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» Material parameter uncertainty needed for
— Model validation
— Uncertainty quantification
— Quantifying margin and margin uncertainty
 Typically uncertainty in parameters is “estimated”
— Assume Gaussian or uniform distribution
— Bounds based upon engineering judgment
— Little justification available
* Need a quantified and defendable uncertainty estimate for
material parameters
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Experiment Description

e Foam samples 1.5 inches
by 0.5 inches thick

 Nine total samples

o A steel ball baring dropped
on sample

 Acoustic emissions
measured and analyzed for
three natural frequencies

 Density estimated by
measuring dimensions of
sample and weighing.
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e Two models developed
— Finite Element
— Physically based surrogate model

Model Description

— Frequency is a function of modulus, density, and a function
of Poisson’s ratio

— The function of Poisson’s ratio is determined from the FE
model

— Modulus, density set to one
— Vary Poisson’s ratio and save resulting frequencies.
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Frequency vs. Poisson’s Ratio
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Optimization Procedure

e Four cost functions used

— Least squares on two frequencies
» All samples used in single optimization
« Single Modulus and Poisson’s ratio identified
— Least squares on two frequencies
 Performed on each sample individually
 Nine different pairs of modulus and Poisson’s ratio identified
— Least squares on three frequencies
» All samples used in single optimization
« Single Modulus and Poisson’s ratio identified
— Least squares on three frequencies
 Performed on each sample individually
* Nine different pairs of modulus and Poisson’s ratio identifie@ Sandia
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 Bayesian estimation assumes that the estimated parameters
are random rather than deterministic.

— The optimization techniques presented here assumes the
parameters are deterministic but unknown

— Can incorporate prior knowledge into the parameter
estimates

 Bayesian estimation has been around for a while

— Not practical until computers became fast

— Markov Chain Monte Carlo (MCMC) has made the method
feasible

Bayesian Estimation
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Basic Idea of Bayesian Updating

o Statement of Bayes Theorem

(o) PR

p(&)
* Need to define two quantities
— Likelthood function (first term on right hand side)
— Prior distribution (second term on right hand side)
* Likelihood function acts like a cost function

— Includes an assumption on the form of the conditional
distribution of o (data)

e Prior incorporates any previous or expert knowledge

— Can be uniform if no knowledge is available other than _—
bounds @ National
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Define Likelihood and Priors

e Likelihood function (Gaussian, in this case)

_ . 1 1:i7_fc21lc 2 fig_fczlc 2
it - Flof 5] [ (L5

 Both two and three frequencies used in likelihood function

 Parameters to be updated (0)
— Modulus, Poisson’s ratio
— Parameters are in the feac variable.
— “Variance” (o)
e Prior is assumed to be uniform
— No previous knowledge or expectations for parameters other

than bounds.
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Updating is Performed Using MCMC

 Produces samples that converges to the posterior distribution
 Technique Is dependent on the previous value

 Does not require proper probability density functions
— Proper normalization of the PDF is not necessary
— Normalization cancels out in MCMC formulation
— This is the property that makes MCMC attractive with Bayes

* |Ssues
— Resulting string of parameters are correlated to some extent

— Requires large number (1000s) of samples to converge to the
posterior distribution

— Large number of initial samples are invalid (prior to
convergence of the chain) @ Sandia
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Two Frequency Comparison

e Distributions made from individual sample optimization
and MCMC simulations

* Means are approximately the same
e VVariance Is different (not much other conclusions)
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Three Frequency Comparison

e Distributions made from individual sample optimization
and MCMC simulations

* Means are approximately the same
e VVariance Is different (not much other conclusions)
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} Forward Propagation of Posterior

Distribution from Bayes Updating
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o All distributions shown above are from same data set

» Can analyze results by calculating the resulting frequencies from the
ensemble of estimated parameters

» Forward propagation with error term should encompass data
« Note width of estimate from prior @ S
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» Optimization and Bayes updating are used to estimate
elastic parameters

o Differences between number of frequencies used are larger
than differences between technigues

* No obvious conclusions can be drawn between trends
between the different technigues

 Bayes provides uncertainty directly

» Optimization requires additional effort to estimate
uncertainty.

Conclusions
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