K-Mesh

SAND2011-0814C

utorial Minisymposium

SIAM Conference on
Computational Science and Engineering
February 28, 2011

H. Carter Edwards, Todd Coffey,

Daniel Sunderland, and Alan Williams
Sandia National Laboratory

Sandia National Lahoratories

adphill
Typewritten Text
SAND2011-0814C

Four Parts:

mPart 1: STK-Mesh Domain Model
- Comprehensive conceptual overview; no code

mPart 2. STK-Mesh Computations

- How to perform computations; with code snippets

mPart 3: STK-Mesh Modifications

- How to modify a mesh; with code snippets

mPart 4. SIERRA Toolkit — beyond STK-Mesh

« Other modules / library components

2 (1) Sandia National Laboratories

STK-Mesh Domain Model

SIAM Conference on
Computational Science and Engineering
February 28, 2011

H. Carter Edwards
Sandia National Laboratory

“» < Whatis a Domain Model?

m A formal expression of, and ubiquitous language for,
- Conceptual context
- Software architecture

- Software requirements framed within the conceptual context and
software architecture context

= “Domain-Driven Design; Tackling Complexity in the Heart of Software” by
Eric Evans

- | highly recommend to developers of non-trivial CS&E software
- Systematic and iterative approach to modeling a domain
- Emphasis on managing complexity and mapping to software

é (1) Sandia National Laboratories

“» <« The Challenging STK-Mesh Domain

= An Unstructured Mesh
- “Weblike pattern or construction that fills a spatial domain Q”
- A discretization of a spatial domain Q2
- Filled with arbitrary elemental subdomains; e.g., polyhedrons

m Supporting Computations
- Simulations with multiphysics / heterogeneous phenomena
- E.g., numerical solution of PDEs defined on the domain Q
- Computational data associated with entities of the discretization

m That use Advanced Capabilities and Algorithms
- Massively parallel and hybrid parallel computations
- Solution strategies that adapt the computations & discretization

S (1) Sandia National Laboratories

Modular, Layered Architecture

T I

Finite Element Specific Computational | Finite Element |
Mesh Library (STK-Mesh/fem) | Local- |

l l ---operators ~ !

Finite Element

Focus of this talk: !
Shapes & node |
I
I

Generic Computational Mesh Library

|
I
[
|
I
L

(STK-Mesh/base) ordering
-~ {Triimos/Shardsy =~~~
B et el y__ns__. |8
| Supporting Parallel :
e Utilities —~~ =~~~

6 (111) Sandia National Laboratories

-

“» ¢ Computational Mesh Database

ey L

m Computational Mesh
- Discretization data; e.g., nodes, elements, connectivity
- Computation data; e.g., variables of the PDEs / models

m Mesh Database Bulk-data
- Discretization and computation data of the problem to be solved
- Size is proportional to the granularity of the discretization
- Must be parallel-distributed for scalable computations

m Mesh Database Meta-data
- Description of the bulk-data (a.k.a., the database’s schema)
- Size Is proportional to the complexity of the discretization
- Assumed to be parallel-duplicated for simplicity

7 (1) Sandia National Laboratories

- Mesh Bulk-Data: Discretization

o
- k

= Mesh Entity: entitygﬁ,”bka..D

- The fundamental, atomic units of the discretization
- E.g., finite element method’s nodes, edges, faces, and elements
- Ranking within the discretization; e.g., node < element
- Globally unique and persistent identifier

« Across parallel-distributed memory space

+ For the lifetime of the entity

.. Fully ordered (0,32) (1,453) (0.453)
- Unique: (Rank , Global-ID)

(0,9

(3.9)

(0,872543) (0,1)

. 8 (711) Sandia National Laboratories
ettt |

Mesh Bulk-Data: Discretization

= Mesh Entity Relation: (entity; , entity,, relationID)
- Directed from higher to lower ranking entity

+ Rank J> Rank. K: | entith _).enﬁrf}?mireq J#K
. E.g., an element is defined t be higher tnking than a node

- Uniqueness when J > K:
+ ... 0rdoes not exist

(entity; K, reIationID) —> entity/

9 (1) Sandia National Laboratories

|

e

Mesh Bulk-Data: Closure

=y o

m Directed Acyclic Graph (DAG)
- Entities are nodes of the graph
- Relations are directed edges of the graph
- Acyclic: directed relations higher—lower rank
- Concept of “Closure”

m Closure of a Mesh Entity: -]
| " entity,
. Collection of entities and relations l
» Reachable from that entity (3,9)
@

+ Following directed relations
- E.g., an element, its nodes, and element—nou.

