
STK-Mesh Tutorial Minisymposium

SIAM Conference on
Computational Science and Engineering

February 28, 2011

H. Carter Edwards, Todd Coffey,
Daniel Sunderland, and Alan Williams

Sandia National Laboratory

adphill
Typewritten Text
SAND2011-0814C

2

Four Parts:

Part 1: STK-Mesh Domain Model
• Comprehensive conceptual overview; no code

Part 2: STK-Mesh Computations
• How to perform computations; with code snippets

Part 3: STK-Mesh Modifications
• How to modify a mesh; with code snippets

Part 4: SIERRA Toolkit – beyond STK-Mesh
• Other modules / library components

STK-Mesh Domain Model

SIAM Conference on
Computational Science and Engineering

February 28, 2011

H. Carter Edwards
Sandia National Laboratory

4

What is a Domain Model?
 A formal expression of, and ubiquitous language for,

• Conceptual context
• Software architecture
• Software requirements framed within the conceptual context and

software architecture context

 “Domain-Driven Design; Tackling Complexity in the Heart of Software” by
Eric Evans

• I highly recommend to developers of non-trivial CS&E software
• Systematic and iterative approach to modeling a domain
• Emphasis on managing complexity and mapping to software

5

The Challenging STK-Mesh Domain
 An Unstructured Mesh

• “Weblike pattern or construction that fills a spatial domain ”
• A discretization of a spatial domain 
• Filled with arbitrary elemental subdomains; e.g., polyhedrons

 Supporting Computations
• Simulations with multiphysics / heterogeneous phenomena
• E.g., numerical solution of PDEs defined on the domain 
• Computational data associated with entities of the discretization

 That use Advanced Capabilities and Algorithms
• Massively parallel and hybrid parallel computations
• Solution strategies that adapt the computations & discretization

6

Modular, Layered Architecture

Supporting Parallel
Utilities

Focus of this talk:
Generic Computational Mesh Library

(STK-Mesh/base)

Finite Element
Shapes & node

ordering
(Trilinos/Shards)

Finite Element Specific Computational
Mesh Library (STK-Mesh/fem)

Finite Element
Local-

Operators

Application Code

7

Computational Mesh Database
 Computational Mesh

• Discretization data; e.g., nodes, elements, connectivity
• Computation data; e.g., variables of the PDEs / models

 Mesh Database Bulk-data
• Discretization and computation data of the problem to be solved
• Size is proportional to the granularity of the discretization
• Must be parallel-distributed for scalable computations

 Mesh Database Meta-data
• Description of the bulk-data (a.k.a., the database’s schema)
• Size is proportional to the complexity of the discretization
• Assumed to be parallel-duplicated for simplicity

 Mesh Entity:
• The fundamental, atomic units of the discretization
• E.g., finite element method’s nodes, edges, faces, and elements
• Ranking within the discretization; e.g., node < element
• Globally unique and persistent identifier

 Across parallel-distributed memory space
 For the lifetime of the entity
 Fully ordered

• Unique: (Rank , Global-ID)

8

Mesh Bulk-Data: Discretization
Rank
GlobalIDentity

(3,9)

(0,32)

(0,9)

(0,872543)

(2,32)

(0,453)(1,453)

(0,1)

9

Mesh Bulk-Data: Discretization

 Mesh Entity Relation:
• Directed from higher to lower ranking entity

 Rank J > Rank K : ; required J ≠ K

• E.g., an element is defined to be higher ranking than a node
• Uniqueness when J > K:

 … or does not exist

J K
a bentity entity

 , ,J K
a bentity entity relationID

 , ,J K
a bentity K relationID entity

0

4

0
7

3

1

5

1

6

2

5

10

Mesh Bulk-Data: Closure
 Directed Acyclic Graph (DAG)

• Entities are nodes of the graph
• Relations are directed edges of the graph
• Acyclic: directed relations higherlower rank
• Concept of “Closure”

 Closure of a Mesh Entity:
• Collection of entities and relations

 Reachable from that entity
 Following directed relations

• E.g., an element, its nodes, and elementnode relations
• Assumption: The totality of computations performed on a given mesh

entity require access to the closure of that mesh entity

J
aentity

closure of (3,9)

(3,9)

 Parallel distribution of mesh entities and relations
• Every mesh entity is uniquely owned by a parallel process
• Closure of an owned mesh entity must reside on that process
• This requires duplication (sharing) of mesh entities
• is shared between the owning processes

11

Mesh Bulk-Data: Parallel Distribution

J J
a bentity entity

Proc #5

Proc #22

Owned by #5
Owned by #22

12

Mesh Bulk-Data: Parallel Distribution
 One Layer Ghosting (a.k.a., Ghosting Aura)

