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Motivation

• Material parameter uncertainty needed for
– Model validation
– Uncertainty quantification
– Quantifying margin and margin uncertainty

• Typically uncertainty in parameters is “estimated”
– Assume Gaussian or uniform distribution
– Bounds based upon engineering judgment
– Little justification available

• Need a quantified and defendable uncertainty estimate for 
material parameters



Experiment Description

• Foam samples 1.5 inches 
by 0.5 inches thick

• Nine total samples
• A steel ball baring dropped 

on sample
• Acoustic emissions 

measured and analyzed for 
three natural frequencies

• Density estimated by 
measuring dimensions of 
sample and weighing.



Model Description
• Two models developed

– Finite Element
– Physically based surrogate model
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– Frequency is a function of modulus, density, and a function 
of Poisson’s ratio

– The function of Poisson’s ratio is determined from the FE 
model

– Modulus, density set to one
– Vary Poisson’s ratio and save resulting frequencies.



Frequency vs. Poisson’s Ratio

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Poisson's Ratio

Fr
eq

ue
nc

y,
 (H

z)

Frequency vs Poisson's Ratio (E = 1, density = 1)

 

 

Mode 7
Mode 9
Mode 16



Optimization Procedure
• Four cost functions used

– Least squares on two frequencies
• All samples used in single optimization
• Single Modulus and Poisson’s ratio identified

– Least squares on two frequencies
• Performed on each sample individually 
• Nine different pairs of modulus and Poisson’s ratio identified

– Least squares on three frequencies
• All samples used in single optimization
• Single Modulus and Poisson’s ratio identified

– Least squares on three frequencies
• Performed on each sample individually 
• Nine different pairs of modulus and Poisson’s ratio identified



Bayesian Estimation
• Bayesian estimation assumes that the estimated parameters 

are random rather than deterministic.
– The optimization techniques presented here assumes the 

parameters are deterministic but unknown
– Can incorporate prior knowledge into the parameter 

estimates
• Bayesian estimation has been around for a while

– Not practical until computers became fast
– Markov Chain Monte Carlo  (MCMC) has made the method 

feasible



Basic Idea of Bayesian Updating

• Statement of Bayes Theorem
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• Need to define two quantities
– Likelihood function (first term on right hand side)
– Prior distribution (second term on right hand side)

• Likelihood function acts like a cost function
– Includes an assumption on the form of the conditional 

distribution of data
• Prior incorporates any previous or expert knowledge

– Can be uniform if no knowledge is available other than 
bounds



Define Likelihood and Priors
• Likelihood function (Gaussian, in this case)
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• Both two and three frequencies used in likelihood function
• Parameters to be updated ()

– Modulus, Poisson’s ratio
– Parameters are in the fcalc variable.
– “Variance” ()

• Prior is assumed to be uniform
– No previous knowledge or expectations for parameters other 

than bounds.



Updating is Performed Using MCMC

• Produces samples that converges to the posterior distribution
• Technique is dependent on the previous value
• Does not require proper probability density functions

– Proper normalization of the PDF is not necessary
– Normalization cancels out in MCMC formulation
– This is the property that makes MCMC attractive with Bayes

• Issues
– Resulting string of parameters are correlated to some extent
– Requires large number (1000s) of samples to converge to the 

posterior distribution
– Large number of initial samples are invalid (prior to 

convergence of the chain)



• Distributions made from individual sample optimization 
and MCMC simulations

• Means are approximately the same
• Variance is different (not much other conclusions)

Two Frequency Comparison
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Three Frequency Comparison
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• Distributions made from individual sample optimization 
and MCMC simulations

• Means are approximately the same
• Variance is different (not much other conclusions)



Forward Propagation of Posterior 
Distribution from Bayes Updating

• All distributions shown above are from same data set
• Can analyze results by calculating the resulting frequencies from the 

ensemble of estimated parameters
• Forward propagation with error term should encompass data
• Note width of estimate from prior
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Conclusions

• Optimization and Bayes updating are used to estimate 
elastic parameters

• Differences between number of frequencies used are larger 
than differences between techniques

• No obvious conclusions can be drawn between trends 
between the different techniques

• Bayes provides uncertainty directly
• Optimization requires additional effort to estimate 

uncertainty.




