1 Metamemory and Memory Strategies

The term metamemory refers to a person’s judgments about the state of his or her own
memory. Successful encoding and retrieval of information requires a number of
metamemory decisions, such as deciding what information is worth remembering,
what strategies should be used to encode the information, and whether or not
information retrieved from memory 1is accurate. People typically develop
metamemory skills over time, through experience with different kinds of learning
situations. For example, after practice with sequences of study and test questions,
people tend to get better at predicting which items they will remember later and which
items need additional study [1]. Through experience, people learn memory strategies
such as spending more time studying items that seem difficult to remember or using
different study strategies depending on when and how the information will need to be
remembered. However, the strategies that learners develop are often affected by
cognitive biases and may not be optimal. Numerous studies have shown that people
often fail to use appropriate memory strategies [2,3,4,5,6].

One memory strategy that can improve performance is self-testing, or retrieval
practice [7]. A common example of retrieval practice is studying with flashcards. If a
language student studies new vocabulary by quizzing herself with flashcards, she will
be more likely to remember the new words than if she skimmed over the words and
their definitions in a textbook. Retrieval practice is beneficial because it gives learners
experience with retrieving the needed information from memory. It also provides
learners with a more accurate sense of what they do and do not remember. The
effectiveness of retrieval practice increases as the practice becomes more difficult [3].

Although retrieval practice is a highly effective strategy, it is not a strategy that
learners are likely to adopt on their own. Studying with this strategy can be frustrating
because learners feel that they are performing poorly and progressing slowly. In
reality, they are developing accurate assessments of how well they have learned the
material. However, learners tend to prefer study strategies that make them feel
successful at the time of study, even when those strategies are less effective in the
long run [2,3].

1.2 Event-related Potentials

When a person’s brain activity is recorded using electroencephalography (EEG),
different patterns of activity emerge for passive study and for active retrieval of
information from memory. In EEG research, a participant’s brain activity is recorded
using sensors placed on his or her scalp. The EEG data provide an ongoing record of



the brain’s electrical activity with very high temporal resolution. To separate out the
brain activity related to a particular type of processing, the EEG data are time-locked
to the presentation of events of interest and events of the same type are averaged
together. The averaging process should average out any ongoing processing that was
not related to the experimental stimuli, leaving only the activity that was elicited by
the events of interest. These averaged waveforms are called event-related potentials
(ERPs).

Researchers have mapped the relationships between different ERP waveforms and
different types of processing in the brain. The ERP component of interest in the
present study is the late positive component (LPC). The LPC is thought to be related
to explicit processing, such as the process of deliberately searching memory for a
particular piece of information [8, 9, 10, 11, 12].

When a learner is presented with an item to study, the LPC elicited by that item
will be small. However, when the learner is tested on an item and has to retrieve it
from memory, the presentation of that item will elicit a large LPC. In the absence of
an explicit memory test, a participant’s self-induced retrieval practice should also
produce a larger LPC. It is likely that use of retrieval practice as a memory strategy
will be reflected in participants’ brain activity during study.

1.3 Modeling Event-related Potentials

The EEG data selected for modeling was taken from a study in which participants
were presented with a list of words and asked to remember them for a later memory
test. Some of the words were studied once, some words were studied twice, and some
were studied once and then quizzed once during the study session. All of the words
appeared again on a subsequent memory test, intermixed with an equal number of
new words. We hypothesized that participants would have the worst memory for the
words that were studied only once and the best memory for the words that were
quizzed during the study sessions. The quizzes provide an opportunity for retrieval
practice that should benefit subsequent memory performance.

For the words that were studied twice but not quizzed, we hypothesized that some
participants would engage in retrieval practice on their own. Even though the words
were not explicitly tested, participants might recognize them as previously studied
words and retrieve the first presentation of the word from memory. This self-testing
should benefit subsequent memory performance much like explicit testing. Since, as
discussed above, most people are unlikely to adopt a strategy such as retrieval
practice on their own, we expected that the average performance across all
participants would be lower for the twice-studied items than for the quizzed items.
However, we expected that a subset of the participants would use more effective
memory strategies and would perform better on this condition than their peers.

