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Abstract

Power utilities are increasingly rolling out “smart”
grids with the ability to track consumer power usage
in near real-time using smart meters that enable bi-
directional communication. However, the true value
of smart grids is unlocked only when the veritable
explosion of data that will become available is in-
gested, processed, analyzed and translated into mean-
ingful decisions. These include the ability to forecast
electricity demand, respond to peak load events, and
improve sustainable use of energy by consumers, and
are made possible by energy informatics. Information
and software system techniques for a smarter power
grid include pattern mining and machine learning over
complex events and integrated semantic information,
distributed stream processing for low latency response,
Cloud platforms for scalable operations and privacy
policies to mitigate information leakage in an informa-
tion rich environment. Such an informatics approach is
being used in the DoE sponsored Los Angeles Smart
Grid Demonstration Project, and the resulting software
architecture will lead to an agile and adaptive Los
Angeles Smart Grid.

1. Introduction

Energy security and environmental sustainability
have led to a global, concerted push towards careful
and efficient use of energy assets. Partly reflecting
this mindset and partly as a consequence of advancing
technology, electric power grids are being upgraded
with smart meters installed at consumers, and other
Grid sensors to better monitor the utility infrastructure.

Smart meters or Advanced Metering Infrastructure
(AMIs) allow bi-directional, real-time communication
between the utility and the consumer. Besides permit-
ting the utility to measure consumer power consump-
tion in near realtime, the AMIs act as a communication
gateway for the utility to interact with the home or
building power control system and appliances [1].

AMIs are being rapidly rolled out across the globe.
For example, AMI penetration has been increasing
from 1% of US in 2006, to 5% in 2008, and 25%
planned or installed by 2010 [2]. Europe, Italy and
Sweden are approaching 100 percent deployment of
smart meters for consumers. While the common notion
is that the smart meters make the utility grid smart, it
is no different from claiming that attaching a modem
to a computer creates the WWW. The real value of
smart grids will come from leveraging this ability
for bi-directional communication between utilities and
consumers to provide value added services by the
utility and third parties to consumers, and optimizing
the operation of the power grid with their active
participation.

The smart grid can be a truly revolutionary advance,
akin to the disruptive impact of the WWW, if we treat
it not as an advance in power systems or electrical
engineering, but as the arrival of a massively inter-
connected information processing system. To this
end, informatics tools and techniques have a critical
role to play in translating the ability to collect fine
grained power usage data into a decision support
system for utilities to manage their energy capacities,
provide better quality of service, lower electricity costs,
and build an ecosystem of information rich applica-
tions and services that make energy monitoring and



conservation a seamless extension of existing Web
technology.

The Los Angeles Smart Grid Demonstration Project
is an opportunity to explore the informatics challenges
and possibilities that exist when building a smart grid
for the largest municipal utility in the United States.
Funded by the Department of Energy in 2010, this five
year project is conducting exploratory research into
information systems, electrical vehicles, cyber-security
and consumer behavior as part of a smart grid eco-
system to identify, deploy and demonstrate effective
tools and technology that will make the Los Angeles
power grid a smart grid.

The focus of this article is on the informatics ap-
proach we are taking to manage data and build smart
grid applications to intelligently manage the increas-
ing demand for power and respond by optimizing
power consumption within the city. These contribute
to a scalable, secure software architecture for demand-
response optimization in the Los Angeles Smart Grid
that can adapt to the dynamic nature of the eco-system
and control the complexity introduced by the data
deluge from AMIs and other information sources. Our
contributions are:

1) Examining a real-world smart grid project to
characterize the challenges posed for informatics
researchers by the emerging application domain,

2) Exploring opportunities for research into topics
such as stream processing, semantic complex
event processing and Cloud computing systems,
and

3) Proposing a software architecture that combines
these technologies to address demand response
optimization in smart grids.

The rest of this article is organized as follows. In
Section 2, we introduce the project and present the
USC campus as a micro grid for testing our approach.
In Section 3, we describe the goals of demand response
optimization which we plan to achieve. In Section 4,
we identify the characteristics of the problem space
that make it challenging. In Section 5, we discuss var-
ious informatics techniques that come together to form
a solution space to address the identified problems, and
highlight research issues in each. Finally, we present
our conclusions in Section 6.

2. Background

2.1. The Los Angeles Power Grid

The City of Los Angeles is served by the Depart-
ment of Water and Power (LA DWP) for its electric

Table 1: Percentage Contribution from Difference Power Sources
to the Installed and Planned Power Capacity for the Los Angeles
Department of Water and Power Utility

Power Source % of Installed
Capacity (2009)

% of Planned
Capacity (2020

target)
COAL 39% 0%
NATURAL GAS 31% 60%
NUCLEAR 9%
LARGE HYDRO 7%
RENEWABLES 14% 40%

utility needs. DWP is the largest among the 2000 pub-
lic utilities in the United States [3], serving 4 Million
residents across 465 square miles. This translates to
1.4 Million electrical and 0.7 Million water consumer
accounts. The utility is vertically integrated, i.e., it
controls and operates its own power generation, trans-
mission and distribution systems. While self-contained
and insulated from the energy market volatility, DWP
does occasionally purchase and sell power on the spot
market.

DWP has an annual sales of 23 Million MWh at a
mean price of ¢13/KWh, with a peak demand of 6100
MW (Sep, 2010) as against an installed capacity of
7100 MW [4]. These constitute 1% of the total US
consumers [5] and 0.7% of the total US capacity of
1TW [6].