• If a mesh entity is shared by a process
• Is in the closure of another mesh entity:
• Then that closure is also duplicated on the process
• E.g., the closure of the elements connected to a shared node are

ghosted on all processes on which the node is shared
• Invaluable for neighborhood / patch accessing algorithms

K J
b aentity entity

Proc #22Proc #22 + Aura

13

Mesh Meta Data: Defining Subsets
 Multiphysics and Heterogeneity

• Different models and computations in different subdomains
• Heterogeneous discretizations: shapes, polynomial degree, …

Soli
d

Exterior
Boundar

y

Interface
Boundary

Fluid

Heating

• Mesh Part:
– Define subdomains for different

computations
– Define collections of mesh entities

with the same discretization
– Define supersets of parts

– # Mesh Parts depends upon
heterogeneity (complexity) of the

domain and computations

APart

X A B CPart Part Part Part  

14

Mesh Bulk-Data: Part Membership
 A Mesh Entity is a Member of one or more Mesh Parts

•

• Always a member of the universal part:

 Mesh Part Membership may be Induced
• If and
• Then may be induced
• Decision to induce membership is an attribute of the mesh part

 Example:
• Entity (3,9)  Part “Block-2”
• Nodes and face are induced

members of Part “Block-2”

Part

J
a A C Fentity Part Part Part  

J
a Aentity Part J K

a bentity entity
K
b Aentity Part

(3,9)

15

Field Data  Computation Data
 A Computational Mesh Supports Computations

• Computations require field data:
• Data associated with mesh entities:
• Heterogeneity: existence of field data varies with mesh entity

 Field Declaration
• The type of the field; analogous to a ‘C’ or ‘C++’ typedef
• A multidimensional array of a simple mathematical type

 Field Restriction
• A field exists for an

 Which is of a specified rank J and
 A member of a specified mesh part

• Defines the dimensions of the multidimensional array value

 J
a Xentity FieldData

XField

  0 1, , [, ,]X AField J Part n n 
J
aentity

J
a Aentity Part

16

Field Data Heterogeneity Example
 Velocity field data on all nodes

• Velocity field declaration
• Restriction

 Pressure field data only on vertices
• Pressure field declaration
• Vertex node mesh part
• Restriction
• Vertex nodes declared to be members of

vertex node mesh part

(V,P)

(V,P)

(V,P)

(V)

(V)

(V)

(V)

(V)

(V)

(V)

(V)
(V)

(V,P)

(V,P)

(V,P)   ,0, 3velocity Part 

VTXPart
 ,0, 1VTXpressure Part 

17

Heterogeneity Impacts Performance
 Heterogeneous computations, heterogeneous field data

• Computations operate on subsets of 
 Problem defined: e.g., fluid region, solid region, boundary
 Discretization defined: e.g., hex, tet, linear, quadratic, shell
 Parallel defined: e.g., owned by local process

• Field data existence and dimensions can vary across 

 Impact on Performance
• Want: Computations on nice contiguous arrays of field data
• Have: Irregular computations and irregular field data

 Selection logic in inner loops hurts performance, esp. GPGPU
 Dense arrays with “ignore this entry” flags wastes memory

• Solution: …

18

Field Data Arrays in Buckets
 We have homogeneous subsets of mesh entities

• Same mesh entity rank and members of same mesh parts
 Have same field data of the same array dimensions

 Buckets of homogeneous field data
• Contiguous arrays of field data
• Bundled into a block of memory

 Computations on buckets
• Outer loop to select buckets
• Inner loop to computes on arrays in the selected bucket
• Active R&D for portable thread-parallelism

 Including GPGPU – buckets residing in device memory

En
tit

ie
s

Field Data Arrays

Bucket of
field data arrays

19

Constructing Mesh Meta-Data
(mesh database schema)

 Declare Mesh Parts and Mesh Fields
• And mesh part superset-subset relationships
• And mesh field restrictions
• Detect and prohibit inconsistencies

 Cyclic superset-subset relationships
 Conflicting field array dimensions

 Complete (Finalize) Mesh Meta-Data Construction
• Analogous to a database schema for the mesh bulk-data
• Prohibit changes after mesh bulk-data is created …
• Because it can be expensive and complex to edit a populated

database’s schema

  0 1, , [, ,]X AField J Part n n 
A BPart Part

20

Modifying Mesh Bulk-Data
(structural changes)

 Two Mesh Bulk-Data Modification States

 Structural modifications
• Declare and destroy mesh entities and relations
• Change mesh entities’ mesh part memberships
• Local and parallel-inconsistent for shared or ghosted entities

 Restore parallel consistency
• A single parallel collective operation
• Very complex; good performance is especially hard
• Incremental – only resolve what has been modified

Parallel
Consistent

Modifiable
(structurally)restore parallel consistency

21

STK-Mesh Finite Element Layer
 Layer element concept onto “generic” mesh

• Element shapes and node ordering (a.k.a., cell topology)
 Including element-sides and element-edges