The design of the EEG experiment allowed us to model each participant’s brain
activity in two “known” conditions: the first presentation of each studied word, which
should not elicit an LPC, and the words that were quizzed during the study block,
which should elicit a large LPC. We applied the model to ERPs from an unknown
condition, the second presentation of repeated study words. The words in that
condition should elicit an LPC only for the participants who engaged in retrieval



practice. We used the model to classify the ERPs from the unknown condition as
being more like passively studied words or more like explicitly tested words. We then
tested the predictive power of the model by comparing the subsequent memory
performance for participants in those two groups.

2 Experimental Methods

Participants. Twenty-four University of Illinois students participated in this study
and were paid for their participation. Half of the participants were male and half were
female. The average age of the participants was 21.

Materials. The materials used in the experiment consisted of 320 common nouns that
served as study items, and 320 nouns that were matched in terms of length and
frequency and served as new items at test. The average frequency was 57.6 for the
study items and 50.9 for the new items; the average word length was 4.6 letters for
both sets of words (frequency data was taken from the Kucera and Francis, 1967;
norms included in Balota et al., 2002; a frequency value of zero was assumed for
items not appearing in the database).

The study words were divided into eight counterbalanced lists. The experimental
lists were subdivided into four study blocks and four test blocks. Each study block
contained 80 of the experimental items. Of those items, 20 were studied once, 20 were
studied twice, 20 were studied and then tested within the block, and 20 were paired
with a synonym. For the items that were studied twice or studied and then tested, half
of the items were repeated at a short lag, defined as one intervening item, and half
were repeated at a long lag, defined as nine intervening items. For the items that were
paired with synonyms, half of the synonyms were presented at a short lag and half
were presented at a long lag. In addition, half of the synonym items were tested at
each lag.

Each study block was followed by a test block in which all of the nouns from the
block were re-tested, intermixed with an equal number of new, unstudied items.

Procedure. The participants were instructed that they would be tested on their
memory for a list of study words. They were not given any information about
different types of memory strategies and were not asked to use a particular memory
strategy. As discussed above, the study list was broken into four parts in order to
make the task easier for the participants. Each study block contained a total of 140
study words and each test block contained a total of 160 test words.

Throughout the experiment, there was a white fixation cross in the center of the
computer screen. The participants were asked to keep their eyes on the fixation cross
at all times during the experiment. All of the study words were presented
immediately above the fixation cross in white 38-point Helvetica font on a black
background. Within the study blocks, each word was preceded by a pound symbol (#)
that was presented above the fixation cross for one second. Participants were
instructed that they could blink or move their eyes while the pound symbol was on the
screen, but that when it disappeared they should refrain from blinking and prepare to



see the next study word. For the tested words, the pound symbol was red, indicating
that the next word would be tested. For the words that were only studied, the pound
symbol was white. The study word was presented 500 ms after the pound symbol
disappeared and remained on the screen for one second. The tested words were
followed by a red question mark that remained on the screen until the participants
pressed a response button to indicate whether or not that word had appeared earlier in
the study block. The same test procedure was used in the test blocks that followed
each study block. In the test blocks, all of the words from the study block were tested
or retested, intermixed with an equal number of new words. The participants took
short breaks before starting each new study block in order to reduce interference from
the preceding blocks.

The electroencephalogram (EEG) was recorded from 26 silver/silver-chloride
electrodes embedded in a geodesic arrangement in an elastic cap (EASY-cap). Five
additional free electrodes were placed on the left and right mastoids, on the outer
canthus of each eye, and below the left eye. The three free electrodes near the eyes
were used to record blinks and horizontal eye movements (vertical and horizontal
EOG). The scalp electrodes were referenced on-line to the left mastoid. Following
the experiment, the scalp electrodes were re-referenced off-line to an average of the
left and right mastoids. All of the electrodes were tested before recording begins to
ensure that their impedance was below 3 KOhms. During the experiment, the EEG
from all electrodes was amplified through a bandpass filter of 0.02-100 Hz and
recorded at a sampling rate of 250 Hz.