DWP’s generation facilities are spread across state
lines, with supplies coming from Arizona, Nevada,
Oregon and Utah, besides California. DWP has his-
torically relied upon coal for base load generation
– the minimum power consumed by the consumers
across all times of the day and year. Coal forms 40%
of DWP’s total power capacity and 80% of its base
load [7], followed by Natural Gas (31% capacity),
Nuclear (9%), Large-Hydro (7%), and Renewables
(14%) [8]. The primary sources of Renewables are
currently Wind, Small Hydro and Bio Gas, with the
share of Geothermal and Solar expected to increase
over this decade. The City of Los Angeles has passed
regulations that set targets of 20 percent renewables by
2010, and 35 percent by 2020. The goal of reducing its
carbon emissions to 35% of 1990 levels by 2020 will
be achieved through elimination of coal based power
generation and increasing the share of renewables to
up to 40% of capacity.

Optimal use of energy will be essential to meet
DWP’s carbon goal and to control the infrastructure
outlay for setting up new power generating sources.
For example, many of DWP’s generating stations in
the Los Angeles basin were built in the 1960’s and
are nearing the end of their life despite renovations.
The state of California has also restricted import of



power from other states that contribute to greenhouse
gases beyond prescribed limits. These factors mean
that DWP has to find efficient ways to use available
capacity through consumer-side load reduction. There
are two goals to this: one, is to reduce per capita
power usage overall, and the second, is to reduce the
peak power capacity required by shifting power usage
to off peak hours. The former leads to lower carbon
emissions while the latter reduces the extent of unused,
spare capacity by shaping power usage to be close to
the average load at all times of the day and year. For
example, the base load and peak load on a typical
day in Los Angeles DWP varies between 2000MW
at ∼4AM to 4800MW at ∼4PM. According to current
forecasts, DWP will be unable to meet its peak load
50% of the time by 2020 without further expansion or
load curtailment [4]. DWP is planning to meet 500MW
of peak load reduction through Demand Response
(DR) programs to control and shift load during peak
hours.

2.2. The Los Angeles Smart Grid Demonstra-
tion Project

The increasing global concern on the environment
and efficient use of energy is causing countries to
invest in improved power infrastructure and research
into optimal use of energy. Within the U.S., the De-
partment of Energy (DoE) has embarked on a major
funding exercise, as part of the American Recovery
and Reinvestment Act (ARRA) economic stimulus, to
improve energy conservation in buildings, identify new
energy sources, make the electric grid smarter, and so
on.

Of the $680 Million awarded by the DoE for Smart
Grid Regional and Energy Storage Demonstration
Projects so far, the LA DWP has been awarded $60
Million [9], making it the third largest of its kind
that has been funded so far (after projects in Wash-
ington and Ohio). Combined with a matching grant
by the DWP, this $120 Million project spread over 5
years started in April 2010 as a collaboration between
LA DWP, University of Southern California (USC),
University of California-Los Angeles (UCLA), NASA
Jet Propulsion Lab (JPL), and the USC Information
Sciences Institute (ISI).

The goal of the Los Angeles Smart Grid Demonstra-
tion Project is to test and evaluate innovative Smart
Grid technology over the next 5 years, and demon-
strate it on a regional electric grid. There are four
activity areas to the project, all of which are supported
by the large-scale installation of Advanced Metering
Infrastructure (AMI), also known as Smart Meters, at

DWP consumers [10]. First, is to use USC campus,
UCLA campus and DWP labs as testbeds to research
and demonstrate demand response optimization to
actively curtail and shape power usage. Second, is
to conduct sociological and behavioral studies on
consumers to determine factors that are most effective
for improved energy use. Third, is to enable next
generation cyber security technologies that will make
the smart grid robust to external threats and internal
consumer actions. Lastly, is to analyze and demonstrate
the integration of electric vehicles into the power grid.
Of these, the demand response optimization is the
most relevant to computer science and informatics re-
searchers from whom it has received limited attention,
and will be central to this article.

During the initial part of the project from 2010 –
2012, the goal is to conduct research into these four
activity areas and experiment on campus and DWP
testbed micro-grids. Concurrently, smart meter instal-
lation at 50,000 consumers will roll out in the DWP
service area. The algorithms, techniques, software tools
and architecture that prove suitable from the research
will graduate onto the demonstration phase of the
project from 2013 – 14 where they will be scaled on
actual DWP customer service area in Los Angeles to
evaluate their competence. At the end of the project,
the experience gained and the smart grid technology
generated will be shared with DoE with the intent of
replicating the success onto other utilities and regions.

2.3. Demand Response Optimization

Briefly, demand response or DR deals with curtailing
the peak load on a utility by offering incentives to
consumers to reduce energy consumption when a peak
load or loss of reliability situation is encountered [1].
The advantage of this are twofold: (1) it reduces the
maximum power generation capacity required by a
utility to avoid blackouts or brownouts, and (2) it
avoids starting and stopping power generating units by
shaping the power usage to remain relatively constant
over time. Demand response is typically done either
using a priori commitment by consumers to reduce
load during a power shortage, or using a variable rate
market model that increases prices during a shortage.
In the former model, the utilities may have direct
control to turn off the consumer’s equipment or send
a signal to the consumer to reduce consumption in
return for consumer incentives. The latter model may
use static, time of use (TOU) rate slabs, or dynamic,
real time pricing. The bi-directional communication
enabled by smart meters allows these dynamic DR
techniques to be applied to get finer control over energy



use.
One of the goals of demand response optimization

in the Los Angeles Smart Grid project is to be able
to reduce the electricity demand by 500MW – about
8% of peak load – within 30mins and sustain it for a
period of 4hrs.