• Trilinos / Shards API and library of standard cell-topologies

 Optionally Associate a Cell Topology with a Mesh Part
•

• All elements that are members of this part are tetrahedrons

 Includes concept of element boundaries
• Sides & side neighbors, edges & edge neighbors

 Foundation for finite element computations
• Basis functions, numerical integration, …

4 4TetPart Tetrahedron

22

Conclusion
 STK-Mesh is an active R&D effort

• Within the DOE ASC SIERRA Toolkit project at Sandia
• Related R&D for field data arrays on multicore and GPGPU
• Open source though Trilinos: http://trilinos.sandia.gov

 Very complex domain and needs
• Parallel, heterogeneous, dynamically modifiable unstructured mesh
• Computational performance requirements: field data buckets

 Domain Modeling is Key to Managing Complexity
• Modular and layered architecture
• “Lean and clean” modules, dependencies, and APIs
• Minimize coupling between modules

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Williams

STK-Mesh Example Computation Setup and Parallel Execution

Outline

 Overview of Gear Fixture & features

 Setup of Meta Data

 Setup of Bulk Data

 Computational Kernel

 Movie

24

Description of Gears Demo

 Basis for movie at Super-Computing 2010
 Example is in STK sources and is used for testing

25

Overview of Gear Fixture

 Located in source:
• http://trilinos.sandia.gov/

 packages/stk/stk_mesh/stk_mesh/fixtures/GearsFixture
 packages/stk/stk_mesh/stk_mesh/fixtures/Gear
 packages/stk/stk_performance_tests/stk_mesh/GearsSkinning

 Cylindrical gear body made up of Hexahedron<8> elements

 Gear Teeth made up of Wedge<6> elements

 Parallel distribution of elements and nodes

 Rotation of gear

26

Gear Meta Data

 Declare the following parts of the mesh
• Cylindrical coordinates part
• Hex part
• Wedge part

 Declare the following fields:
• Cartesian coordinates field (x,y,z) on nodes
• Displacement field (∆x,∆y,∆z) on nodes
• Translation field on nodes
• Cylindrical coordinates field (r,θ,z) on nodes

 Restrict the fields to parts

27

Fixture Declaration of Meta Data
typedef Field< double , Cylindrical> CylindricalField;
typedef Field< double , Cartesian> CartesianField;

class GearsFixture {
public:

MetaData meta_data;
BulkData bulk_data;

…
Part & cylindrical_coord_part;
Part & hex_part;
Part & wedge_part;
CartesianField & cartesian_coord_field;
CartesianField & displacement_field;
CartesianField & translation_field;
CylindricalField & cylindrical_coord_field;

…
};

28

Fixture Construction: [MetaData]

 Inside Gear Fixture constructor:

const unsigned TWO_STATE = 2;
GearsFixture::GearsFixture(…) :

meta_data(fem::entity_rank_names(SpatialDimension)),
bulk_data(meta_data , parallel_machine),
…,
cylindrical_coord_part(

meta_data.declare_part("cylindrical_coord_part”,element_rank)
),

displacement_field(
meta_data.declare_field<CartesianField>("displacement", TWO_STATE)
), …

{
…
}

29

Restrict Fields to Parts: [MetaData]

 Field Restrictions: Entities in the part will have the field

 Example for cylindrical coordinate field and part:

GearsFixture::GearsFixture(…): [prev slide] {
put_field(

cylindrical_coord_field,
node_rank,
cylindrical_coord_part,
SpatialDimension
);

…
}

30

Induced Part Membership

Simplified Mesh Maintenance

 How to apply a field to nodes that are connected
to elements of a particular type?

 Option A: Manually
 Option B: Automagically

1. Put elements in a Part of that type
2. Restrict the nodal field to that part
3. All nodes in closure of elements in this part will get this field

 Cylindrical Part limited to Elements
 Cylindrical coordinates Field limited to Nodes
 Cylindrical coordinates field restricted to cylindrical part

31

Gear Bulk Data Operations

 Create Hex entities for gear body
• Place Hex entities in Hex part and Cylindrical part
• Declare relations to nodes

 Create Wedge entities for gear teeth
• Place Wedge entities in Wedge part and Cylindrical part
• Declare relations to nodes

 Initialize field data

 Skin mesh with faces
• Skinning function in fem

32

Initialize Field Data (entity-wise)

 Loop over nodes

 Assign Cartesian coordinates from cylindrical coordinates

loop over nodes {
const double rad = … ;
const double angle = … ;
const double height = … ;

double * const cartesian_data = field_data(cartesian_coord_field , node);

cartesian_data[0] = rad * std::cos(angle);
cartesian_data[1] = rad * std::sin(angle);
cartesian_data[2] = height;

}

33

Gear Rotation Computation (bucket-wise)