ERPs were computed at each electrode for each experimental condition by
averaging the EEG data from 100 ms before the onset of a word until 920 ms after
word onset. Trials containing blinks were corrected using the blink correction
procedure described by Dale (1994) and trials containing artifacts such as excessive
eye movement, signal drift or muscle activity were excluded from the averages. The
mean amplitude of the ERPs within time windows of interest was calculated using
data digitally filtered off-line using a bandpass filter of 0.2 to 20 Hz.

3 Experimental Results

Behavioral Results. Memory accuracy was assessed using the percentage of correct
answers on the memory tests. Only the data relevant to the computational model will
be discussed here. On average, participants were 39% correct for words that were
studied only once, 50% correct for items that were studied twice with a long lag
between the repetitions, and 66% correct for items that were studied once and quizzed
at a long lag during the study block. These results were consistent with the prediction
that retrieval practice during study would benefit subsequent memory performance.
The difference in performance between the twice-studied words and the quizzed
words also supports the hypothesis that most participants would not use retrieval
practice when presented with repeated study words.

ERP Results. The LPC was measured by computing the mean amplitude of the
ERPs in a time window from 500-900 ms post stimulus onset. Repeated measures



ANOVAs were used to test the results, with degrees of freedom adjusted using the
Greenhouse-Geisser correction. All effects are significant at or above the p = 0.05
level unless otherwise specified.

The LPC was significantly larger for the words that were quizzed during the study
block than for those that were not, as shown in Figure 1. As predicted, this indicates
that participants actively searched their memory for the words that were explicitly
quizzed. However, for the words that were studied twice, most (if not all) of the
participants studied the words passively. They did not search their memory to retrieve
the previous presentation of the words, so the second presentation of the words did
not elicit and LPC.

Although the majority of the participants did not engage in retrieval practice when
they were not explicitly tested, we developed a model to identify whether or not there
were any subgroups of participants who did employ that strategy.

o First Preseniation of Study Words
Second Presentation of Twice-studied Words
ammem  Quizzed Words

Fig. 1. Grand average ERPs to first presentation of studied words (black line), second
presentation of twice-studied words (gray line), and quizzed words (dotted line). ERPs are
shown at the midline central (MiCe) electrode.

4 Computational Modeling

Our goal was to construct a computational model that would classify ERPs elicited by
the words in the twice-studied condition based on the brain activity associated with a
particular study strategy (retrieval practice or passive study). This was achieved by
constructing a naive Bayes classifier trained on the known study and test conditions
and applying this classifier to the unknown ERPs. A significant challenge faced when
constructing computational models from EEG signals is the low signal-to-noise ratio
due to the presence of simultaneously recorded brain activity that is unrelated to the
event of interest. This is often addressed by averaging all single-trial EEG recordings
to form a grand average ERP. However this approach removes most of the trial-to-



trial variability and can result in the formation of a classifier that is not robust to
variances present in the ERPs from the "unknown" condition.

To overcome these obstacles, we developed an approach that better balances
variability and signal averaging. Our approach combines ensembling classification
results from multiple models and randomized signal averaging of individual trial
ERPs. Randomized signal averaging was accomplished using an n-choose-k approach
to create a new set of ERPs for use in the classifier training step. We examined
maximized signal averaging by using k=39 to select and average single trial EEG
recordings in a time window from 100 ms pre-stimulus to 900 ms post-stimulus to
create 40 ERP samples for each of the two known conditions (study and test). For the
study condition (the first presentation of all studied words), there were 278 single trial
EEG recordings available from which to choose and for the test condition (the words
that were quizzed during the study block) there were 40 single trial EEG recordings.
The resulting ERP samples were then transformed via principal component analysis
and the scores of the first five principal components were used as an uncorrelated
feature set to train a naive Bayes classifier. The classifier was implemented by using
MATLAB's [13] classify function provided in the Statistical Toolbox with the
"diaglinear" discriminant function. This process was then repeated 50 times using a
new random seed to randomize the single trial EEG recordings chosen for signal
averaging from the n-choose-k trial selection process. In this way, each model was
exposed to different signal averaging in the unknown condition ERP samples while
maintaining a balanced number of training examples across the two known
conditions.

5 Modeling Results

The performance of the classifier was estimated using sample-out cross validation.
For this work, single trial data was available from twenty-three of the participating
subjects.