2.4. USC Campus as a Micro-grid

The University of Southern California (USC) cam-
pus is serving as a micro-grid testbed for the Los
Angeles Smart Grid project to experiment and evaluate
demand response and other smart grid technologies.
USC encompasses many of the features that make up
a diverse city like Los Angeles, which make it suitable
as a micro-grid. It is the largest private customer for
the DWP, with an annual consumption of 148GWh at
an average load of 21MW (2010) at the University
Park campus that forms the testbed. The campus is
diverse, both in terms of demographics and buildings.
With 33,000 students – 8000 international – and 13,000
faculty and staff spread over 300 acres containing class
rooms, residence halls, administrative offices, labs,
hospitals, restaurants, public transit, electric vehicles,
and even a gas station, it forms a city within a city.
The 100+ major buildings are between 2 and 90 years
old with equally varied electrical, heating and cooling
facilities. Two power vaults route power from DWP
and a co-generation chiller is available for energy
storage.

The USC Facilities and Management Services
(FMS) maintains a relatively ”smart” electrical and
equipment infrastructure. It has the ability to measure
energy usage by building at 1 minute interval, with
the possibility of zone or room level measurement for
a third of the buildings and the ability to indirectly
calculate equipment consumption levels. The FMS
Control Center aggregates data across all buildings
using a proprietary software system, and can centrally
control or override Heating/Ventilation/Air Condition-
ing (HVAC) equipment that consume up to 50% of the
total campus power. However, many of these features
are used only semi-automatically when severe condi-
tions like overheating or cost budgeting is required.
An automated and intelligent system that can perform
demand response optimization at the level of an expert
or better is lacking.

These features make the USC campus a ready,
instrumented smart grid environment for conducting
controlled and calibrated Demand Response experi-
ments end-to-end. Besides the available data collection
and control facilities, there is also the flexibility of
trying emerging smart grid sensors and instruments

from third party vendors on the campus for fine grained
and richer sources of data and points of control. The
goal is to eventually scale out the successful models
that work at the campus scale to a city scale. So any
technology and software tools that are built need to be
scalable to the city size.

3. GOALS FOR DEMAND RESPONSE
OPTIMIZATION

In a smart grid environment, demand response (DR)
optimization is a two-step process consisting of peak
demand forecasting and selecting an effective response
to it. Both these tasks can greatly benefit from the
availability of accurate and realtime information on the
actual energy use and supplementary factors that affect
energy use. Hence, the software platform that collects,
manages and analyzes the information also plays a vital
role.

3.1. Demand Forecasting

The goal of demand forecasting is to accurately pre-
dict the occurrence of a peak load – a situation where
the demand for power approaches or goes beyond
the current power generation capacity of the utility.
Long term demand forecast, on the order of days, with
coarse accuracy is useful to plan and purchase power
supply by utilities, schedule equipment maintenance,
and provide early warning to consumers of potential
load curtailment or advance pricing information. Short
term forecast, on the order of minutes and hours, is
useful to initiate load curtailment response. The more
lead time provided to initiate and apply the response,
the better are the chances of an effective curtailment of
the peak load since additional capacity can be brought
online from slow start power generators. The forecast
goal is to determine the quantity of curtailment, in
Mega Watts, necessary and the time by which this has
to be met.

Traditionally electricity demand has been cyclical,
with diurnal load patterns observed across a 24 hour
period, and seasonal patterns seen across a calendar
year. However, technology and environmental changes
are starting to impact these observed trends, making
usually reliable forecast models suspect. The growing
popularity of electric vehicles (EVs) is expected to
skew the load profile. California will have 10% of
the 1 Million estimated EVs in the US by 2015. A
large fraction of EVs starting to charge simultaneously
during a narrow time window in the evening can cause
a load spike. This time window may also be a func-
tion of traffic patterns. However, the ability to defer



charging of EVs to later at night means they can be
used pro-actively for load shaping. The ability of smart
grid utilities to set variable pricing can also render
historical consumer usage data to become less relevant
as they react to these pricing changes. Increasing co-
generation by consumers using solar panels or wind
turbines can reduce the load on the grid, but these are
intermittent due to natural causes such as cloud cover
and wind speed. As more buildings start deploying
automated power management systems, also known as
building area networks (BANs), that dynamically adapt
to price signals and energy use targets, the base load of
buildings and base load on the utility itself may vary.

Consequently, the spread of information required
to perform an accurate forecast expands way beyond
factors that have conventionally had major impact,
namely, weather conditions (particularly heat waves, in
Los Angeles) and failure of power generation sources.
In this new future, information that may prove crucial
for greater forecast accuracy include environmental
observation such as cloud cover and wind speed,
realtime traffic patterns, schedule of large events and
conventions, equipment duty cycle schedule provided
by building area networks, and data from call centers,
Facebook feeds and Twitter feeds of the utility. This
squarely poses an information integration challenge.

3.2. Response Design and Selection

Once a peak load has been predicted, actions must
be initiated to reduce consumer power consumption
by the predicted shortfall before the estimated time
of occurrence of the peak. Increasing the power pro-
duction is not considered as a viable response for DR
optimization.

