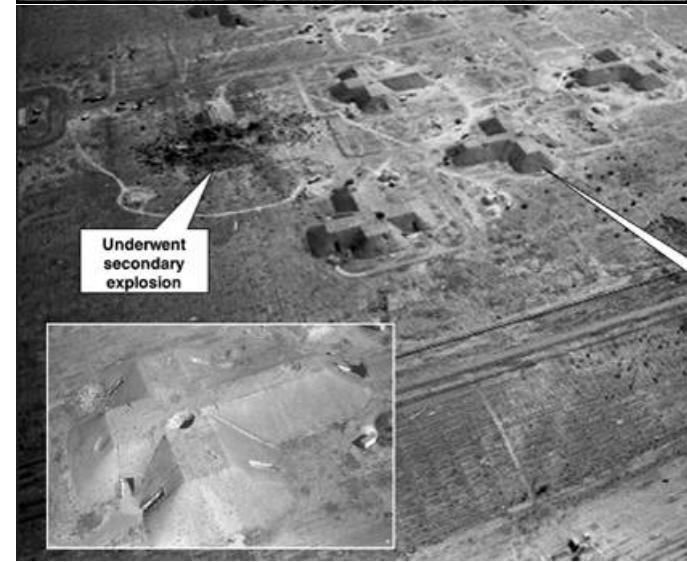


Systems Engineering Approach to Remediating Large Burial Sites

Sandia National Laboratories

Brent Haroldsen

May 2011


Presented at CWD2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Large Burial Sites Present a Major Remediation Challenge

- USA
 - Alabama, Utah, Colorado, South Dakota, Maryland, and others
 - Large disposal pits and trenches
 - Contents largely undocumented
- China
 - Haerbaling and others
 - Hundreds of thousands of Abandoned Chemical Weapons
 - Other items might be buried with them
 - Remote locations
- Al Muthanna, Iraq
 - Former weapons bunker
 - Sealed by UNSCOM after gulf war
 - Partially destroyed munitions and bulk chemicals

Existing US Army Technologies and Methods Are Not Sufficient

- Stockpile systems lack sufficient flexibility
 - Many different types of munitions, containers, and other items
 - Multiple agents including experimental chemistries
 - Degraded and unknown condition
- Non-stockpile destruction systems lack sufficient capacity
- Recovery methods are slow, costly, and labor intensive
- New and increased hazards must be considered
 - Items are concentrated in a much smaller area
 - Potential for spills, releases, or widespread contamination
 - Non-ideal working conditions
 - Concurrent operations

Systems Engineering Approach

- The remediation operation will be complex with multiple operations in close proximity
- All aspects of the process are interrelated
 - Detector response time affects emergency response plans
 - Destruction methods will drive storage requirements and monitoring requirements
 - Ability to isolate hazards impacts PPE requirements
 - Munition recovery, characterization, and destruction capacity must be matched
 - Etc.
- A systems engineering approach is required
 - New technology development must be done in the context of the complete system

Examples of Areas Where New Approaches Are Needed

- Air monitoring and sampling
- Safety and accident mitigation
- Excavation and debris sorting
- Triage and munition stabilization
- Storage
- Munition destruction
- Decontamination and closure