The mean area under the receiver-operator curve (AUC) for sample-out cross
validation over all models and all subjects was 0.99. The standard deviation of the
mean sample-out cross validation AUC for each subject was 0.01. These cross
validation results provide confidence that the feature extraction and classification
methods are well suited to model the brain activity related to passive study or retrieval
practice strategies.

For classification of the unknown ERPs, a full model was constructed with all
samples from each of the 50 randomly constructed training sets described in section 4.
This model was then used to classify the unknown ERPs as belonging to the study or
retrieval groups. Examination of the number of models classifying the unknown ERPs
as belonging to the study group identified eighteen subjects whose brain activity was
consistent with their previously used study strategy. For this group of eighteen
subjects, more than 97% of the models for each subject identified the unknown ERPs
as belonging to the study class. Another group of five of the subjects exhibited brain
activity that was consistent with the retrieval practice elicited by the quizzed words.
The number of models identifying the unknown ERPs as belonging to the test class



varied with subject and ranged from 22% to 80% of the 50 models constructed for
each subject (Table 1). This variation is indicative of individual differences and may
indicate that the retrieval practice strategy was employed with different frequency by
each subject.

Table 1. Percentage of models indicating a retrieval practice strategy for each subject.

Percentage of models Percentage of twice-
Subject indicating retrieval studied words
strategy remembered at test
27 80% 73%
15 78% 78%
2 54% 58%
12 52% 88%
3 22% 63%
22 2% 33%
5 0% 43%
7 0% 18%
8 0% 13%
9 0% 58%
10 0% 45%
11 0% 58%
13 0% 45%
14 0% 80%
16 0% 68%
18 0% 28%
19 0% 38%
20 0% 63%
21 0% 58%
26 0% 38%
28 0% 23%
29 0% 55%
30 0% 58%

To test the model’s classification performance, we compared the behavioral
memory performance across the two groups of participants. As predicted, the
participants whose brain activity in the unknown condition was consistent with their
brain activity in the retrieval practice condition had better memory for the twice-
studied items than participants whose brain activity was consistent with passive study.
On average, the participants in the former group correctly recognized 28.6 out of 40
words (71.5%) from the twice-studied condition, while the participants in the latter
group correctly recognized 18.1 out of 40 words (45.2%). Welch’s t-test showed that
the performance of the two groups was significantly different [#9.4) = 3.82, p < 0.01].
Figure 2 shows the grand average ERPs for the unknown condition and the test
condition for the two groups.
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Fig. 2. Grand average ERPs to the unknown condition, the second presentation of twice-studied
words (black line), and the test condition, the quizzed words (gray line). ERPs are shown at the
midline central (MiCe) electrode. The participants whose brain activity was consistent with
passive study in the unknown condition are shown on the left and the participants whose brain
activity was consistent with a retrieval practice strategy are shown on the right.

6 Discussion

The results of this experiment indicate that ERPs elicited under known conditions can
be modeled and used to classify ERPs from an unknown condition. In this
experiment, the known conditions included a passive study condition and a condition
in which participants were quizzed on previously studied words, leading the
participants to engage in retrieval practice. The unknown condition was the second
presentation of repeated study items. For those items, participants might retrieve the
first presentation of the word from memory, adopting a retrieval practice strategy on
their own. Previous research on study strategies and cognitive biases led us to predict
that few participants would spontaneously engage in retrieval practice, but those that
did would outperform the other participants for the words in that condition.

As we predicted, the average memory performance across all participants was
lower for the words that were studied twice than for the words that were studied and
then quizzed. Using the model, we identified a group of five participants whose brain
activity was consistent with use of a retrieval practice strategy. That small subset of
participants performed significantly better than the other participants on the
subsequent memory test.

The experiment and model described in this paper represent the first steps toward
using recorded brain activity to improve human memory performance. We have
identified patterns of brain activity that are associated with the use of an effective
memory strategy and developed a model that can predict which participants are using
that strategy and which are not. In future research, we hope to expand on these results
and investigate ways to coach people on the effectiveness of their study strategies as
they attempt to learn new information.
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