Different response strategies will be required based
on the quanta of load to be shed and the available time.
Part of this is informed by consumer behavior studies
that determine incentives that work best for different
demographics, and for different consumer categories
such as residential, commercial and industry. Within
the DWP power grid, over 50% of power consumption
is by commercial and industrial consumers, while the
rest is by residential consumers, each with different
priorities. Businesses may not wish to lose customers
by reducing ambient temperature, but some may, sign
up for load curtailment by promoting themselves as
a “green” establishment. Industries may respond to
early warning on pricing by changing equipment duty
cycles for the next day but may not respond to load
curtailment signals with short lead times. The ratio of
power usage that can be curtailed by a consumer will
also vary, as will the speed at which this reduction will

happen. Peer pressure, pricing, value added services,
environmental consciousness, and celebrity endorse-
ment (given it is Los Angeles) may all form incentives.

The manner in which information is communicated
to the consumer to encourage curtailment is also key.
While some consumers may sign up for direct control
of appliances and equipment by the utility, others may
configure their home or building area networks to auto-
matically respond on their behalf, while yet others may
manually turn off appliances when they get an SMS
or notification on their smart phone app. Educating the
consumers about load curtailment benefits will also be
necessary. Typically, the first x% of load curtailment
is expected to be easier than next the x%. Given this,
a graceful degradation of response should be planned.

4. CHARACTERIZATION OF THE
PROBLEM

Several of the focus areas identified above resem-
ble those seen in eScience [11]. For example, meso-
scale meteorology projects such as LEAD [12] that
are scoped under geo-informatics runs compute and
data intensive weather forecast simulations on cyber-
infrastructure by integrating data from NASA, NOAA
and USGS. Bio-informatics projects that deal with ge-
nomics data from next generation sequencing machine
run compute intensive machine learning algorithms in
the Cloud [13], and use Semantic Web technologies for
workflow composition and data retrieval [14]. How-
ever, a unique combination of features in the smart
grid domain, and more generally in energy informatics,
pose additional challenges of interest to the informatics
researcher.

4.1. Dynamic Environment

The demand response optimization problem operates
upon an environment that includes the City of Los
Angeles and its residents, and the energy consumers
and suppliers for DWP. The problem space is affected
by the dynamic nature of information present within
this environment. For example, as people migrate or
relocate within the city, prior forecast models will
need to adapt. Similarly, as energy technology evolves,
equipment such as EVs or solar panels can cause
the traditional electricity consumption and generation
patterns to change. Some of these, like electrical
technology, may evolve over months and years, while
others like traffic patterns (that determines when people
reach home and turn on electrical appliances) and
weather may change on a daily basis, e.g., if there



is a construction or accident on arterial highways, or
if a heat wave strikes.

This means that both the algorithms used for data
analysis, mining and decision making, as well as
the information sources used by them will need to
change and adapt over time. The ability of the system
to continuously learn and rapidly incorporate new
information sources and predictors will be essential
for a sustainable software architecture. Given that the
outcome of these informatics tools will make it into
a production system serving millions, changing the
architectural components is a big decision. In contrast,
the current customer information system used within
DWP has been in operation for the past 37 years with
plans currently afoot to migrate to a contemporary
software stack.

4.2. Complex Information System

The smart grid system will introduce a novel set
of problems for both utilities and consumers: one of
data and information overload. While earlier, the power
usage information was available to utilities once a
month (or every other month in the case of DWP)
and consumers received monthly bills with static rate
slabs, smart grids allow measurement of power usage
with frequency on the order of minutes, and setting
dynamic pricing for consumers. In addition, integration
of diverse sources of information such as weather, traf-
fic, event schedules and even social network data will
mean that utility managers and energy consumers will
need guidance on using this information meaningfully
to make informed decisions. Else, we run the risk of the
data being ignored, obviating many of the advantages
of the smart grid.

Incorporating semantics into the information model
will be necessary for utility managers to interpret the
available data and define policies for detecting loads
and responses. Both information and policies should be
presented using semantics common to the power utility
domain and tied in with existing domain knowledge
bases. The information system should be intelligent
enough to filter out noise and present only information
and actions that are relevant to the current conditions.

On the consumer end, it is important to use familiar
forms of communication to address the diversity in
the population. A combination of visual and textual
cues will be necessary for customers to understand not
just the current bill, but also take action to respond
to peak load events to assist with demand response
optimization or to reduce their monthly power usage
and costs. For e.g., there are 7 distinct languages
that are spoken by 1% or more of the Los Angeles

population [15], and this will require investigation into
natural language and multi-lingual processing.

4.3. Distributed Information Sources, Compu-
tational Resources

The smart grid moves away from a centralized
notion of energy management to a distributed one
that empowers the consumers to make intelligent en-
ergy use decisions. Besides the energy production and
consumption itself being distributed, the information
sources and its analysis will also operate in a dis-
tributed environment. The AMIs that act as sensors are
spatially distributed across households and commercial
establishments, and data has to be streamed to the
utility. Part of the computation and analysis may take
place at the consumer end within their home area
network (HAN) or building area network (BAN), while
the rest may be done within the utility. Even the utility
may offload the processing to commercial Clouds that
operate at distributed data centers. In addition to meter
data, weather forecast and traffic information need to
be continuously elicited from online Web services.
Additional information from distributed sources, which
may range from social network feeds to ambient light
sensors in smart phones, may be relevant for the de-
mand response algorithms and data analysis to operate
with accuracy.