- Assumption: The totality of computations performed on a given mesh
entity require access to the closure of that mesh entity

closure of (3,9)

10 (1) Sandia National Laboratories

Mesh Bulk-Data: Parallel Distribution

m Parallel distribution of mesh entities and relations

- Every mesh entity is uniquely owned by a parallel process

- Closure of an owned mesh entity must reside on that process
- This requires duplication (sharing) of mesh entities

IS shared between the owning processes

entity’ (N entity,

Mesh Bulk-Data: Parallel Distribution

m One Layer Ghosting (a.k.a., Ghosting Aura)
- If a mesh entity is shared by a process
- Is in the closure of another mesh entity: entitygf c entity;
- Then that closure is also duplicated on the process

- E.g., the closure of the elements connected to a shared node are
ghosted on all processes on which the node is shared

- Invaluable for neighborhood / patch accessing algorithms

12 (1) Sandia National Laboratories

Mesh Meta Data: Defining Subsets

m Multiphysics and Heterogeneity
- Different models and computations in different subdomains
- Heterogeneous discretizations: shapes, polynomial degree, ...

PMEh Part: 3
— Define subdomains for different Exterior Sot
computations Bounda d
— Define collections of mesh entities y Fluid>
with the same discretization
— Define supersets of parts Interface
Part, = Part, U Part, | Part, Boundary
— # Mesh Parts depends upon T

Heating

heterogeneity (complexity) of the
domain and computations

13 (1) Sandia National Laboratories

Mesh Bulk-Data: Part Membership

= A Mesh Entity is a Member of one or mc;fe_ Mesh Parts

* entity, e Part, (| Part. () Part_
- Always a member of the universal part: Part,,

m Mesh Part Membership may be Induced

" entity? e Part, 9 entity? - ercljtityt*f
- Then entityK Part may be induce

. Decision to“iRduce mé”f’nbership IS an attribute of the mesh part

m Example:
- Entity (3,9) € Part “Block-2"

- Nodes and face are induced
members of Part “Block-2"

[
(3.9)

14 (1) Sandia National Laboratories

“» ¢ Field Data « Computation Data

o
r N

= A Computational Mesh Supports C_omputations
- Computations require field data:
- Data associated with mesh entities: entity, — {FieldData, }
- Heterogeneity: existence of field data varies with mesh entity

m Field Declaration Field
- The type of the field, analo)éous to a ‘C’ or ‘C++’ typedef
- A multidimensional array of a simple mathematical type

m Field Restriction i
Field, ,J, Part,) —[n,,n,,---
. A field exists for an(% A) | 001]

= |
+ Which is of a specifi@ﬂ‘t&tﬂ(al and
« A member of a specified mesh part

- Defines the dimensions of the multidimens&mﬁyérEaP%tﬁAe

. 15 [F) sondia Netional aboratories
.

Field Data Heterogeneity Example

m Velocity field data on all nodes
- Velocity field declaration

P) (V)
+ Restriction (yelocity, 0, Part,,) — [3] MPly 59 P)
Y,
m Pressure field data only on vertices v (. WY S
- Pressure field declaration - \((_,) V)
- Vertex node mesh part
Pat " part, ., (W v SVP)

- Restriction
ressure, 0, Part, .) —1 A M)
- Vertex nodes(Heclared to be mé’rﬁb)ers of (vg) = (V.P)

vertex node mesh part V)

16 (1) Sandia National Laboratories

= < Heterogeneity Impacts Performance

AT VR

m Heterogeneous computations, heterogeneous field data

- Computations operate on subsets of Q
- Problem defined: e.g., fluid region, solid region, boundary
- Discretization defined: e.g., hex, tet, linear, quadratic, shell
- Parallel defined: e.g., owned by local process

- Field data existence and dimensions can vary across Q

= Impact on Performance
- Want: Computations on nice contiguous arrays of field data
- Have: Irregular computations and irregular field data
+ Selection logic in inner loops hurts performance, esp. GPGPU
« Dense arrays with “ignore this entry” flags wastes memory
- Solution: ...

