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Abstract

Emerging Complex Event Processing (CEP) applications in cyber physical systems like Smast Power Grids present
novel challenges for end-to-end analysis over events, flowing from heterogeneous information sources to persistent
knowledge repositories. CEP for these applications must support Iwo distinctive features — €asy specification
patterns over diverse information streams, and integrated pattemn detection over realtime and historical events.
Existing work on CEP has been limited to relational query patterns, and engines that match events arriving after
the query has been registered. We propose SCEPter, a semantic complex event processing framework which
uniformly processes queries over continuous and archived events. SCEPteris built around an cxisting CEP engine
with innovative support for semantic event pattern specification and allows their seamless detection over past,
present and future events, Specifically, we describe a unified semantic query model that can operate Over data
flowing through event streams {0 event repositories. Compile-time and runtime semantic pattems are distinguished
and addressed separately for efficiency. Query rewriting is examined and analyzed in the context of temporal
boundaries that exist between event streams and their repository to avoid duplicate or missing results. The design
and prototype implementation of SCEPterare analyzed using latency and throughput metrics for scenarios from
the Smart Grid domain.
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1 Introduction

in buildings [4). Event streams generated from such sensors need to be integrated with supplemental information
sources to support analysis. Such analysis offer deeper insight into system behavior and dependencies to help
with continuous planning, and for making prompt operational decisions, These emerging class of Cyber Physical
Systems (CPS) [17] base the operation and optimization of complex physical systems on information analysis
capability present in cyberspace.

The continuous nature of events generated from numerous sensors in CPS along with the need for low latency
analysis makes them well suited for Complex Event Processing (CEP). For example, consider the Smart Power

tealtime events streaming from thousands of power meters, building sensors, facility schedules, mobile consumer
apps, and weather stations. Besides utility operators, this information may also be used by power consumers to
manage their energy use profile and by building managers to control facility scheduling. CEP can be used to
analyze the realtime operational behavior of the power grid and help detect patterns that indicate peaking power
usage, changing pricing incentives, and opportunities for demand curtailment.

However, these novel CPS applications motivate certain distinctive features to be supported by CEP engines.
CPS applications tend to be cross-disciplinary, combining engineering, social behavior, and public policy, This
means that the information space can be complex just as the consumers of these information diverse. As a result,
not every user has a holistic understanding of all information souices and their structures. This requires easy
specification of event patterns over information streams, which abstract away the individual domain complexities,
Often, semantic ontologies for individua domains are used to achieve this abstraction and make knowledge more
accessible to the end user[10, 25].

Another feature that is commonly sought is to analyze both continuous and archived information. Event
streams are often archived to comply with reguiations[18], perform cause-effect analysis and mine for novel

for users specify a uniform query — imrespective of past, present or future occurrence of a pattern, and ensure
ordered and consistent result streams — without duplicates or missing events, to be provided. Existing work on
CEP have been limited in these directions, Most CEP engines process structural events and pattern queries are
specified at the relational level, requiring users 10 be aware of the underlying structural heterogeneity[6). Active
and temporal databases leverage relational query engines for time varying data that is persisted [8], using triggers
and incremental queries to match newly arriving data, Some even build CEP engines on top of a relational database

archived events.
In this report, we propose SCEPter, a semantic complex event processing framework which uniformly pro-
cesses queries over continuous and archived events. SCEPteris built around an existing CEP engine with inno-

sponsored Los Angeles Smart Grid project, and applied to the USC Campus Microgrid testbed.
Specifically, our contributions here are as follows:

» We propose a unified semantic query model that can operate over end-to-end event data in the past, present
and future,

» We present a prototype implementation of SCEPter, which supports the proposed mode! and operates on
continuous event streams and archived event repository,

* We introduce compile-time pattern rewriting, runtime semantic annotation and filtering of semantic patterns,
and resilient streaming of results in the presence of temporal gaps between streams and the repository.

» We analyze the processing latency and throughput provided by SCEPterfor diverse queries from the Smart
Grid domain.




The rest of the report is organized as follows: Section 2 introduces semantic CEP applications in the Smart Grid
Domain, Section 3 summarizes the solution approach of SCEPter, Section 4 describes the semantic event model
and query model, Section 5 describes SCEPtersemantic CEP engine for stream processing, Section 6 describes
semantic CEP on archived data, Section 7 describes integrated semantic CEP query over end-to-end data flows
which consist of both streaming and archive data, Section 8 reviews the architecture of SCEPterand describes
system module implementations, evaluation experiments are presented in Section 9, we review related work in
Section 10 and finally discuss future work and conclude the report in Section {1.

2 Background

21 Demand-Response in Smart Grids

Smatt Power Grids are an exemplar of cyber physical systems and form an emerging application domain for
complex event processing. Specifically, they refer to the modernization of the electric grid by integrating sensors
and communication devices —- at the generation, transmission and distribution to end users, and software for data
analytics and automated operations.

Demand response optimization (DR} is one of the cornerstone Smart Grid applications that uses these im-
proved capabilities to prevent a mismatch between power generation and consumer demand. It helps a utility
predict when a peak load will occur and identifies demand curtailment strategies to shape or shift the load. This
improves operational reliability, avoids blackout/brownouts and reduces the maximum power generation capac-
ity required. CEP can help DR applications to migrate from a static strategy, based on historical load averages
and a priori load reduction commitment by consumers, to a dynamic strategy that uses realtime event patterns to
determine peaking trends and offers targeted curtailment incentives such as variable rate pricing.

2.2 Smart Grid CEP Characteristics

Smart Grid event processing present novel characteristics that existing CEP systems are not well designed for.
Specifically, they require two distinctive features — specification of semantic patterns over diverse information
streams, and integrated pattern detection over realtime and historical events.