According to some estimates, smart grid networks
can collectively eclipse the size of the Internet [16].
In such a scenario, scalability becomes a watch word.
Algorithms and architectures that are effective for
1000’s of consumers and smart meters may not scale to
the millions present in the LA DWP operational area.
Specifically, scalable infrastructure such as Clouds and
clusters may be essential for timely forecast predictions
and triggering responses. Additionally, the quality of
information ingested, processed and archived may be
prohibitively large and it may not be possible to
centrally store and manage all the data that is collected.

4.4. Shared Data

Smart grids provide an unprecedented ability to
observe the fine grained electricity use patterns in
daily life. Given the intrinsic role that electricity
plays in our daily lives, monitoring its use also pro-
vides a window into a consumer’s activities. Several
types of unintended, private information leakage have
been identified previously [17]. Besides the data from
AMI, information integrated from other public or self-
reported private sources, such as social networks or



Figure 1: Software Architecture for Demand Response Optimization in the Los Angeles Smart Grid project

GPS location from smart phones, used for DR op-
timization may cause additional private data to be
exposed.

Regulatory compliance on privacy [18] that may
affect the type of data collected, stored and integrated
must be reconciled with the need to share data with
the consumers, their agents or third parties, both to
ensure transparency (e.g. on pricing by a public utility)
and to provide value added online services [19], [20].
This will require drawing of privacy boundaries around
smart grid data, ensuring an audit trail of data made
available through Web services, and understanding
evolving notions of privacy by consumers in an in-
creasingly open world.

5. ANALYSIS OF INFORMATICS AP-
PROACHES FOR A DR SOFTWARE AR-
CHITECTURE

Much of the smarts in the smart grid will come from
the ability to meaningfully translate the availability of
data into knowledge and subsequent action to improve
the efficiency of the power grid [21]. The solution
space for the smart grid demand response optimization
problems we have characterized above lies solidly in
informatics. Different aspects of information process-
ing – information integration, data mining, complex
event processing, and machine learning – contribute
to a software architecture that can effectively address
these issues. In addition, distributed and internet tech-
nologies such as Semantic Web, Cloud computing,

Web services and social networks form essential plat-
forms to build the solution on top of. Security and data
privacy cut across these to play a crucial role.

Figure 1 shows a model software architecture for de-
mand response optimization for the Los Angeles Smart
Grid project that incorporates several of these features.
The top of the figure shows the major tasks to be
performed for DR while the central section shows the
interplay between technology. The primary tasks are
to ingest real time information arriving from 2 Million
smart meters, detect critical anomalies with very low
latency to take response, proceed with non-critical task
of annotating smart meter data with other information
sources, updating the demand forecast using latest
information, and responding to peak load or other
events that are detected by interacting with consumers.
This entire process implicitly includes a feedback since
any response taken will impact the consumer energy
usage, which is measured by subsequent readings of
the smart meters.

The technologies that will enable these tasks include
scalable stream processing systems that accept meter
readings streaming over internet or other communi-
cation protocols and detect/react to emergency situa-
tions based on defined policies, semantic information
integration that uses domain ontologies to integrate
and enhance AMI data with diverse information that
are pulled from online services, data mining and
complex event processing systems that use predic-
tion models based on higher order policies to fore-



Figure 2: Design for adaptive rate control feedback from stream processing system to AMIs to optimize bandwidth into Cloud platform

cast a supply-demand mismatch, machine learning
algorithms that use knowledge from prior customer
response to determine the most effective technique for
load curtailment, and lastly natural language and
multi-lingual methods that will translate the selected
response into an actionable form that is propagated to
consumers and their agents. All of these tools will run
on scalable platforms that combine public and private
Cloud infrastructure, and allow information sharing
over Web service APIs while enforcing data privacy
rules.

In the next few sub-sections, we discuss the research
and engineering challenges for developing and apply-
ing these informatics and internet technologies to the
DR software architecture.

5.1. Scalable Stream Processing

Stream processing systems perform continuous
queries over a moving window of tuples to perform
selection, transformation and aggregation operations.
Stream processing has its roots in sensor networks and
such systems are optimized for low latency operations.

In this project, we use streams processing as the
initial entry point for the electricity usage data that is
continuously arriving from smart meters. Each AMI
acts as a stream that generates a meter reading tuple
every N minutes, where N typically ranges from 1min
to 60 mins. Besides ingesting the data from AMIs,

the stream processing system acts as a first responder
to detect potentially calamitous events that require
low latency response. These may include a certain
neighborhood sharply increasing usage by, say 100%,
over the observed average, or a hospital or emergency
service consumer dropping power consumption to zero
- which can signify an outage. The stream processing
system maps simple, clearly specified policies defined
by utility managers into continuous queries that are
executed, and trigger well defined actions such as
notifying a supervisor or maintenance crew. The sys-
tem also performs simple information aggregation and
passes the data to the semantic information integration
system.

One of the challenges posed by the smart grid do-
main to stream processing is scaling. Initial estimates
assuming AMI data rate of 1KB per power usage
reading, and 1 reading per minute for 2 Million con-
sumers suggests the need to process 3TB of meter data
per day. This is both network and compute intensive,
and the streaming system has to scale on distributed
platforms such as clusters or Clouds to manage these
data rates. However, the network costs for the utility
to ingest such high data rates can be prohibitive.