17 (1) Sandia National Laboratories

Field Data Arrays in Buckets

= We have homogeneous subsets of mesh entities
- Same mesh entity rank and members of same mesh parts

— Have same field data of the same array dimensions
Field Data Arrays

m Buckets of homogeneous field data
- Contiguous arrays of field data
- Bundled into a block of memory

A

fleld data arrays|

_Entities _

y

m Computations on buckets

- Outer loop to select buckets
- Inner loop to computes on arrays in the selected bucket

- Active R&D for portable thread-parallelism
+ Including GPGPU - buckets residing in device memory

18 (1) Sandia National Laboratories

«. - Constructing Mesh Meta-Data
v (mesh database schema)

m Declare Mesh Parts and Mesh Fiel_ds

- And mesh part superset-subset relationships Part, c Part;

- And mesh field restrictions (Fieldx J PartA) N [no n, o]
- Detect and prohibit inconsistencies

+ Cyclic superset-subset relationships
+ Conflicting field array dimensions

m Complete (Finalize) Mesh Meta-Data Construction
- Analogous to a database schema for the mesh bulk-data
- Prohibit changes after mesh bulk-data is created ...

- Because it can be expensive and complex to edit a populated
database’s schema

19 (1) Sandia National Laboratories

Modifying Mesh Bulk-Data

(structural changes)

m Two Mesh Bulk-Data Modification States

Parallel » Modifiable
Consistent (structurally)

< restore parallel consistency
m STructurar moarications

- Declare and destroy mesh entities and relations
- Change mesh entities’ mesh part memberships

- Local and parallel-inconsistent for shared or ghosted entities
m Restore parallel consistency

- A single parallel collective operation
- Very complex; good performance is especially hard
- Incremental — only resolve what has been modified

20 (1) Sandia National Laboratories

“» « STK-Mesh Finite Element Layer

o
r N

m Layer element concept onto “generic” mesh

- Element shapes and node ordering (a.k.a., cell topology)
+ Including element-sides and element-edges

- Trilinos / Shards API and library of standard cell-topologies

m Optionally Associate a Cell Topology with a Mesh Part

: /E?F‘JF@m@nE)tISV%%ﬂE%@ of this part are tetrahedrons

m Includes concept of element boundaries
- Sides & side neighbors, edges & edge neighbors

m Foundation for finite element computations
- Basis functions, numerical integration, ...

21 (1) Sandia National Laboratories

= s __ "Canelusion

m STK-Mesh is an active R&D effort
- Within the DOE ASC SIERRA Toolkit project at Sandia
- Related R&D for field data arrays on multicore and GPGPU
- Open source though Trilinos: http://trilinos.sandia.gov

= Very complex domain and needs
- Parallel, heterogeneous, dynamically modifiable unstructured mesh
- Computational performance requirements: field data buckets

m Domain Modeling is Key to Managing Complexity
- Modular and layered architecture
- “Lean and clean” modules, dependencies, and APIs
- Minimize coupling between modules

22 (1) Sandia National Laboratories

STK-Mesh Example Computation Setup and Parallel Execution

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Williams

(1) Sandia National Laboratories

m Overview of Gear Fixture & features

m Setup of Meta Data

m Setup of Bulk Data

m Computational Kernel

m Movie

Des_cription of Gears Demo

m Basis for movie at Super-Computing 2010
m Exampleis in STK sources and is used for testing

25 (1) Sandia National Laboratories

Overview of Gear Fixture

m Located in source:
- http://trilinos.sandia.gov/
+ packages/stk/stk_mesh/stk_mesh/fixtures/GearsFixture
+ packages/stk/stk_mesh/stk_mesh/fixtures/Gear
+ packages/stk/stk_performance_tests/stk_mesh/GearsSkinning

m Cylindrical gear body made up of Hexahedron<8> elements
m Gear Teeth made up of Wedge<6> elements
m Parallel distribution of elements and nodes

= Rotation of gear

26 Sandia National Laboratories

Gegr Meta Data

m Declare the following parts of the mesh
- Cylindrical coordinates part
- Hex part
- Wedge part
m Declare the following fields:
- Cartesian coordinates field (x,y,z) on nodes
- Displacement field (Ax,Ay,Az) on nodes
- Translation field on nodes
- Cylindrical coordinates field (r,0,z) on nodes
m Restrict the fields to parts

27

(1) Sandia National Laboratories

Fixture Declaration of Meta Data

typedef Field< double , Cylindrical> CylindricalField;
typedef Field< double , Cartesian> CartesianField;

class GearsFixture {
public:
MetaData meta data;
BulkData bulk _data;