As part of the Los Angeles Smart Grid Project in the largest public utility in the US, the University of South-
emn California (USC) campus serves as a testbed to experiment and evaluate DR technologies. This microgrid
environment encompasses diverse data and concepts adopied by its multi-disciplinary participants that include
device vendors, end-use customers, facility managers and the utility. Continuous, time-series data from sensors
and information sources can be abstracted as events. These sources and event types include equipment and appli-
ances (ThermostatChange event, TemperatureChange event), smart meters (MeterUpdate event), weather services
(HeatWave event) and consumer activities (ClassSchedule event, RoomOccupancy Event). Even event sources that
produce the same type of events may vary in terms of data schema and terminologies. On the other hand, users of
CEP systems such as USC’s Facility Management Service (FMS) operators, building managers or even individual
student/staff/faculty customers may define energy use pattern queries based on their own domain knowledge. The
heterogeneity of data sources and concepts in an evolving power grid makes it unreasonable for users to be aware
of fine grained event details. A CEP system should capture the semantics of events and their attributes, such as
the types and relations of domain entities, to ease the specification of CEP pattern queries at a higher level of
abstraction that suits their application.

Secondly, data generated in the Smart Grid flows from sensors and meters, through communication networks,
and onto data repositories for archival. The latter is required both by data mining tools [9] and for regulatory
comptliance of utility operations. Given the different consumers of this information, CEP queries may not have
been specified @ priori to monitor the data streams. For example, a query to detect curtailment opportunities for
DR may only be activated after receiving a DR signal from the utility, or new queries may be created and added
to the system. This introduces the problem of a user’s need to detect patterns that occurred after the query was
submitted as well as their historical occurrences for decision making. This motivates the need for a unified query
framework over the end-to-end flow from streams to event repositories.

Consider the following pattern to illustrate the need for these two CEP features in the USC campus microgrid.

An opcraior in the USC FMS control center receives a DR event notification from the utility at noon
requesting load curtailment. The operator then wants to detect Office rooms where the airflow rate of
the Heating/Ventilation/Air Conditioning (HVAC) unit exceeds 500 cfm, but wants this pattern to be




initiated from 9AM since this morming. Upon detecting these situations, the operator can reduce the
fan speed and duty cycle of the HVAC unit for those rooms (o limit power usage.

In this scenario, “Office” is a semantic concept, not presented in the event schema itself but availabie as
part of the domain knowledge-base and associated with the location of the HVAC unit generating the airflow
measurement events, Second, buildings with different HVAC unit manufacturers and building control systems
may adopt terminologies such as “flowrate”, “airvolume” or “airflow” to describe the same event, Finally, the
operator is interested in historical occurrences of this pattern since this morning as it indicates the rooms that have
been consistently consuming more power today and offer a higher probability of ensuring sustained reduction in
energy usage.

3 Approach
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Figure 1: Uniform query on end-to-end data flow

Figure 1 shows our overall approach to support historical and realtime matching of semantic CEP patterns, .
Event data arriving continuously on streams is forked and passed to both event database for archival and to a
semantic CEP engine. CEP queries provided by users are uniformly defined over past, present and future events
using semantic concepts for the domain. The semantic CEP engine monitors the event streams to detect these
patterns after query submission while a database query engine locates these patterns on the archived event reposi-
tories to discover historical matches. Results from both the database and CEP engine are integrated in time order
and provided to the user.

There are several alternate solutions for this problem, the obvious one being to use a single query engine to
-process both stream data and archived data, Using a single event processing engine, we can extract the historical
data from the repository and generate a virtual event stream that is fed to the CEP engine for pattern matching, as a
precursor (o current events. The problem with this approach is the need to retrieve and re-orchestrate all archived
events for a stream whenever a query that uses this stream js submitted or updated. This event materialization can
pose a large overhead. An alternative is to use a single database query engine that use triggers to perform standing
queries when new data arrives. The drawbacks of this approach are twofold. First, CEP queries are more intuitive
for defining patterns over stream than datahase query languages. Second, active database systems do not scale
well to high data rates for realtime query processing.

Our hybrid solution marries the best of both worlds and leverages both CEP and database engines to do
things they are best suited for. Users can use CEP queries uniformly over both historical and continuous events
itrespective of the event location. These CEP queries support semantic predicates, and we extend an existing
CEP system to support semantic event processing. We discern static semantics associated with event queries and
process them at compile/query specification time, and dynamic semantics present in events are handled at runtime.

We unify database and stream queries through query rewriting. CEP pattern languages offer extensions to
database query models using temporal operators like time windows, sequence, and so on. We discuss rewriting
rules to transform temporal CEP operators to database query expressions, In particular, to facilitate semantic
predicates in queries, we adopted a semantic data store as our persistent event repository and rewrite CEP queries
into SPARQL.,

Finally, we need to ensure that processing queries over events flowing through streams to repositories does
not change the expected order of the matched results, or cause duplicates or missing results. This is non-trivial
when considering that it may not be possible to ensure that an event is atomically present only in the CEP engine
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or the database. As shown in Figure 1, there is often a temporal boundary or gap between an event processed by
the stream engine and those processed by the database query engine due to the way the event stream is forked for
archiving. At the moment a query is subrnitted, a relevant event may have already passed the stream engine but
not have reach the database (“positive” gap), or it is possible that a relevant event that has reached database will
also pass through the stream engine subsequently (“negative” gap). A simple union of the results from both the
CEP and database queries may cause duplicates when the gap is negative, or missing pattems if the gap is positive.
We analyze approaches to ensure that the results are integrated seamlessly and consistently on the end-to-end data
flow.

4 Semantic Complex Event Patterns

One of our contributions is to support semantics in Complex Event Processing over streams. Toward this, we
propose an event model which captures semantic event attributes, domain entities and their relations [27]. Sucha
mode} further allows CEP queries themselves to incorporate semantic predicates within them,

4.1 Semantic Event Model

We assume event data emanating from stream sources is a light-weight data tuple with a schema defined as a list
of attribute name and type pairs, i.e., .