One interesting research problem this poses is de-
termining what rates the meter usage data should be
provided by each AMI for it to be meaningful for
DR optimization and critical response. In other words,



can we dynamically throttle the AMI stream rates
to optimize for bandwidth usage while ensuring a
minimum quality of service for demand response is
maintained? Some approaches to this include looking
at moving averages or standard deviation of power
usage data from a particular AMI and reducing data
publish frequency when they are sustained, or com-
paring the power usage levels against historical levels
for that consumer making the frequency proportional
to deviation from historic levels.

In a global model, we can consider the difference
between available capacity and total aggregate power
demand, and make the data frequency inversely propor-
tional to the difference between them. This is intuitive
when considering that current power usage curves
show excess capacity at night, and meter usage data
may be required less often at night for DR optimiza-
tion. There will, however, be minimum data rate re-
quirements possible configured according to consumer
class, to ensure critical situations are detected. Figure
2 shows an initial design for sending adaptive stream
rate control feedback to the AMIs using observations
within the stream processing system running on a
Cloud. The controller logic ensures that minimum
stream rate requirements for detecting events is present
while optimizing for bandwidth usage between the
AMIs and stream processing system in the Cloud.

5.2. Semantic Information Integration

Information integration is at the core of the DR
architecture and supports the building of data analysis
and mining applications for forecasting and response.
Traditionally, monthly meter data has been integrated
with customer relationship management and billing
systems within the utility’s IT infrastructure. However,
treating AMIs as just a temporally fine grained form
of meter data fails to reap the full benefits of the smart
grid.

In particular, as electrical technology advances and
consumer software tools that dynamically control
home and building area networks become common-
place, demand forecasting will become more chal-
lenging as the load curves change. The current fore-
cast models [22] that primarily combine power usage,
weather forecast and demographics into mathematical
models will give way to data driven mining algo-
rithms that locate patterns among a large class of
information attributes to predict power usage. Such an
information rich space could incorporate fine grained
appliance information from AMIs, evening commute
traffic flow to determine expected arrival time of EVs at
neighborhoods, location information published through

smart phone apps, event schedule information from
classrooms and convention centers, and social network
and micro-blogging feeds with specific hashtags.

The space of such information sources and types
is broad and will change often as algorithms adapt.
It can be effectively used and interpreted only if it
is grounded in semantically meaningful terms. It is
not just the utility managers who will be using this
information to define policies, but also data mining
and analysis algorithms, third party tools with which
the data is shared, transmitted to other utilities and
regulators, and possibly even the consumers. This goes
beyond just a normalized form for exchanging meter
data usage [23], [24] using a power systems domain
ontology and suggests integrating ontologies from dif-
ferent domains – weather, traffic, social networks, and
so on – and using sematic definition for policies and
service APIs using well understood Web standards
such as OWL and RDL.

5.3. Semantic Complex Event Processing

Complex event processing deals with computation,
transformation and pattern detection over large vol-
umes of partially ordered events and messages [25].
An event represents something that occurs or changes
the current state of affairs. In Smart Grid, for example,
tuning thermostats or turning on/off heavy-duty electric
appliances are both events relevant to DR. CEP has
been used successfully in financial services industry
to detect stock trading patterns and several vendors
such as Oracle, Microsoft, Sybase and StreamBase
have CEP products.

CEP is considered as a core component of smart
grid software architectures and solutions provided by
vendors, including Microsoft [26] and Oracle. They are
used for defining standing queries or business rules
that detect a combination of attributes present in a
set of events and triggering pre-configured business
processes. As such, the CEP systems currently pro-
posed for smart grid solutions are closer in form to
the critical response of stream processing systems, and
intended to supplement IT systems in current utility
grids rather than support emerging and future smart
grid applications. The fine grained specification of
structural properties within events and the consequent
actions is too complex for most utility managers in
an information rich space. For example, the Oracle’s
Meter Event and Meter Data Management services
[27] that are replacing the current LA DWP customer
information system can abstract the diversity of dif-
ferent AMIs and their data representation to easily
map to existing billing systems. But defining advanced



policies for detecting peak load events requires the
specification of numerous complex business rules, and
demand forecasting as required for DR optimization is
absent.

Several key research challenges emerge when build-
ing CEP systems for DR optimization in smart grids
that we are currently addressing. First, CEP systems
use syntactic patterns that require utility managers to
have knowledge of hundreds of event properties and
information attributes to specify demand policies and
triggers. A semantic CEP system based on the semantic
information integration introduced earlier will ease the
policy definition [28]. Second, the demand forecast and
detection patterns themselves should be automatically
generated from high level goals specified by utility
managers, rather than requiring them to explicitly
define the complex patterns. For example, a high level
goal may be to retain a 10% buffer between available
power capacity and current demand, which may get
mapped to complex patterns in the CEP system that
are generated by data mining over the semantically
integrated information. Automated data analysis tools
that look for interesting causality patterns over diverse
information sources for peak load forecasting will help
define realtime complex patterns that are executed by
the CEP system. Lastly, one interesting area of research
is probabilistic matching of complex patterns that can
withstand uncertainties in the information sources,
caused by less accurate or incomplete information.