Part & cylindrical_coord part;
Part & hex_part;
Part & wedge part;

CartesianField & cartesian_coord_field;
CartesianField & displacement _field;
CartesianField & translation_ field;

CylindricalField & cylindrical_coord_ field;

28 Sandia National Lahoratories

Fixture Construction: [MetaData]

m Inside Gear Fixture constructor:

const unsigned TWO_STATE = 2;
GearsFixture: :GearsFixture(..) :
meta _data(fem::entity_ rank names(SpatialDimension)),
bulk data(meta _data , parallel_machine),
cylindrical _coord part(
meta_data.declare_part(‘'cylindrical_coord part”,element_rank)
E
displacement_field(
meta_data.declare_field<CartesianField>("'displacement', TWO_STATE)

), .

29 Sandia National Laboratories

Restrict Fields to Parts: [MetaData]

m Field Restrictions: Entities in the part will have the field

m Example for cylindrical coordinate field and part:

GearsFixture: :GearsFixture(.): [prev slide] {
put fireld(
cylindrical coord field,
node_ rank,
cylindrical coord part,
SpatialDimension

)

30 Sandia National Lahoratories

Induced Part Membership

Simplified Mesh Maintenance

m How to apply afield to nodes that are connected
to elements of a particular type?

m Option A: Manually
m Option B: Automagically
1. Put elements in a Part of that type
2. Restrict the nodal field to that part
3. All nodes in closure of elements in this part will get this field

m Cylindrical Part limited to Elements

m Cylindrical coordinates Field limited to Nodes
m Cylindrical coordinates field restricted to cylindrical part

31 Sandia National Laboratories

Gear Bulk Data Operations

m Create Hex entities for gear body
- Place Hex entities in Hex part and Cylindrical part
- Declare relations to nodes

m Create Wedge entities for gear teeth
- Place Wedge entities in Wedge part and Cylindrical part
- Declare relations to nodes

m Initialize field data

m Skin mesh with faces
- Skinning function in fem

32 Sandia National Laboratories

Initialize Field Data (entity-wise)

m Loop over nodes

m Assign Cartesian coordinates from cylindrical coordinates

loop over nodes {
const double rad = .. ;
const double angle = .. ;
const double height = .. ;

double * const cartesian data = field data(cartesian coord field , node);

cartesian_dataJ0] = rad * std::cos(angle);
cartesian_data[l] = rad * std::sin(angle);
cartesian_data[2] = height;

33 Sandia National Laboratories

Gear Rotation Computation (bucket-wise)

m Recall: Select buckets, iterate over buckets, compute

Selector select = cylindrical_coord part &
(locally owned part | globally shared part);

BucketVector selected node buckets;

get buckets(
select,
bulk data.buckets(Node),
selected node_ buckets

)

34 Sandia National Lahoratories

Gear Rotation Computation (bucket-wise)

for (BucketVector::iterator b_itr = selected node buckets.begin();
b 1tr '= selected node buckets.end();
++b_itr) {
Bucket & b = **b_itr;

const BucketArray<CartesianField>
old_coordinate_data(cartesian_coord_field, b);
BucketArray<CartesianField>

displacement_data(displacement _field.field_of _state(StateNew), b);

for (size_t node_index = 0; node_index < b.size(); ++index) {

// Compute new and old coordinate data and assign to displacements:
displacement_data(O, index) new_coordinate_data[0O] — old _coordinate_data(O, index);
displacement_data(l, index) new_coordinate_data[l] — old _coordinate _data(l, index);
displacement_data(2, index) new_coordinate_data[2] — old _coordinate _data(2, index);

}

35 Sandia National Lahoratories

Hybrid Parallelism

m Alan’s talk will cover hybrid parallelization of this example
m Basic Idea: Parallel For applied to bucket loops

m Also see the following example:
stk_usecases/app/UseCase_blas_algs.hpp
stk_usecases/app/UseCase_blas.cpp

36 Sandia National Laboratories

~ " Gears Demo (stk_mesh, epu, conjoin, paraview)