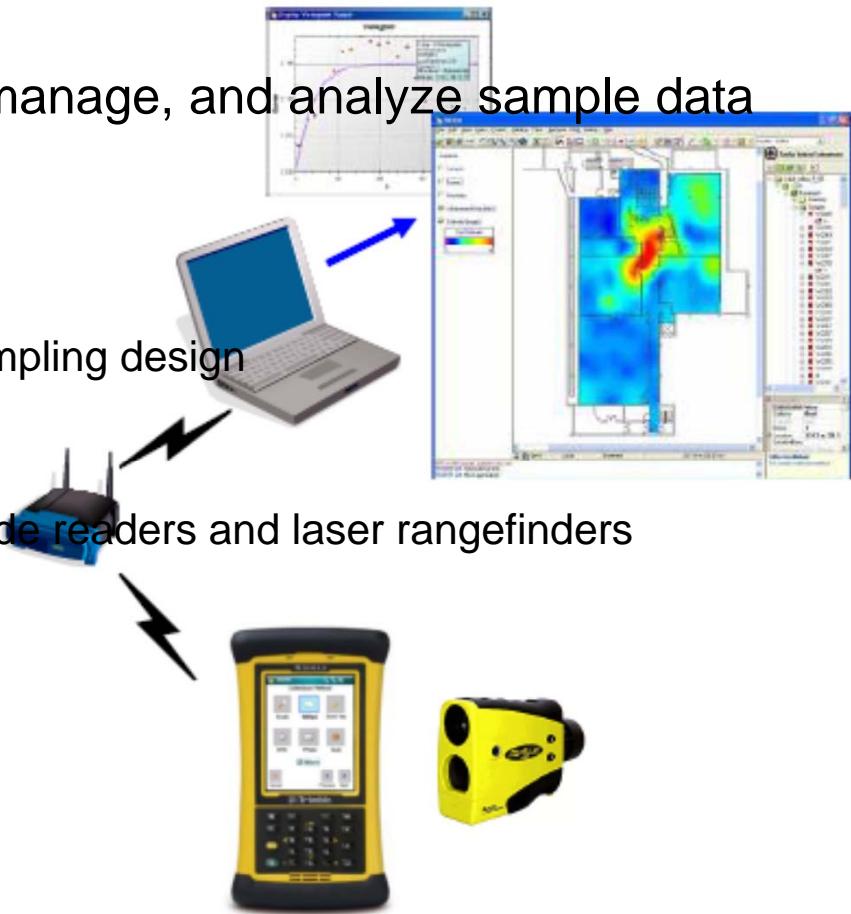
Planning Software Tools

- Software planning tools developed for US Dept. of Homeland Security could be adapted
 - PATH (Prioritization Analysis Tool for all-Hazards)
 - Spreadsheet based analysis and decision support tool
 - Restoration prioritization following widespread contamination
 - RESTORE (Resource Estimation and Scheduling Tool for Optimized Recovery)
 - Estimates resources, time, and cost for remediation

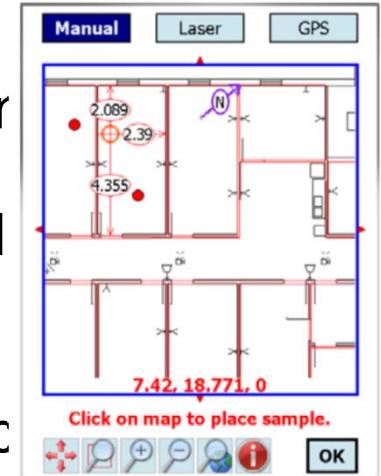
Air Monitoring and Agent Detection

- Large burial sites will require simultaneous monitoring for multiple agents and chemicals
- Rapid detection will be important
 - Allow prompt response to abnormal conditions
 - Minimize PPE requirements
- Use of multiple detection methods could improve confidence
- Autonomous, self calibrating detectors would decrease costs
- Monitors should be networked
 - Allow better utilization of data
 - Increased confidence by comparing adjacent detectors
 - Plume tracking and source location
- Sample tracking and data management will be complicated

Air Monitoring and Agent Detection


- Depot and site boundary monitoring
 - DAAMS and continuous air monitoring at multiple locations
 - Stand-off detection to cover large areas
- Localized monitoring at the excavation site
 - Continuous air monitoring
 - Handheld detectors
 - Soil sample analysis
 - Surface detection
- Localized monitoring at the destruction facility or other process steps
 - Continuous air monitoring

Building Restoration Operations Optimization Model - BROOM


- A decision support tool to collect, manage, and analyze sample data
 - Secure SQL Server database
 - GIS mapping & 3D visualization
 - Geostatistical analysis tools
 - Uncertainty analysis
 - Interfaces with VSP for statistical sampling design
- Data collection
 - Hand-held wireless PDAs with barcode readers and laser rangefinders
 - GPS for outdoors
 - Camera for photo documentation
 - Paperless data transfer
 - Secure transmission of data
 - Chain of custody report

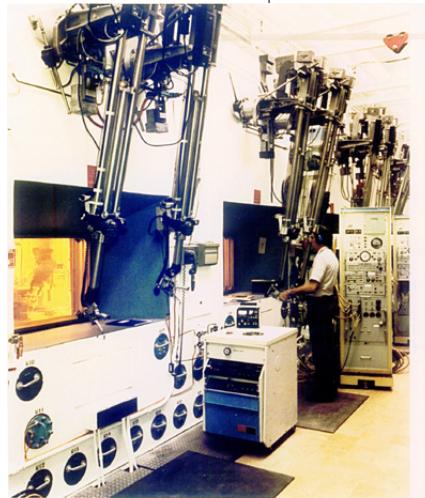
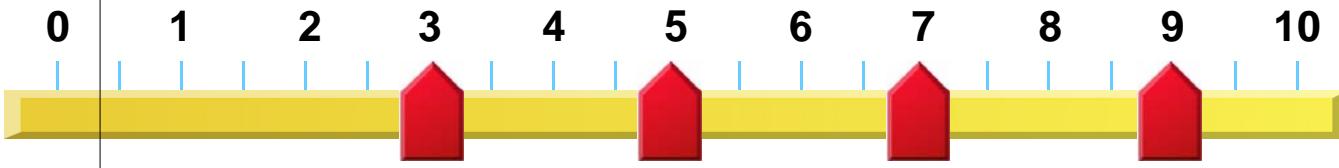
More Features of BROOM