5.4. Machine Learning

Machine learning (ML) and data mining are rec-
ognized as important tools for data analysis in smart
grids. Several authors have investigated the use of ML
for load forecasting [29], predicting user comfort levels
in home area networks [30], and even for security of
smart grids [31]. Our interest in machine learning is in
its application to demand response optimization, and
particularly for (1) modeling the energy use footprint
of buildings at the USC campus that will help de-
termine demand, and (2) for learning the responses
that are most effective for load curtailment. We are
currently undertaking experiments to learn and test
power usage models for different buildings on the USC
campus that will use attributes such as the intended
use of the building (classroom, office space, residence
hall), their capacity and occupancy based on class
schedule, and fine grained power usage data from the
past 3 years to accurately forecast demand on the
USC campus. In subsequent studies, we will be mining
large data sets provided by the LA DWP on customer
demographics, geographical location, building type and

energy usage, to identify power usage patterns that will
allow us to create targeted policies for load curtailment
responses to different clusters of consumers. Observing
the difference between expected and actual response
should be part of the learning process by the system
to improve subsequent responses. The eventual goal
is be to determine the appropriate response and target
population that will achieve a load curtailment of X
KWh within N minutes.

5.5. Natural Language Processing

Related to effective response for load curtailment is
how the information is communicated to the consumers
that will elicit the required reduction in electricity us-
age. The consumer is a key element in the functioning
of the Smart Grid. It is important to devise means for
better consumer engagement. In particular, effective
feedback methods need to be developed to persuade
and motivate the consumer towards sustainable energy
consumption behavior. Industry experts have also in-
dicated that better communication with the consumers
is necessary to meet the challenge of user adoption of
the Smart Grid.

Providing the consumer with extensive consump-
tion information may raise awareness but may not
necessarily translate into modifying consumer behav-
ior.Different consumers react differently to visual, text
or audio feedback. While many consumer-oriented
smart energy websites use graphical charts and di-
agrams to provide monthly usage information, not
everyone responds to them once the novelty wears
off. One less studied but important aspect of consumer
feedback is using text and natural language. In par-
ticular, we are investigating the use of reinforcement
learning techniques for text generation that will de-
termine what, how and when textual cues should be
provided to customers for effective load curtailment
.The consumers will find it easier if the information is
interpreted for them and they are provided with specific
actions to take [32]. Strategies that will be driven
by consumer behavior studies will include positive
encouragement for energy saved, reminders to turn off
appliances, and comparison with peers.

When the information is communicated in form of
natural language feedback, the consumers may find
it easier to comprehend and interpret, and more con-
vincing than the structured data presented in the form
of tables, or graphs. Moreover, in such a setup, the
utility companies could also benefit from the ability to
communicate actionable items and targeted incentives
in a simple language to specific consumer groups.



One advantage of generating textual information is
the possibility of using it as input to other systems,
such as Text-to-Speech systems. Such a system would
allow delivery of feedback in audio format delivered
through mobile phones.Text information could also
possibly be integrated with Machine Translation sys-
tems to generate information in multiple languages
and provide consumers the option to indicate their
preferred language for receiving feedback. This feature
has the potential to increase the coverage of feedback
to a much wider populace.

Natural Language generation techniques can be
used to automatically generate text information from
structured data. The generated messages need to be
tailored in content and style according to the user
models. Key challenges in this field include: content
selection, presentation, and context). The underlying
goal in these problems is to present information to the
consumer that is personally relevant and actionable.
Natural Language feedback can incorporate a variety of
information content: actual energy usage, rate of usage,
disaggregated usage, comparison with peers, progress
towards a goal, carbon footprint based on energy used,
etc. Some use case scenarios are given below [32]:

• Usage information:
• Predicted information and advice on how con-

sumption could be reduced.
• Friendly reminders, which could be accompanied

with expected energy savings.
• Positive encouragement.
• Explanations about specific aspects of the usage

graph, or possible reasons for high bills.
• Strategic advices, for example, on energy-efficient

appliances.
• Friendly competitions and peer pressure.

5.6. Scalable Cloud Computing platform

The informatics tools such as stream processing,
CEP, data mining and ML used by DR applications
can be data and compute intensive. In order to support
consumers on the order of millions, and to ensure
that new data sources or novel algorithms that are
computationally costly can be added and run over
time, the DR software architecture will have to be
deployed and run on a scalable platform. HPC Clusters
have typically been used for parallel and distributed
programming. But the growing presence and popularity
of commercial Cloud computing presents features that
more closely suit the needs of DR applications [33],
[34].

Clouds provide a convenient model for growing
processing and data storage over time as the number

of consumers served by DWP increases and more
complex algorithms are incorporated into the DR ap-
plication pool. This avoids costly capital costs that
may otherwise add to the DWP budget immediately.
Similar to throttling data rates for stream processing,
the computational requirement will also vary based on
the mismatch between power capacity and demand.
The flexible scale up and down model of Cloud vir-
tual machines (VMs) allows compute resources to be
acquired on demand and released when not required,
allowing the utility to only pay for the resources used.
Cloud VMs also provide redundancy allow additional
VMs to be started to perform duplicate computation
for mission critical applications. Cloud storage offers
implicit replication of data. Cloud data centers are also
well suited to handle the millions of open network
connections to AMIs with small data exchanges per
connection. This workload is similar to Web search
workloads for which data centers were originally con-
ceived for. The ability to share data is another feature
made easier by Clouds, with the option for external
third party software to migrate their application to the
Cloud to avoid costly data transfers to client machine
[35].