Event Stream Data := {<attribute, type>*}

In addition to this structural information, two types of semantic information need to be captured — the semantic
meaning of event attributes, and the semantics of the domain entities and concepts that relate to an event.

Consider the example from Section 2 where the same concept of “airflow” has multiple structural variants.
This is an example of capturing the semantic meaning of an event attribute. We observe other structural variants
of the “airflow” concept such as “flowrate”, “aitvolume” and “airrate” as alternalive representations. A traditional
CEP system cannot apply 2 unified query over these event streams unless pattern designers are aware of the
underlying structural heterogeneity of events and manually transform queries to suit each stream. This approach
does not scale, not to mention that the data providers and CEP application users are decoupled.

We propose an ontology-based approach to capture semantics of event attributes. Domain event types that are
captured include “TemperaturcMeasurement”, “AirflowMeasurement” and “O2Measurement”. One standard
concept is used to represent a class of semantically equivalent attributes, and alternative concepts are modeled as
its sub-class. For example, “evt:airflow” is the standard concept of airflow measurement readings, while equivalent
classes “evt:flowrate” and “evt:airvolume” are its sub-classes. Integration of data with heterogeneous schemas can
be automated using this ontology model.

The second aspect of semantics relates to domain entities in the knowledge-base that are related to events.
For example, the source of a temperature or airflow measurement event may be from different rooms or physical
spaces. The user is often interested in a specific category of these spaces when defining queries, such as the
average airflow of “Office rooms” in a building or temperature change events in “Classrooms™. These domain
concepts associated associated with events from a specific stream are less dynamic. However, these concepts are
not necessarily present as an attribute in the event itself but rather part of the domain knowledge. It is important
to link this knowledge-base with the events for intuitive and expressive query design.

We propose domain models to capture specific concepis that related to events, as shown in Figure 2. For
example, we have an electrical equipment ontology o capture types of equipment, and a physical space ontology
to capture concepts related to locations and buildings[26]. An event can be linked to these semantic concepts
using ontology relation such as “aa-has[D” and “ee:hasLocation”.

4.2 Semantic Query Model

We use the semantic event model as the basis for defining a Semantic CEP (SCEP) query model. Further, this
query mode! is used uniformly both for continuous and archived events, as we will describe later. Our model

starts with a traditional CEP query modet and incorporates semantic constraints that are based on semantic query
languages. The structure of an SCEP query is:

SCEP Query ::=
[PREFIX <pnamespace>]
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[CEP subpattern]
[semantic subpattern]
[data window]

We introduce a new concept of data window (DW as the time range upon which users wish to apply the query,
DW is different from the CEP query window (QW). If the DW overlaps with a time in the past, the query should
be executed over both historical and realtime events. On the other hand, a CEP Qw specifies the time/length ran ge
for component events which constitute a pattern,

We generalize common features of the many CEP query languages [6, 5] and use the following structure for
CEP subpatterns, Query usually indicates the target input stream, output definitions, event variable declarations,
and temporal and content-based constraints, Our abstract CEP query model is,
CEP Subpattern ::=

SELECT <event+, attributes ¢ Aggregationx>
FROM <event, input streamss

(WHERE <relational const raintg>)?

(SEQ <event, event, ...,»)?

(WINDOW <window Specificationg>)?

We illustrate the constructs of our SCEP query model using examples from the Smart Grid domain, These
exampies will also serve as candidate queries in our empirical evaluation in Section 9. Assume we have an event
stream named aStream of airflow measurements, with schema {<sensorID, string>, <flowrate,
doubles>, <timestamp, long> 1.

Query 1.1, Simple CEP query. This pattern detects an airflow event with the flowrate measuring more than
500 cfm, with no temporal and window specified.

SELECT ?e.sensorID, ?e.flowrate
FROM ?e aStream
WHERE ?e.flowrate > 500

Query 1.2, Simple SCEP query. This paitern includes a semantic constraint to detect events from an “Office”.
The CEP subpaitern is identical to Example 1.1.

PREFIX bd:<http://cei.usc.edu/Building.owl#>
PREFIX evt:<http://cei.usc.edu/SGEvent.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22—rdf—syntax—ns#>
SELECT ?e.sensorID, ?e.flowrate
FROM ?e aStream
WHERE ?e.flowrate > 500
{7e evt:hasEventSource ?src} .
{?src bd:hasLocation ?loc} .
{?loc rdf : type bd:0ffice} .

Query 2.1. Sequence CEP query. This pattern detects a sequence of two airflow events in a 5 minule sliding
time window, with the flowrate of the second event greater than that of the first event by 100 cfm,

SELECT ?el.flowrate, ?e2.flowrate

FROM 7el aStream, 7e2 aStream

WHERE ?e2.flowrate - ?el.flowrate > 100
WINDOW (t ime, Smin, sliding)

Query 2.2. Sequence SCEP query. This pattern includes semantic constrainis to detect events from an “Office”.




efinitions for brevity, we have,

The CEP subpattem is identical to Example 2.1.. Ignoring the namespace d

SELECT 7el. flowrate, 7e2. flowrate

FROM ?el aStream, ?7e? aStream

WHERE 7e2.flowrate - 2el.flowrate > 100

WINDOW (time, Bmin, sliding)

{7el evt thasEventSource ?src} .

{7e2 evt:hasEventSource ?src} -

{7src bd:hasLocation 7loc} .

{?loc rdf:type pd:0ffice} .
Query 3.1. Aggregation CEP query. This pattern computes the average fAowrate of airflows ina 5 minute batch
time window, for flowrates greater than 500 cfm.

SELECT AVG(?e.flowrate)

FROM 7?e aStream

WHERE 7e. flowrate > 500

WINDOW (time, $min, batch}
Query 3.2 Aggregation SCEP guery. This pattern includes semantic constraints to detect events from an “Of-
fice”. The CEP subpattern is identical to Example 3.1.