- Maps of the facility are uploaded to the PDA for real-time navigation within the facility
- Pre-defined sampling locations can be displayed on the map
- Pan & zoom capabilities
- Laser positioning or manual locating of sample locations (GPS is not reliable indoors)
- Barcode reader reduces transcription of sample numbers
- Wireless connection allows tracking of samples and uploading of sample collection data to the BROOM server

Safety and Accident Mitigation

- Minimize exposure
- Isolate the hazards
- Utilize a triage approach to prioritize treatment
- Include release mitigation systems

Minimize Exposure



- Robots can remove humans from hazardous environments
- Mobile robots can be effective in highly unstructured situations
 - IED/UXO removal
 - Radioactive material cleanup
- Robotics for high consequence applications are different than robotics for repetitive tasks
 - Lot size of one
 - Strict process constraints in quality and safety
 - Continuous interaction between the machine and the operator
- Requires the correct balance of human interaction and machine autonomy

A Philosophical Approach To Robotics: Operator Flexibility

Manual

Fully
Automated

- Automated Planning and Programming
- Model- and sensor-based control
- Rapid, efficient integration

Robotic Platforms

- Pedestal
 - Highly repetitive tasks
 - Complex mechanical motion
- Tracked/Wheeled
 - Provide greatest mobility
- Gantry
 - Cover large workspaces
 - Pure vertical approach
 - High load capacity
 - Well suited for recovering munitions from a pit or trench

Robotic End-Effectors

- Mount at the end of the manipulator system
- Can be changed without human interventions
 - Grippers
 - Cutters
 - Vacuums
 - Shovels (with sensors)
 - Sensors

Isolation of Hazards

- The excavation site should be partitioned
 - Allow separate crews to work independently
 - Minimize extent of potential contamination
- Processes should be separated to allow concurrent operations
- Explosive hazardous should be separated from chemical hazards where possible
- Isolation can be achieved by distance
 - Less efficient operation
 - Increased risk from handling and transportation
- Isolation can also be achieved with barriers
 - Bunker design methodologies
 - Foams or gels to mitigate blasts and agent dispersion
 - Layered armor or concrete fragment mitigation

An Approach Is Needed to Rapidly Assess Each Item - Triage

- Determine condition
 - Leaking or external contamination
 - Suitable for handling or storage
- Stabilize, decontaminate, place in secondary containment
- Characterize fill
 - Conventional munition/chemical munition/other CWM
 - Burster/no burster
 - ID chemical agent
- Identify treatment requirements and priority
- Catalogue, label, track, and document

What is Needed for Triage

- Rapid, hand-held multi-agent detectors
- Suitable decontamination methods
- Improved secondary containers
 - Matched to the destruction method
 - Compatible with x-ray and PINS
 - Easy to load and seal
- In-situ x-ray and PINS capability
- Methodology for making decisions
 - Meet regulatory requirements
 - Transparent to public
- Automated system to catalogue, label, and track each item
 - Variant of BROOM?

Sandia Decon Formulation (DF-200)

How Does it Work?

Components

**Foam Component
(Surfactants, mild
solvents, buffers)**

**Peroxide (7.9%
Solution)**

Novel Activator

Mix

Formulation

**Synergistic
formulation
(multiple
reactive
species)**

**Spray,
Foam,
Mist, or
Gel**

Multiple Uses

**Neutralization of
CW Agents**

Neutralization of TICs

Kill of BW Agents

Kill of Bio Pathogens

Final peroxide concentration is ~3.6%

Sandia Decon Formulation (DF-200)

