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Lubrication on Sliding Surfaces

Lubrication Enhances Reliability & Safety

Liquid lubricants can’t be used on:
e Satellites

e Electromechanical Switches
 Miniature Devices

Solid Lubricants:

* High temperatures
 Vacuum compatible
* High contact pressures

Moving Mechanical Assemblies




Solid lubricants

 Lamellar Solids
— Transition metal dichalcogenides, graphite

e Diamond and Diamond-like Carbon
— a-C:H, a-C:Si, UNCD
e Soft Metals
— Pb, Ag, Au, In, Sn
e Glasses & Ceramics

 Polymers
— PTFE, Polyimide

L
s




Environmental Dependence

MoS,: Extremely low COF (0

.01-0.05) and long

wear life, but only in dry environments. Strong
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They form thrn transfer films on the counterface

S. V. Prasad and J. S. Zabinski, J

Graphite

» Graphite needs moisture or adsorbed gases in the
environment (>100 ppm) (they either act as intercalants,
or passivate the dangling covalent bonds) to lubricate.

* In vacuum, graphite exhibits high friction and wear—a
phenomenon known as “dusting”, first observed in the
late 1930’s when graphite brushes in aircrafts
experienced accelerated wear at high altitudes.

. Mater. Sci. Lett. 12 (1993) 1413-1415



Oxidation of WS, in humid air

Metal dichalcogenides oxidize in humid environments
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S. V. Prasad, J. S. Zabinski and N. T. McDevitt, Tribology Transactions, 38 (1995) 57-62



Doped MoS

Doping MoS, has been shown to enhance durability in humid environments

'\.L

MoS,/titanium

-D. G. Teer, Wear, 251, 1068 (2001). Mechanism not completely
-X. Wang, D. G. Teer, et. Al. Surface and Coatings Technology, 201, 5290 (2007). understood
MQSQ/SbQOs/AU MonTY of these qr;)lped

-T. W. Scharf, P. G. Kotula and S. V. Prasad, Acta Materialia, 58, 4100 (2010). coatings are brittle under

high loads or impact

MoS,/Au
-J. R. Lince, H. I.Kim, P. M. Adams, D. J. Dickrell and M. T. Dugger, Thin Solid Films, 517, 5516 (2009).

Our approach is to build novel structures that reduce the availability of edge
planes, which easily oxidize, by the addition of an inert metal using @
MoS,/Au system

Gk \ b #- Water Vapor

Au

Cleavage Plane

S. V. Prasad, J. S. Zabinski and N. T. McDevitt, Tribology Transactions, 38 (1995)
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MoS, Coatings

e Burnishing
 Resin Bonding
e Chemical Vapor Deposition

* Plasma Enhanced Chemical Vapor Deposition (PECVD)
e Atomic layer Deposition (ALD)

e Physical Vapor Deposition

Sputter deposition
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Argon gas ions are
accelerated toward the

(-) target/cathode resulting
in the ejection of neutral
target material

Sputtering offers:
Control over film properties
and composition



PVD Co-Deposition

Two Targets at 90°

Sputter targets located at 90 °©
to each other and ~45° 1o the
substrate stage

4 A

AU

\_ /

Independent rate control with
stage rotation for uniformity

Experimental sputter co-deposition
system used in this study







Mo:S Stoichiometry

Electron Golumn

Secondary Desc ratio wi% Au vol% Au

Electron Detector
g aatered C159 MOS2-RT 1.558 0.06% 0.02%
Wﬂﬂfﬂﬂsﬂggflmg C160  MoS2-AU 300C  1.564 11.90% 3.03%
. C161  MoS2-AU200C  1.571 8.32% 2.13%
Thin films are Cl62  MoS2-Au 100C  1.583 8.90% 2.28%
Sulfur deficient ~MoS; C163 MoS2-Au RT 1.597 9.83% 25511

Slight dependence on run order
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TEM sample preparation

FIB micromachining of sample cross-section

Dual-beam system from FEI: Both a FIB
column and a SEM column are present on
one sample chamber.

S. V. Prasad, J. R. Michael and T. R. Christensen, Scripta Materialia 48 (2003) 255-260



Plan view SEM of MoS,, - Au RT
film, nanoparticles of Au visible
in porous MosS, filim

HAADF-STEM...nanocrystalline Au
(~2nm) and MoS,
Selected-area diffraction



Au-MoS, nanocomposite deposited at room temperature.
Nano-crystalline Au (~2nm) and MoS,, (~2nm) with prominent basal lattice planes (~6A).



rate deposition
2 nm Au & MosS,

b R

200 am i
-

200°C deposition: Au coarsened to 10 nm and
MoS, basal lattice planes thermally evolved to
encapsulate the Au forming a closed MoS,
shell (Au seed MoS, nano-onions. )




et

Cross-sectional BFTEM Images of the Au-MoS, nanocomposite grown at 200°C.
Nanocrystalline Au (~10 nm) core with MoS, basal plane closed shell. The top layer
corresponds to protective carbon layer.



Reduced Edge Planes e

Initial objective Inorganic Fullerenelike MoS, or IF-MoS,

From annealing MoO, in H,S atmosphere

G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman and R. Tenne, Physical Review B, 57, 6666 (1998)



In-situ TEM heating

Si substrate

—] 200 nm

Protochips Aduro in situ TEM heating stage
showing sample cross-section over electron Proto
transparent hole. nteractive real-time microscopy
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HRTEM in situ heating




TEM In situ heating -

BN
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(a)-(c) STEM/HAADF images of Au coarsening and nanocomposite film densification
with increasing temperature
(d)-(f) HRTEM images. Arrows indicate examples of coarsening, no shell formation



Tribological measurements —p

Counterfaces: Si;N, Ball (3.175 mm dia)
Normal Loads: 0.95 GPa (100 grams)

Environments: Dry Nitrogen, and Air with
50 %RH

Linear Wear Tester

(Ball-on-Flat configuration)

& Environmental Control

—




Crystallinity in Wear Scar

(a>c—>d) reorientation of perpendicular
(randomly orientated) basal planes parallel to
the sliding direction to achieve low friction

( d) Carbon

(a) basal plane L

counterface A
crystalline / .
S o / Au ndnopelrhcles
(C) S / "~ Crystadlline
Mos,

T I-G) WA : Carbon
_- " crystalline m s, c-axis £ (0002)

amorphous

= Amorphous Mo'Sh2 '

/Au nanoparticles

10 nm

(lb>c—>e) amorphous to crystalline
transformation to achieve low friction



Friction Coefficients

MosS,/Au films @ 50% RH

Pure MoS, room temp (C159) on Si
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Conclusions
I

» Sputter co-deposition system for doped transition metal chalcoginides
developed
* Independent control of film composition
« Substrate heating (film density, crystallinity, nano particle size)
« Substrate biasing (film density, crystallinity)

e
I

* Novel Nano-onion like structures fabricated at 10 wt% gold enabled by
deposition on heated substrate (T, = 200 — 300°C)

» These MoS,/Au films exhibited enhanced performance in humid
environments
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