SELECT AVG(?e.flowrate)

FROM ?e aStream

WHERE ?e.flowrate =~ 500
WINDOW (t ime, Smin, batch)

{7e evt :haskEventSource 7src} -
{?src bd:hasLocation ?loc} -
{?loc rdf:type pd:0ffice} .

Query 4. SCEP query with Data Window. This semantic pattem introduces data range specification for query-
ing over both historical and continuous events. The query in Example 2.1 with a date window since 9 AM on 16%

March, 2012,

SELECT ?Zel, el

FROM aStream

WHERE ?e2.flowrate - 2el.flowrate > 100
WINDOW (time, 5min, sliding}
RANGE[2012—03—16T09:00, ]

The starting timestamp in the RANGE clause indicates the time of the oldest event that should be considered for
a match. If the starting time is older than the time when the query was submitted, the query is execuicd over

historical events, 1f the ending time is unspecified or is a point in the future, it is also executed over realtime

streaming events.
Two things should be highlighted. One, when users design SCEP queries, they do not need to know details of
level abstraction using domain ontology

the underlying data such as their schema. Queries are defined at a high
models, and the semantic mismatch between the incoming event and semantic query is addressed by the SCEP
engine. Two, as we discuss later, the SCEP queries are applied to the events flowing from streams to the reposi-

tory. These CEP subpatterns of the SCEP queries should be suitably rewritten in combination with the sermantic
subpatterns for execution by the semantic event database.

5 SCEP Querying on Streams

Our SCEP system is designed on top of an existing CEP engine using a pipelined architecture. Raw event tuples
first enter a semantic annotation module where they are materialized into semantic events. These semantic events




Semantics are processed both at compile time and runtime depending on whether they fall under static of
dynamic categories, as mentioned in Section 4, These are discussed next,

5.1 Compile-time Semantic Processing

stream.a:=
{<sensorID,long>, <airflow,double>, <timestamp,long>}
streamb:=

{<sensorID,long>, <flowrate,double>, <timestamp,long>}
streamb:=

{<sensorIpD, long>, <airvolume, double>, <timestamp, long>}

A CEP subpattern defined on these streams uses a different attribute name for the same concept,
Query 5. CEP query with static semantics

SELECT ve
FROM stream a, streamb, stream.c
WHERE ?e.airrate > 500

Existing CEP engines require that queries and streams use syntactically identical event schemas. To process
CEP queries as above, the semantic mismatches between event schemas and user query has to first be addressed,
Here, “flowrate” is defined as the equivalent class of “airflow”, “airvolume” and “airrate” in our domain ontology.
This allows straightforward static semantic inferencing. When new streams are registered with our SCEP systern,
it queries the domain ontologies to map the attributes in jts schema to its equivalent standard concept. So the
schema for the above three streams are all normalized to,

{<sensorID, long>, <flowrate, double>, <timestamp, lonq>}
Similarly, when a new user query is registered with the SCEP system, we use the ontologies to normalize

concepts used in the user query. Thus in the above query, the “airrate” will be statically rewritten to “flowrate”
when the query is registered.

5.2 Runtime Semantic Filtering

sensoriD fowrate timestamp
eventdata = < | D105V0L l I 510.0 I lzmz-m-izms;oo' >
:hasiD
ohtology eehas!

#e (F105VOLUME

rdf:type rdf:type
e
e AiflowSensor bel: Office >

Figure 2: Dynamic Semantics

Dynamic event semantics are associated with event instances. For example, Figure 2 shows the semantic iype
of the location (bd : RTH105) from where an event originates. Though this information is not presented in event




tuple, it is related through the “sensorID” value of that particular event instance. User queries such as Query 1.2,
2.2 and 3.2 which invelve dynamic event semantics are processed at runtime.

The baseline approach of runtime semantic event processing is to annotate and materialize semantic events
from astiving event tuples and then perform semantic query over each new semantic event and the domain ontolo-

gies. A caching strategy for further optimization is discussed in our implementation.

6 SCEP Querying on Archive

Here, we describe our approach to transform the uniform SCEP query model for both streams and archives into
Semantic Web SPARQL. queries to detect patterns on archived data. The unified query model contains the semantic
and the CEP subpatterns. The semantic subpattern already conforms to SPARQL and does not require further
processing. However the CEP subpatterns have a different construct and need to be mapped 1o SPARQL. We use
rule-based rewriting for this transformation, and present rewriting rules for different CEP query operators into the
target SPARQL expressions.

6.1 Simple CEP Query

Simple CEP queries such as Query 1.1 in Section 4 have no temporal operators such as sequence and window. We
use the following rewriting rules for each of the “SELECT”, “FROM” and “WHERE" clauses, as illustrated for
Query 1.1 in Figure 3.

R1:SELECT. CEP “SELECT” clause maps to the “SELECT” clause of the SPARQL query with triple patterns
in the SPARQL “WHERE" clause representing the relations between selected event attributes and events.
R2:FROM. CEP “FROM” clause maps to the triple paitems in the SPARQL “WHERE” clause which represent
the relations between events their source streams.

R3}:WHERE. CEP “WHERE" clause maps to filter patterns in SPARQL “WHERE" clause which evaluate at-
tributes of events.

In addition, a CEP query outputs the result set in time order by default. Hence, we have the following additional
rule to guarantee ordering of SPARQL query results,
R4:0RDER. By default, create a iriple pattern in the SPARQL “WHERE” clause which selects the logical times-
tamp of the matching event, and create an “ORDER BY” clause to ocder the results on this timestamp.

6.2 Sequence Query with Sliding Window

Compated to simple CEP queries, sequence queries with sliding time window iniroduce two new operators, “SEQ”
and “WINDOW™. The rules to rewrite “SELECT”, “FROM” and “WHERE” clauses remain the same. For the
“S$EQ” clause, we have rewriting rule,
R5:SEQ. CEP “SEQ” clause maps to triple patterns in the SPARQL “WHERE” clause which selects the times-
tamp of the events in addition to SPARQL filters to order the timestamps sequentially.