Surface Decontamination

Small-scale Foam System

Large-scale Foam System

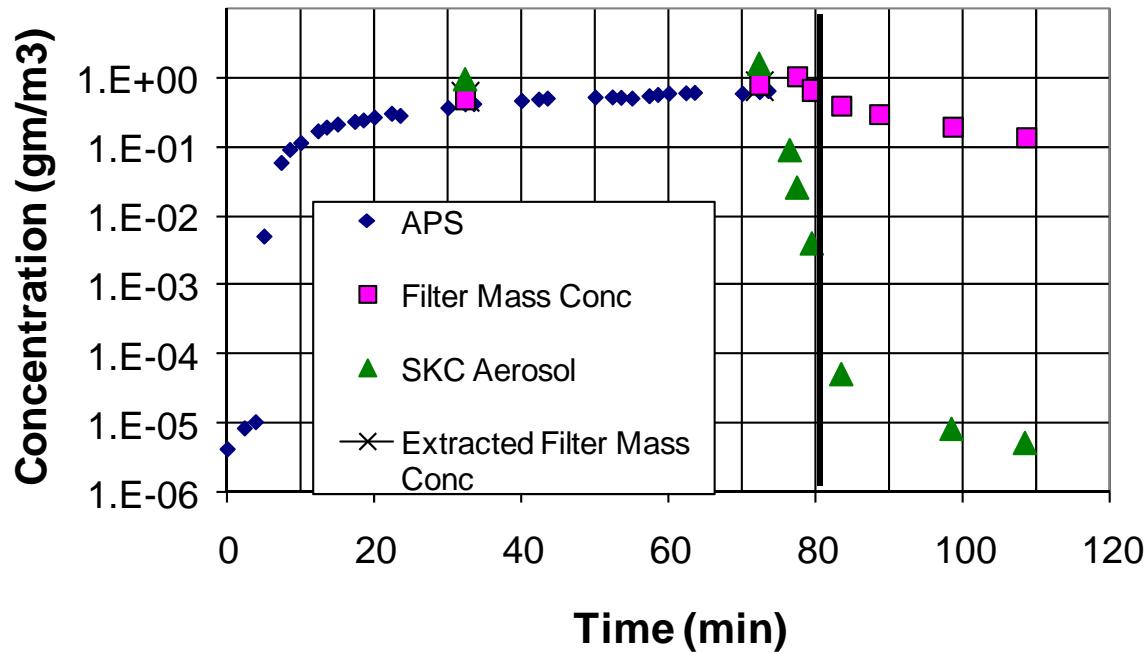
Medium-scale Foam System

Indoor Foam Application

Liquid Spray Application

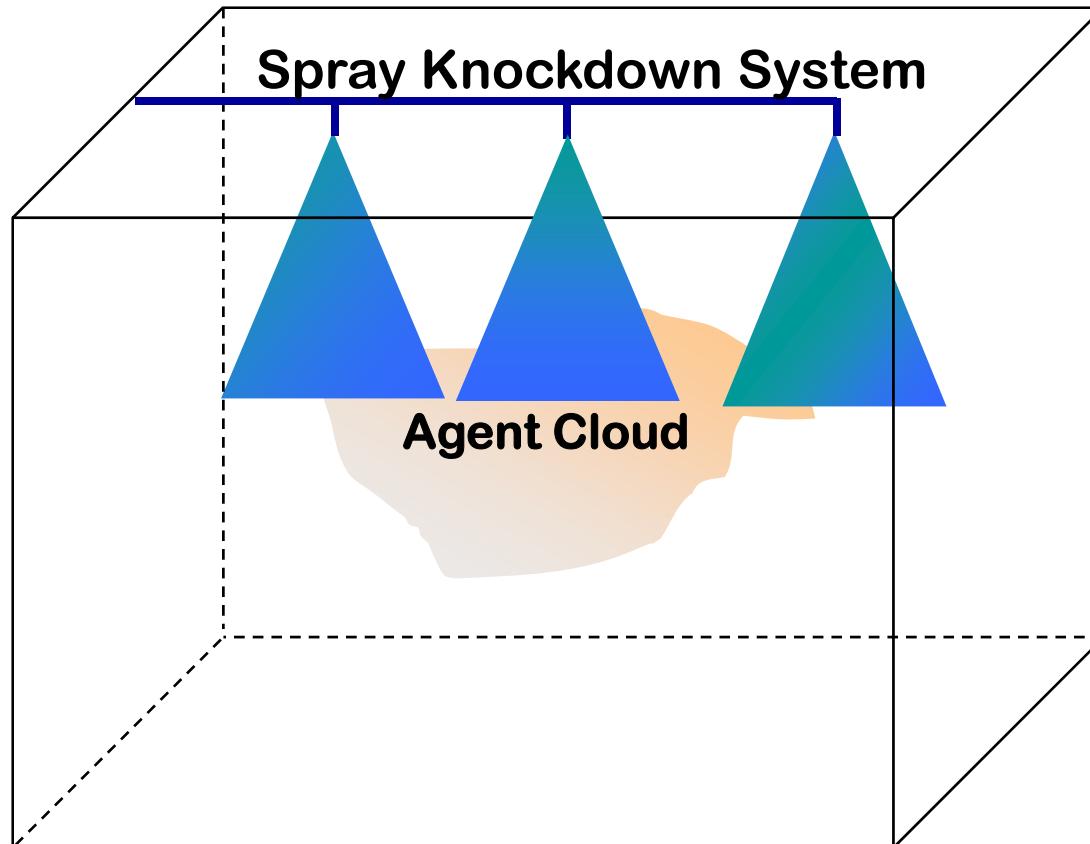
Fog/Mist Application

Efficacy of Sandia DF-200 Formulation in DoD Testing (CW)