37 () sandia National Laboratories

/
9

STK-Mesh Example Dynamic Mesh Modification

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Willlams

(1) Sandia National Laboratories

Outline

m The Meta-Data

= Modifying the Bulk-Data

- Maintaining Consistency
+ Bulk-Data State
- Parallel Consistency
+ Local Consistency
- Field Data
+ Atomic Modifications

m Gear Demo
- Overview
- Code snippets necessary to strip teeth off of the gear

39 Sandia National Laboratories

Mesh Modification

m Meta-Data

- Equivalent to the schema of a database, the meta-data
describes the problem domain

- Freely modifiable before being committed

- No modifications allowed after commit

40 Sandia National Laboratories

Mesh Modification

m Bulk-Data

- Contains the discretization of the problem

- Its meta-data must be committed before any function
beside the bulk-data constructor can be called

- Meta-data check for global consistency will throw if the meta-data
IS not globally consistent

- Bulk-data modifications are only allowed when the bulk-
data is in a modifiable state.

41 Sandia National Laboratories

Modification Cycle

Parallel » Modifiable
Consistent (structurally)

< restore parallel consistency

m Parallel Consistent
- NO Mesh modification allowed

m Modifiable
- Guaranteed to be locally consistent
- Atomic mesh modifications are allowed

Parallel consistency is enforced when switching from Modifiable to
Parallel Consistent

42 Sandia National Laboratories

Maintaining Consistency

m The bulk-data state is transitioned by calling

bulk data.modification_begin()
bulk data.modification_end()

- A new modification cycle begins whenever modification begin is called

- Atomic mesh modifications mark affected entities and all their upward
relations as modified

- Parallel consistency is enforced at modification end by

+ Deleting all ghosts of modified entities
+ Resolving parallel ownership and sharing of created and destroyed entities

+ Resolving shared entities mesh part membership, entity relations, field data
memory allocation, and bucket membership

« Updating the one layer ghosted aura

43 Sandia National Laboratories

Maintaining Consistency

m The following operations are available through Atomic Mesh
Modifications

- Creating and/or deleting entities

- Changing entities’ mesh part memberships

- Changing entities’ relations

- Moving entities’ ownership to another process

m Atomic modifications are guaranteed to be locally consistent
- Induced mesh part membership will change as necessary
- Memory for field data will be created, resized, or deleted
- Existing field data will move to the correct bucket

44 @ Sandia National Lahoratories

Maintaining Consistency

Field Data

= Communicating field data does not modify the topology of the mesh and can
happen at any time (i.e. not restricted to a modifiable bulk-data)

m Atomic mesh modifications will move existing field data to the correct bucket
on the local process

When changing entity owner the field data is moved to the correct
bucket on the remote process

m After modification end space for field data of ghosted and shared entities has
be allocated but the data has not been copied from the owner

m Field data values can be copied from owned to shared/ghosted at any time
by calling

bulk data.communicate_ field data(..);

45 Sandia National Laboratories

— Simple Mesh Modification Example

m Breaking teeth off of the gear
- Distribute mesh over available processes
- Create 6 new nodes to attach to the wedge
- Destroy the relationship between the current nodes and the
wedge
- Attach the new nodes to the wedge
- Copy the field data from the current nodes to the new nodes
+ The current nodes stay with the body gear

46 (1) Sandia National Laboratories

2 4
&)
S0

Pufting it all together

m_
:
5
3

Distribute mesh across available processes

m Change entity owner (moving the entity to another process)

- The bulk data function change_entity owner is a parallel
collective call that gives away ownership of entities to other
processes

//EntityProc is the pair
//(Entity *owned _entity, unsigned to_proc_id)
std: :vector< stk::mesh::EntityProc> > move _entities;

// move the wedge to proc 2
iIT (bulk data.parallel _rank() == 0) {
move_entites.push_back(std::pair(&wedge,?2));

}

// Parallel collective call
bulk data.change_entity owner(move_entities);

// The fTield data will also be moved with the wedge

4g () sandia National Laboratories

Creating a new wedge

m Creating new entities

- When new entities are created the creating process is the owner of
the entity

- If two or more processes create an entity with the same rank and
identifier, the entity will be shared

//Declare a new wedge element

stk: :mesh: :PartVector add parts;

add_parts.push_back(wedge part);

stk::mesh::Entity & wedge = bulk data.declare_entity(
element_rank,
element_id,

add_parts

)

49 Sandia National Laboratories

Creating new nodes

m Generating new entities

- The bulk data function generate_new_entities is a parallel collective
call that will create new entities of the requested ranks with globally

unigue ids

//create 6 nodes on process 0
std: :vector<size_ t> num_requested entities(num_entities rank,0);

iIT (bulk data.parallel_rank() == 0) {
num_requested entities[node_ rank]=6;