The sliding time window on database queries is enforced using the rule,
R6:Sliding Window. A sliding time window operator for CEP sequence query maps to a SPARQL filter that
constrains the timestamp of the last event in the sequence minus the timestamp of the first event be less than the
window length.

In addition, CEP sequence guerics detect patterns once the last component event arrives. To guarantee the
output order of the corresponding archived queries, we have the rule,
R7:Order. By default, creaie an “()RDER BY" clause to the SPARQL query which orders the results using the
logical timestamp of the last component event of the sequence.

Figure 4 shows the query rewriting for Query 2.1.

6.3 Sequence Query with Batch Window

A sequence query can be also applied over a batch time window. The rewriting rule for a batch window operator

is,

R8:Batch Window. A batch window for sequence query maps io a SPARQL filter which evaluates,
floo'r'(?e;,m.tz'mestamp/w) - fioor(?e;,-,.ﬁ.timestamp/w) =0
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where Tey,; is the last component event in the sequence, € piras is the first component event in the sequence and
w is the window length. Figure 5 shows rewriting Query 2.1 with a batch window.

6.4 Aggregation Query with Sliding Window

An aggregation operator can simply map to its corresponding SPARQL aggregation function. To place a sliding
window on the database query, we group the aggregation function by each distinct event ?ediay in the database,
and calculate the aggregation function within (he window start with 7e,; #t- The rewriting rule is,
R9:Sliding Window. The sliding window specification for a CEP aggregation query maps to a SPARQL filter
that evaluates,

?e.tz‘mestamp—?ed,»,,t.tz’mestamp <

and group the aggregation function by 7egiat
where ?e is the aggregated event variable, and Teuiet is a variable of events from the same stream. Figure 6 shows
rewriting Query 3.1 using above rule,

6.5 Aggregation Query with Batch Window

The rewriting rule for batch window operator in aggregation queries are different from sliding window. The

R10:Batch Window. The batch time window operator for aggregation query map to the following SPARQL
assignment expression

LET(%e_group .= floor(?e.timestamp/w))
and groups the aggregation function by Te_group, where w is the window length. Figure 7 shows rewriting Query
3.1 with a batch window specification,

The rute-based approach is not limited to CEP-to-SPARQL transform, If the backend database has a language
other than SPARQL, such as SQL, a similar set of rules apply.

Select PrehzoriD Mowrate
Where |
e wvtisensonD MemsoriD,
o e entflowrate Hlowrste
Select  Je.semord, Peflowrate — = St flawrate .
From e aStresm __lz_‘“) I e evt:husStream Rmastream I
Where  7o.00wrate > 500 L]
R FIUTER(Hlowrate >500}. ]
M e evt:timestamp Ttime
order resalt . g
ORDER BY Mime

Figure 3: Rewrite Simple CEP Query

Salact Pel_flowrate 7a2_flewrate
Whars |
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From el aStream, 762 aStream Lwliu—*—) l 7?:; xh-duu: ::m
sl __

Whare 2 fowreta > et fiowrate .. RS FILTER{7e2_Rowrate > 7et_flowrate) .
$£Q e, o2 \\B\ el evtitimwstamp 701 _time ,
Te2 wel:tivestamp a2 _thme .
WINDOW {time, 125000ms, sikling) \"\ ~a FILTER(7e)_time > 7u2 e .
Ta . 25000
. [ rivenirer v 7a1_time) < {25000, |
wrder tesult set > ORDER BY Te2_time f

Figure 4: Rewrite Sequence Query with Sliding Window

7 Integrated End-to-End Query

Our earlier Sections § and 6 discussed our decoupled approaches for the SCEP queries over streams and databases
separately. here we integrate these two strategies to provide scamless querying over end-to-end event data flows
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Figure 5 Rewtite Sequence Query with Batch Window
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Figure 6: Rewrite Aggrepation Query with Sliding Window
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Figure 7: Rewrite Aggregation Query with Batch Window

while ensuring in order patterns detection, without duplicates or missing resulis.

7.1 Integrated Query Formulation

we discuss the integrated query plan over the event flow assuming that events that pass atomically through
the backend database immediately after without a gap i.e. every event must be visible
or to the database engine, but not both. Without loss of generality, consider a SCEP
flow F which consists of a single logical stream S and a semantic repository D.

Figure 8a shows the time when we submit @ on F' as £5°, the timestamp of the latest event in D as 8 the first
event observed by the CEP engine as ep, the second event as g1 and so on; the events before ep are denoted as

€_1,6_2,- .- Whichare stored in the repository D.
In the following, we discuss the integrate query plan

Firstly,
the CEP engine enter
to either the CEP engine
query ¢ submitted to the event

for different types of SCEP queries.
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Figure 8: Different Gap Widths,
7.1.1 Simple Query with No Window

Consider an SCEP query ( with no window specified, such as Query 1.2. At time t™ we submit Q to both
stream S and database D). Let the subset of patterns detected on .S be Reep and patterns detected in D be Rap. The
integrated result is B = Roep U Ry Given the no-gap scenario, there will be no duplicate or missing patterns in
R,

7.1.2 Simple Query with Window

For an SCEP query Q with a window specified as Wivery, denote the length of the window as W;ggg;". By
submitting Q@ on $ and D separately, we can retrieve patterns Heep and Ry, which only contain evenis observed
on S or I} respectively. However, as shown in Figure 9, some patterns may be missed because a window can span
the boundary between the stream and the database. Denote the missing pattern set as Bpounary. and define the

boundary windows as,
db — [4CEP length ,ceps
Wboundary - (tO - quggy * tO )
cep — [icep .cep length
Wboundary - {to =tﬂ + qurelgy )