Agent	Type of Decon	Decontamination Process	Average Residual Results (g/m ²)	Contamination Removal (%)	Objective (%)
HD	EasyDECON	Operational	0.017	99.83	99.0
HD	EasyDECON	Thorough	0.013	99.87	99.0
GD	EasyDECON	Operational	<0.005	>99.95	99.9
GD	EasyDECON	Thorough	<0.005	>99.95	99.9
VX	EasyDECON	Operational	0.022	99.78	99.9
VX	EasyDECON	Thorough	0.007	99.93	99.9

Summary of results of residual agent on CARC decontamination tests (DF-200 [EasyDECON] deployed as a spray with the Intelagard Merlin™ system; Agent loading: 10 g/m²; Challenge ratio: 120:1, Contact time: 30 minutes).

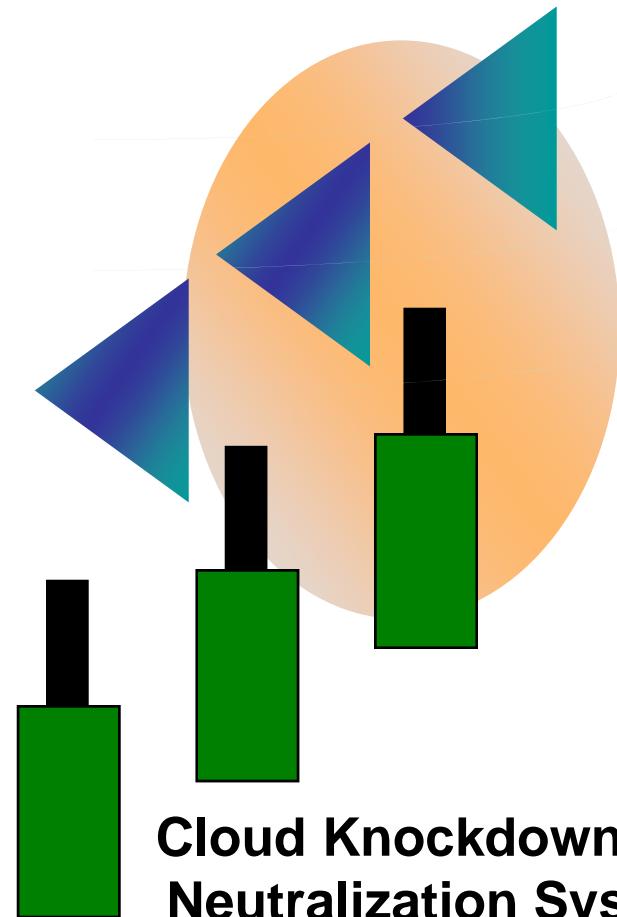
Cloud Knockdown System


- Decontaminant spray is dispersed as charged droplets
- Droplets collect vapor and particles as they fall through the air
- Neutralizes and removes airborne agent releases
- Protects personnel, limits contamination, prevents off-site transport
- Demonstrated >5 orders of magnitude knockdown

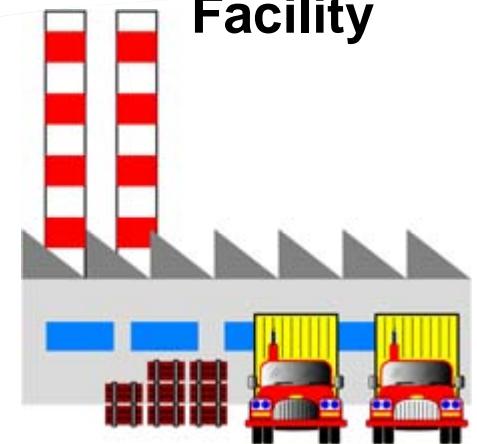
Cloud Knockdown Concept

Interior Protection

Protected Facility



Cloud Knockdown Concept


Protection of Exterior Environment

Protection for
exterior
environment

**Chem Demil
Facility**

Conclusions

- Large burials sites present a major challenge
 - Scope
 - Complexity
 - Hazards
- New technologies and approaches are required
- Technologies are being developed for some aspects of the problem
- A systems engineering approach is needed to integrate the pieces
- The demil community should begin preparing for the challenge