}

stk: :mesh: :EntityVector requested nodes;

//parallel collective call

bulk data.generate new_entities(
num_requested_entities,
request_nodes

bl

50 @ Sandia National Lahoratories

Attaching the nodes to the wedge

m Creating/Destroying entity relations

- Relations are directed from the higher ranking entity to the lower ranking
entity, the converse relation is automatically inserted/deleted

- Processes can only create/destroy relations when they own or share the
higher ranking entity

- Creating or deleting relations may change entity’s induced mesh part
membership

// declare relations from the wedge to the nodes
for (size t 1=0; 1<6; ++1) {
bulk data.declare_relation (
wedge, // from entity
requested nodes[i1], // to entity
1 // relation identifer

)b

51 (1Y) Sandia National Laboratories

Destroying nodes

m Destroying entities

- A process may destroy its reference to an entity if the entity does
not have a relation to a higher ranking entity in its owned closure.

- If the owning process destroys an entity and another process
shares the entity, ownership automatically transfers to a sharing
process

// destroy the old nodes attached to the wedge
stk::mesh: :PairlterRelations
node_relations = wedge.relations(node_rank);

for (size_t 1=0; i<node_relations.size(); ++i1) {
stk::mesh::Entity * node = node_relations[i].entity();
//destroy relation to wedge
bulk data.destroy_relation(wedge, *node);
//destroy the entity
bulk data.destroy entity(node);

5o |1) Sandia National Laoratories

Changing mesh part membership

m Processes can only change part membership when they own or share the
entity

= The entity will be moved to a different bucket

m The fields available to the entity will change to match the fields restrictions

// add the wedge to the cylindrical coordinate part
stk: :mesh: :PartVector add parts, remove parts;
add_parts.push_back(& cylindrical_coord part);

bulk data.change entity parts(
wedge,
add_parts,
remove_parts
)
// 1T cylindrical _coord part was declare to be of rank element,
then the nodes will be induced Into this part and the
cylindrical coordinate field will be available to the nodes

53 () Sandin National Laboratores

Gear Demo: Putting it all together

m_
:
5
3

STK: Beyond st_k-mesh
(what else I1s In STK?)

STK Tutorial

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Williams

Sandia National Laboratories is a multi-program laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy's National Nuclear Security Administration under 2 oratories
contract DE-AC04-94AL85000. SAND2009-2803P Sandia National Lab

STK modules overview

Dependency diagram:

Algorithm-Support (A|gsu p) -Arroyvs point towards a module
« Multi-threaded execution of that is used (depended on) by
bucket-loop algorithms another module.
Search

» Proximity, mesh independent

Linsys, IO, Rebalance
* Bridges from mesh-data to
external capabilities
* Built optionally :
Util Stk_io
 Everything depends on util
directly or indirectly
Transfer
* Not yet implemented

Stk_algsup

Stk_linsys Stk_rebalance

Stk_mesh

Stk_transfer

Stk_search
Stk_util o

Sandia National Laboratories

"'-'.';"% STK linsys — bridge between mesh-data and

linear-systems

Stk_linsys provides FEI

helpers for FETI-DP
assembling linear-systems Epetra
AztecOO

6 7 8 0

FE Mesh 1

E3 E4 Connectivities 2

3 4 5 Stiffness-matrices 3

Constraint- 4

E1l E2 relations 5

etc

0 1 2 6

7

8

STK IO — Bridge between mesh-data and disk IO

|OSS: Abstract Finite Element mesh interface
* Object-Oriented

» Database-Independent

» Exodusll is primary output format

 Also supports XDMF, heartbeat, history, and Stk_io
pamgen

Stk_10 is a Bridge layer that understands /\
the interfaces of stk_mesh and loss. Stk_mesh loss

* Provides functions for moving data to/from
stk_io and loss.

. Prowd_es high-level functions for creatlng a Exodusl|
m_es_h Input and/or results outputwith N—
minimal code. | | NetCDE

» Lower-level functions also provided for more
control of the data movement.

Sandia National Laboratories

STK_AlgSup — Algorithm Support

Infrastructure for executing bucket-loop algorithms,
including multi-threaded.