If the query window W, is a batch window and £5% was selected as a start point of one window, then
obviously Rpounary = ¢. In the following we discuss Rboundary only for sliding windows.
Denote Tbounary € Hpounary as one of the missing patterns. Assume (¢ — {eili=0,.nn> 0} as the

component events of pattem ryounq,y, in time order. Denote cfimestomp oo he timestamp of event o, Thounary
need amfionl): need (o satisfy the constraints,
% Testamp € Wbtf)bundary’ and
C::'meatnmp c W;;fndary
To retrieve the missed pattern set Ryoundary, We can wait for time W;’(ffnda,v after which all the data in the

boundary would have arrived in the database. We then extend query @ to ' adding the necessary and sufficient
constraints for missing patterns, and submit Q' to the database for retrieving Rpoundary. The integrated query
result set is B = Reep U Ry U Roounary-

L, S

i
1
db |I cep
%auﬂdwy H Wboundary
| - ’
i ® s o000
1 ' 12
! €€, 1€ ¢ :
® ® 08 000 0o s :
i P '
4 L) 1 1]
1 t 1 1
] ] 1 1
t 1 1 t n
oy length db cep cep length T
P
tO lJ/q:.n.’.ry tO r0 tO + PV;'WP)J t

Figure 9: Zero Gap with Window
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7.2 Impact of Gap Width

When we relax the assumption of a zero time gap between the CEP engine and database, two possibilities arise of
either negative or positive gap on the data flow.

7.2.1 Negative Gap

Figure 8¢ shows a negative time gap between events in stream and the database. This means that events observed
by the CEP engine after £5° have already been stored in the database. This can lead to duplicate matching patterns
to be returned if not accounted for. We handle this by adding a filter clause to the database query to only consider
events with timestamp less than to?, as shown in Figure 10, so that we can otherwise use the same integrated

query plan as the Zero gap case.

i
|

e o o 0 9 8

e e, & &
e o & & @ .
1 1
': !
; ‘

Top — —>

A t

Figure 10: DB Query with Negative Gap

722 Positive Gap

With a positive time gap between events in the stream and the database, as shown in Figure 8b, at time 5P, we

have the event set M = {e;li = —i + 1to— 1} that have not arrived at the database. When submitting query ¢} at
15¢P, these events are not visible to either the CEP or the database engine, causing patterns to be missed.

This is avoided as follows. For queries with no window specification, at time tf,"”, we execute ¢ on stream S
with the detected pattern set denoted as Reep. Further, we wait for a time duration of toeP . ¢4 and execute (J on
the database with a resulting pattern set Rygy. The integrated result we getis R = ReepU Rab.

For queries with window specifications, the query plan is similar, with the exception that the missed patterns

in the boundary of the stream and the database is also considered.

8 SCEPter Architecture
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Figure 11: SCEPterArchitecture Overview
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SCEPteris our implementation of a semantic complex event processing system over event flowing from
streams to archive. SCEPreris implemented fully in Java and follows the models and approaches introduced
in the previous section to validate our design (Figure 11). The system can be view as two parts — the SCEP stream
processing engine and the semantic database subsystem.

8.1 Semantic Stream Processing

The SCEP stream processing engine manages semantic event queries over data streams, performing semantic
and CEP pattern matching. The SCEP engine is built around an existing CEP kemel, Siddhif2]. Siddhi uses
an event model based on data tuples and supports simple filtering, sequence and aggregation patterns over event
streams. The current implementation of Siddhi supports sliding time windows but not batch windows. Siddhi is
an exemplar of a traditional CEP engine that supports common CEP query operators and we leverage.

SCEPterprovides additional streaming processing features around the Siddhi module to support the semantic
querying models that we introduce. These key modules includes the ontology model, streamn and query register,
annotation module and semantic filter module.

The domain antology maodels, represented in OWL, form a knowledge-base of concepts and their relations to
support semantic query rewriting and processing. We organize ontologies in a modular and layered architecture for
casier extension[26). Connections between the event ontology and domain ontologies are made using properties
like “hasEventSource™ whose domain is an event and value is a domain entity.

The stream and query register module performs semantic rewriting of queries provided by the user. When
a new event stream is registered with the SCEP engine for querying, this module will process the original event
schema, referencing the domain ontologies to replace attribute fields with standard concepts. This allows seman-
tically equivalent streams to be identified and queried by the same set of queries. On the other hand, users define
queries over high level ontology models, When such a user query was registered, the module parses the query
into a collection of clause objects and normalize concepts used in each type of classes to conform with stream
descriptions.

The semantic annotation module materializes semantic events from raw event tuples arriving on a registered
input event stream. An annotation file describes the mappings from stream schema to semantic event properties
for each streamn. Several types of mappings are impilemented, including direct mapping and query based mapping.
In direct mapping, an event tuple attribute is directly used to create the URI of the corresponding semantic event
property. In quety based mapping, a query template is associated with the raw data attribute. When a new event
tuple arrives, the annotation module populates the query template using event data, queries domain ontologies and
retrieves the corresponding semantic property. Though both approaches were implemented, we chose to use the
direct mapping in our experiments.

The semantic filter module processes dynamic event semantics. Domain ontologies are loaded in a JENA [1]
memory model when SCEPter engine starts, At runtime, the system initiates a thread for each semantic subpattern
of SCEPter queries and evaluates it over incoming events and ontologies. If an event satisfies the query, it will
be passed onto the input stream feeding the Siddhi CEP engine; otherwise, the event is dropped. To improve
the semantic pattern matching performance, we implemented caching optimization to reduce the frequencies of
semantic queries. This is described next.

Finally, the Siddhi CEP kernel processes CEP subpatterns which are typical CEP event queries, The kernel is
implemented in a plug-and-play manner so that other CEP engines can be easily integrated with our system.