Utilities will however opt for a mix of both public
and private Clouds due to data privacy, security and
reliability considerations. This will mean that a core
set of internal, regulated services may be hosted within
the utility’s privately hosted Cloud while the public
Cloud is used for a different set of public facing
services and to off-load applications that exceed the
local computational capacity. Another reason for this
is that the time to instantiate and start VMs in the
Cloud is on the order of minutes and this can lead to
lower computational throughput when the computation
requirement suddenly surges [36]. The private Cloud
hosts captive computational resources that are always
available instantly. Also, the network latency to Cloud
data centers may exceed permissible levels for some
time sensitive applications and the private Cloud may
be closed in the network topography. Lastly, regulatory
requirements that evolve may impose restriction on
where consumer data is hosted and require strict audit
trails on data usage. While Clouds are working towards
HIPAA compliance, required for medical records, there
is no obvious push for such regulation or compliance
for utility data.

Several interesting research issues emerge when we
use public-private Clouds as an application platform
for the DR software architecture. Streaming applica-
tions on Cloud platforms will have to be cognizant
of network bandwidth costs as they may be non-
trivial. Stream throttling discussed earlier becomes



more relevant. Scheduling latency sensitive application
on Clouds required planned startup of VMs to ensure
they are available for instant scale out. Here too, pre-
diction of computational resource needs can be derived
from the state of the power system. Trade-off between
the cost for performing accurate, but computationally
costly forecast against the energy gains (and indirectly
costs) for the utility can be considered. Data sharing
and privacy issues become even more crucial on public
Clouds, and are discussed next.

5.7. Data Privacy and Security

The smart grid will be characterized by a large scale
heterogeneous communication network in which the
data flows through various media, wired and wireless.
There are inherent security concerns with any large
scale communication system as it is susceptible to
security attacks on the various media through which
the data travels. At the same time there exist a number
of vulnerabilities in the power grid because most of
the current devices were built specifically with the
focus on securing the devices from physical tampering
and with less focus on securing the communication
[37]. Data and cyber security issues in the smart grid
domain deal with securing the transportation channel
carrying smart meter and other utility and consumer
data between different entities in the smart grid. It also
aims to prevent disruption of the power grid through
introducing unauthorized code or “viruses” [38], or
attempts by consumers to modify the power usage
data reported to the utility. In addition it is extremely
important to integrate with the legacy system in a
secure manner in such a way that the vulnerabilities
in the existing system do not put the entire smart grid
at risk. Moreover, due to the close interaction between
the cyber and physical infrastructure, the smart grid
possesses a number of unique security concerns.

At the same time the nature and frequency of com-
munication, especially meter readings, is very different
in the smart grid as compared to conventional grid.
In the traditional system, the only information that
is communicated with the utility is the aggregated
power usage over a couple of weeks or even months,
particularly for billing and maintenance purpose. In
the smart grid system, the power usage information
for an individual or an area is needed at a much
higher frequency (once in fifteen minute to as high
as a 30 to 60 times within a minute for power quality
measurement) for effective demand response and load
management [39]. Data privacy concerns stem from
the ability of the utility to observe real-time energy
usage and consequently interpret consumer behavior,

either just from the usage information or by integrating
it with public data available about the consumer or
private data shared by them [17], [40]. We envision
that along with the optimized demand response system,
the smart grid will provide various other applications
for the benefit of the end user as well as the utility
providers. However these applications will demand
even greater flow of information to and from the
end user including personally identifiable information
which, if not handled carefully, can provide opportu-
nities for violation of individual privacy.

While cyber security of smart grids has understand-
ably gained attention [41] due to the possible conse-
quences of power grid blackouts from attacks, data
privacy is a less tractable problem and will become
increasingly hard to manage. Information about real-
time power usage can be used to detect, say, the
breakfast time of a consumer or, in extreme cases,
plan burglaries. One of the unique problems for smart
grids is to balance the efficiency and service features
gained from integrating electricity usage information
with other public and private sources, against the pos-
sibility of personal data being leaked. For example, one
effective response technique in DR optimization may
be through peer pressure. Providing information on
lower energy consumption by a neighbor or a Facebook
friend may lead to lower energy consumption. But this
may be information that not all users would be willing
to share. One reason for this difficulty is that privacy is
a personal choice that people are increasingly willing
to sacrifice in return for free services – Web search
and social networks are cases in point.

A smart grid software architecture has to be secure
and enforce privacy rules required by regulators. While
doing so, there must be provisions for sharing data with
authorized users, be they the consumers, their autho-
rized agents, other utilities, or regulators. Experiences
from eHealthcare [42] systems will be valuable as
utilities craft privacy policies and provide information
access mechanisms. Given that smart grids are at their
inception, any major privacy exposure can cause a
trust deficit among the general public that hinders
adoption [43]. Data privacy and security also permeate
all aspects of the architecture. There may even be
restrictions on sharing data between software compo-
nents of the utility. For example, a customer support
representative may have access to billing information
that software used by a maintenance crew should
not have access to. Moving consumer data between
private and public Clouds may require an identification
process. Fine grained authorization controls may need
to be built on top of storage service provided by public
Clouds to before access to this data can be given to



third parties.

6. Conclusion

These are early years in the Los Angeles Smart Grid
project, but the advantages of taking an informatics
approach to building an intelligent and adaptive grid
are apparent. We have presented several informatics
research issues that emerge from this domain and are
actively exploring novel solutions for them. Together,
they will go towards making the Los Angeles Smart
Grid a reality and provide guidance for hundreds of
smart grids that are expanding worldwide.
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