Recall the gears demo had loops for
updating coordinates, etc. Stk_algsup

In general, many algorithms on mesh data

can be described as:
- create selector for desired parts Intel TBB
- get buckets Stk_mesh Others...

- for each bucket:
get field-data
perform computations

The bucket-loop is often compute-intensive and
can benefit from thread-parallel (or GPU) execution.

17| Sandia National Laboratories

otation Computation (bucket-wise)

for (BucketVector::iterator b_itr = selected_node_buckets.begin();
b_i1tr = selected_node_buckets.end(); ++b_i1tr) {
Bucket & b = **b_itr;

= L STK_AlgSUp — Algorithm Support (continued)

An Algorithm can be any class that has an ‘apply’ method...
(and the apply method contains the body of your bucket-loop)

STK_AlgSup — Algorithm Support

Example using Intel Thread Building Blocks (TBB)

The algorithm-runner implementation can launch buckets on
different threads.

The goal is for application code (My_Algorithm) to be unaware
of threading, as much as possible.
(Of course thread-safety issues must still be kept in mind...)

(1) Sandia National Laboratories

STK Search, STK Transfer

« Geometric proximity searches including:
OctTree, BIH

Stk_transfer

Stk_mesh —

Stk_search

* Proximity search doesn’t depend on
stk_mesh
*Users provide lists of bounding boxes
or bounding spheres

» Stk_transfer will use stk_search, and will
depend on stk_mesh

o ...but there will also be stk_ mesh —to —
non-stk_mesh transfers

Sandia National Laboratories

STK adapt, STK percept

Stk_percept

» Stk_percept Stk_adapt
« Verification tools, including:

e Postprocessing
e Error metrics (e.g. norms) Stk mesh
 Manufactured solutions =

» Stk_adapt
« Extend/modify the discretization
* Refine elements
*Increase polynomial order
*Convert topology (e.g. hex to tet)

Sandia National Laboratories

STK _util - Utilities

STK _util doesn’t depend on
any other STK module

STK__util contains several
subdirectories of related
tools

*Diag
e Timers
» Ostream manipulators
Environment
« Error Reporting
« Output Logging
e Parallel
e Comm utils
* Distributed-Index
o Util
* String comparisons
e Array Ops
setc

Sandia National Laboratories

re Modules

m Stk _transfer:
- Mesh to mesh transfers
- Including stk-mesh — to — non-stk-mesh transfers

m Stk_parser:
- Input deck parsing
- Sierra SDDM

m Stk_coupling:
- Code coupling layer

Goals of the Toolkit Team

m Clarity of code
m Use-case driven APl & implementation
m Capability/Flexibility/Performance
- Growing collection of performance tests, use-cases, ...
= Modularity
m Highly unit-tested code

stk mesh/stk mesh/base [] 90.1 % 3272 /3631
] 938% 1099/1172

stk mesh/stk mesh/baseImpl

m Threading/GPU support
m Facilitate external collaborations with Sierra
m Agile development

Sandia National Lahoratories

Current Users

- Sierra (suite of finite-element analysis applications), SNL

- Cubit (Mesh generation)
Steve Owen/Matt Staten, SNL

- Albany (Prototyping rapid PDE-application development)
Andy Salinger, SNL

- Adaptive Mesh Refinement
Ulrich Kittler, Technische Universitat Minchen

- Superconductivity simulations
Nico Schloemer, University of Antwerp

- Fracture mechanics
Joe Bishop, Fracture LDRD, SNL

- Charon (planned for FY11), SNL

Sandia National Laboratories

STK Capability in Albany

-» Exodus Pamgen AETC RS EE
&

Cubit

-¥PE---1 STK_IO

A 4

PTTTTTTTT STK Mesh Abstract Discretization

1 vy Coordinates
! Fields

v H Connectivity
1

___________ Vector Maps
STK_Rebalance Ly

- Coordinate

- Node
Jacobian Graph
Node Sets

S e e ——— - = - ——— = e

Thank you!

m For more information:
http://trilinos.sandia.gov/packages/stk/
stk-users@software.sandia.gov email list

m We want more feedback!

- Good clean clear APIs and code can't be achieved without user
feedback!

m Thanks for attending this tutorial!

m Developers:
Dave Baur, Todd Coffey, Carter Edwards,
Jim Foucar, Russell Hooper, James Overfelt,
Greg Sjaardema, Dan Sunderland, Alan Williams

Sandia National Laboratories