8.2 Archive Data Processing

The database subsystem is used to archive a fork of the incoming events streams in a semantic database. The
key modules in it are the semantic database and a database query compiler. We use the 4Store RDF database
as our semantic repository due to its scalability properties [14]. 4Store offers a SPARQL query endpoint service
that can be accessed to insert events into the database and query it for patterns. The query compiler create native
SPARQL queries from the unified SCEPter query object. Rewriting rules discussed in Section 6 are implemented.
At runtime, when a SCEPter query is submitted to the system, the corresponding database queries will be executed
at a time depending on the gap width between stream and archive data. The gap width is currently imptemented
as a configuration parameter.
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8.3 User Queries and Resultset

Users create a Java query object that contains fields for different SCEP subpatterns. This is registered with the
SCEPterengine, and tied to incoming streams. We support strearns that arrive over the network or in-memory
streams. Results from the SCEPtercome in an output stream. This cutput stream has query results from the stream
processing and database subsystems, A resultser integration module is responsible for combining and returning
the matched patterns in expected order.

84 Semantic Caching

We implement a cache optimization strategy to improve the performance of runtime semantic event processing.
Semantic querying can be time consuming, and requires inferencing and self-joins to be performed over the triple
database. We model semantic queries using a query graph, such as Figure 12 for the semantic subpattern of
Query 1.2. We define the cache key for a query as the event tuple attributes used to materialize the semantic event
properties present in the query graph. For example, the cache key for Query 1.2 is “sensorID” because this attribute
is used to materialize the “evt:hasEventSource” property of the semantic event, while the “evt:hasEventSource”
property presents in the only path of the gquery graph. If an event from the sensor with a particular sensorlD
satisfied the query, we can infer other events from the same sensor will satisfy this query. A semantic cache is
implemented as a Java Ha shMap,where the key of the hashmap is the cache key and the value is a boolean varible
indicates whether events with the cache key satisfy the query. When a new event arrives, the semantic filter first
looks at the cache map for each query. If there is no hit, the filter performs the quety over ontologies and caches
the result, otherwise the cached value is retrieved as the query result directly.

query graph

event schema = « timestamp >

Figure 12: Semantic Query Graph and Cache Key

9 Experimental Evaluation

The SCEPterprototype implementation offers the higher level semantic abstractions and seamless querying across
event streams and historical data that make it valuable to usets in the Smart Grid domain. To ensure that these ad-
vances are nof mitigated by severe performance overheads, we experimentally evaluate SCEPrerunder application
scenarios expected for the USC Campus Microgrid.

For these experiments, we run SCEPteron a 12-core AMD Opteron server, with cores rated at 2.8GHz, with
32GB of physical memory and running Windows Server 2008. SCEPteris run on this server using 64-bit Java
JDK v1.6. The 4Store database runs within a Linux Virtual Machine (due to its OS dependency) that has exclusive
access to 1 CPU Core and BGB of RAM, and is accessed over the local network port by SCEPter. All experiments
we perform three or more times and the average values reported here.

Sensor data collected from HVAC systems of the RTH building on the USC campus is used as sample data
and extrapolated to provide a large dataset for simulating the input streams. This simulation ensures that we can
evaluate SCEPterfor different event rates in a reproducable manner, while not stressing the USC FMS building
control system that originally provide the data (and will form the data source for operational use). The sensor
stream is simulated by loading the sample data into memoty and having multiple threads loop through and insert
events, after a specific sleep intervals, into the input event stream Java object that feeds the SCEPtersystem. This
allows us to go from stream rates of 10 - 10,000 events/sec. The events in the simulated sensor stream have the
schema, {<sensorID, string>, <flowrate, double>, <timestamp, long>}.
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9.1 SCEP Queries over Streams

In these experiments, we evaluate the time performance of SCEPter’s semantic complex event processing engine.
We evaluated the system when running queries relevant to the USC Campus Microgrid discussed in Section 4,
The first study evaluates the throughput of the system when running Query 1.1 and 1.2 under three situations,
{i) execute Query 1.1 using the CEP engine; (ii) execute the Query 1.2 with both semantic and CEP subpatterns,
on SCEPterwithout cache optimization; (iii) execute Query 1.2 with cache optimization enabled. Figure 13a
shows the throughput events/sec on the Y Axis for different input event stream rates on the X Axis, Ideally, the
throughput should match the input event rate, When executing only CEP subpattemns, the throughput of the system
which is essentially the throughput of the Siddhi CEP kernel. As we can see from the figure (blue diamond), Siddhi
can scale up to 10,000 events/sec. When we execute the complete semantic CEP query, the throughput without
cache optimization on SCEPteris very low (red square), achieving a peak of about 115 events/sec. However, with
semantic caching enabled, SCEPtersignificanily improves upon this to reach a maximum throughput of around
3000 events/sec (green triangle). This rate is susiained irrespective of any increase in the input event rate past
3000 events/sec, thus indicating a threshold being reached.

We drill down into the processing times spent within each module in the SCEPterpipeline. Figure 13b shows
the processing time (in milliseconds) of the semantic annotation (with caching enabled), semantic flter and Siddhi
CEP engine for different input event rates. We observe that a majority of the time is spent in the semantic filter
module, as can be expected since it is evaluates the semantic subpattern in the SCEP query, for every event that
arrives, using the domain ontology. The comparative time take by the annotation and CEP kernels are negligible,
For larger input event rates, we see that processing time for the semantic filter begins to plateau at about 0.3 ms,
The inverse of this corresponds to the 3000 events/sec threshold that we observed in Figure 13a.

We perform these experiments for all SCEP queries listed in Section 4 (figures omitted for brevity} and observe
that the results are similar despite the different types of CEP subpatterns.

9.2 Integrated Queries over Data Flows

In these experiments, we evaluate the performance of the SCEPtersystem when applying integrated SCEP queries
over streams and database. We use a single event stream rate of 100 events/sec for this experiment, which is
comparable to event rates that will be archived. We preload the 4Store RDF database with 20,000 triples (~ 1,500
events) — it has been observed that as the triple store gets large, certain types of queries slow down. We measure
the latency of applying the SCEP query over the database and returning the results to the integrated result set, for
different types of queries and for different gap width times between stream and database.
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wide variability when rewritten and applied to databases. Consider the zero gap case in Figure 13c (blue). We see
that a simple SCEP query or one with batch aggregation subpattern is much faster (1~500ms) compared to the
other three types of queries (10~15secs). This penalty is because when a CEP query with a sliding time window
Or sequence operator is rewritten to SPARQL, a large number of self-join is performed on the event timestamps in
the database. Increasing the number of triples in the database exacerbates this problem, This motivates the need
for further research to improve continuous query performance over semantic databases.

We also evaluated the impact of gap width on the query latency vsing positive and negative time gaps of
20 secs between events flowing into the SCEP engine and the database. Figure 13¢ shows that a negative gap does
not change the latency much compared to a zero gap. This is because our query plan in this scenario will execute
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the database query right after the it is submitted, but use constraints as described earlier to query only a subset of
events. For the positive gap, our consistency approach is to wait until the data in the gap artives at the database
before executing the query. Hence, the latency of the system in this case is approximately query time plus the gap
width.

10 Related Work

Our novel contributions in this work are toward semantic event pattem detections and seamless queries over real-
time and historical event flows. Related research fall into the categories of semantic CEP, stream/event processing
and active databases.

Our work falls in the space of stream and complex event processing systems [7, 11, 6]. These systems create
intuitive languages to query data streams and react to continuous data with low latency. For example, the Aurora
[7} stream processing system supports realtime monitoring using a “boxes-and-arrows” tuple flow query model.
Several event processing systems allow expressive representation of temporal data patterns such as windows and
sequences with and efficient processing. Event processing languages typically follow a SQL-like syntax with
native temporal operators and pipeline sequences subsequent to the relational operators. for example, Cayuga [6]
is designed to efficiently detect a large number of concurtent complex event subscriptions using a Nondeterministic
infinite automata (NFA) algorithm to capture the event sequences. There is limited support in existing streamfevent
processing systems for semantics and our work offers a superset of their query features since we extend an existing
CEP system . Historical data is usually not considered if not specified e priori as part of an existing query.

Some recent work introduce semantics into CEP. [21] proposed a medular ontology model and architectural
vision for semantic complex event processing. In their architecture, the semnantic knowledge base includes ontolo-
gies and inferencing rules. Syntactic sequence checks and semantic queries are processed in two steps. Our system
architecture resembles the architecture vision in some sense. However we integrate existing CEP engines, cate-
gorize semantics presented in event processing and processing them at both compile-time and runtime. ETALIS
(5, 23] is a rule-based deductive system that acts as a semantic event processing engine. Domain knowledge is
modeled using OWL ontologies and event queries defined in SPARQL with extensions for temporal operators.
OWL ontologies and user queries are transformed to Prolog rules and executed in a Prolog inference engine. This
is a bespoke solution that is independent of traditional CEP engines, while we leverage the strengths of existing
CEP and database systems for their expressivity and performance.

Active databases share certain concepts and goals of our work, and reuse a passive DBMS to query time-
varying data. ECA rules and trigger mechanisms [22, 19] were defined for active databases to support standing
queries with efforts to optimize such “continuous queries™[20]. Tapestry [20] converts a continuous query in active
database, into an incremental query that efficiently finds new maiches to the original query as new data is added to
the database. By limiting the query to the portion of the database that might newly match the query, these queries
avoid duplicates. We use similar strategies for SCEP query rewriting for databases, but also seemlessly integrate it
with the stream processing engine with support for semantic. In addition, event traditional stream query languages
are more expressive than triggers used in active databases that are restricted to data ot schema object changes in
the database

Recent work has explored the use of database query engines to process continuous queries that also reference
static data. DataCell [15] exploits existing relational database algorithms and techniques for efficient stream
processing. Incoming data tuples are stored into baskets/tables, then are queried in batch and carefully removed
from these temporary tables by queries. While it allows a unified query on streams that also includes historical
data, it is distinct from our query model where we see the database as a logical extension of the stream back in
time rather than a static data source to perform a query join. Thus we also consider issues of querying boundary
data between streams and databases with possible gaps.

The need for processing continuous querics across streams and history repositories, correlated using time
windows, has been recognized {12, 16]. Recently, [16] defined the semantics of recency-based pattern correlation
queries (PCQ) over live streams and archived streams. The recency clause in PCQ is essentially a “happen-before”
relation which specifies the temporal distance between patterns in live streams and in archived streams. This
work however limits the size of historical data that is considered in a database query and allows it to materialize
historical events out of the database for processing within the CEP engine. We do not impose any correlation
requirements and length of history in our integrated queries, and also consider gaps between the twa data sources
in an integrated data flow.

16




11 Conclusions

In this report, we have addressed two novel problems of supporting semantic CEP queries and integrated querying
over end-to-end data flowing through streams to event archive. Both these allow diverse users to more easily
specify their event patterns over heterogeneous information sources. We use compile-time and runtime query
rewriting to execute these SCEP queries, and offer approaches to handle data flows with temporal gaps between
the SCEP engine and the event repository, We have illustrated the value of these contributions using sample queries
and scenarios from the Smart Grid domain, and provided a prototype implementation of the SCEPfersystem to
validate the feasibility of our design.

Our empirical analysis of the SCEPtersystem offer insights for future research. While the cache optimization
reduced the overhead of SCEP queries, the semantic filter limits the throughput to ~3000 events/sec. Further,
the viability of seamless querying over the semantic archive will be challenging when large event rates grow the
database size. Optimizations to handle these performance bottienecks need to be investigated.
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