 Recall: Select buckets, iterate over buckets, compute

Selector select = cylindrical_coord_part &
(locally_owned_part | globally_shared_part);

BucketVector selected_node_buckets;

get_buckets(
select,
bulk_data.buckets(Node),
selected_node_buckets
);

34

Gear Rotation Computation (bucket-wise)

for (BucketVector::iterator b_itr = selected_node_buckets.begin();
b_itr != selected_node_buckets.end();
++b_itr) {

Bucket & b = **b_itr;

const BucketArray<CartesianField>
old_coordinate_data(cartesian_coord_field, b);

BucketArray<CartesianField>
displacement_data(displacement_field.field_of_state(StateNew), b);

…

for (size_t node_index = 0; node_index < b.size(); ++index) {
// Compute new and old coordinate data and assign to displacements:

displacement_data(0,index) = new_coordinate_data[0] – old_coordinate_data(0,index);
displacement_data(1,index) = new_coordinate_data[1] – old_coordinate_data(1,index);
displacement_data(2,index) = new_coordinate_data[2] – old_coordinate_data(2,index);
…

}
}

35

Hybrid Parallelism

 Alan’s talk will cover hybrid parallelization of this example

 Basic Idea: Parallel For applied to bucket loops

 Also see the following example:
stk_usecases/app/UseCase_blas_algs.hpp
stk_usecases/app/UseCase_blas.cpp

36

Gears Demo (stk_mesh, epu, conjoin, paraview)

37

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Williams

STK-Mesh Example Dynamic Mesh Modification

Outline

 The Meta-Data

 Modifying the Bulk-Data
• Maintaining Consistency

 Bulk-Data State
 Parallel Consistency
 Local Consistency
 Field Data
 Atomic Modifications

 Gear Demo
• Overview
• Code snippets necessary to strip teeth off of the gear

39

Mesh Modification

Meta-Data

• Equivalent to the schema of a database, the meta-data
describes the problem domain

• Freely modifiable before being committed

• No modifications allowed after commit

40

Mesh Modification

Bulk-Data

• Contains the discretization of the problem

• Its meta-data must be committed before any function
beside the bulk-data constructor can be called

 Meta-data check for global consistency will throw if the meta-data
is not globally consistent

• Bulk-data modifications are only allowed when the bulk-
data is in a modifiable state.

41

Modification Cycle

 Parallel Consistent
• NO Mesh modification allowed

 Modifiable
• Guaranteed to be locally consistent
• Atomic mesh modifications are allowed

Parallel consistency is enforced when switching from Modifiable to
Parallel Consistent

42

Parallel
Consistent restore parallel consistency

Modifiable
(structurally)

Maintaining Consistency

 The bulk-data state is transitioned by calling

• A new modification cycle begins whenever modification begin is called

• Atomic mesh modifications mark affected entities and all their upward
relations as modified

• Parallel consistency is enforced at modification end by

 Deleting all ghosts of modified entities
 Resolving parallel ownership and sharing of created and destroyed entities
 Resolving shared entities mesh part membership, entity relations, field data

memory allocation, and bucket membership
 Updating the one layer ghosted aura

bulk_data.modification_begin()
bulk_data.modification_end()

43

Maintaining Consistency

 The following operations are available through Atomic Mesh
Modifications

• Creating and/or deleting entities
• Changing entities’ mesh part memberships
• Changing entities’ relations
• Moving entities’ ownership to another process

 Atomic modifications are guaranteed to be locally consistent
• Induced mesh part membership will change as necessary
• Memory for field data will be created, resized, or deleted
• Existing field data will move to the correct bucket

44

Maintaining Consistency

Field Data

 Communicating field data does not modify the topology of the mesh and can
happen at any time (i.e. not restricted to a modifiable bulk-data)

 Atomic mesh modifications will move existing field data to the correct bucket
on the local process

When changing entity owner the field data is moved to the correct
bucket on the remote process

 After modification end space for field data of ghosted and shared entities has
be allocated but the data has not been copied from the owner

 Field data values can be copied from owned to shared/ghosted at any time
by calling

bulk_data.communicate_field_data(…);

45

Simple Mesh Modification Example

 Breaking teeth off of the gear
• Distribute mesh over available processes
• Create 6 new nodes to attach to the wedge
• Destroy the relationship between the current nodes and the

wedge
• Attach the new nodes to the wedge
• Copy the field data from the current nodes to the new nodes

 The current nodes stay with the body gear

46

Putting it all together

47

Distribute mesh across available processes

 Change entity owner (moving the entity to another process)

• The bulk data function change_entity_owner is a parallel
collective call that gives away ownership of entities to other
processes

//EntityProc is the pair
//(Entity *owned_entity, unsigned to_proc_id)
std::vector< stk::mesh::EntityProc> > move_entities;

// move the wedge to proc 2
if (bulk_data.parallel_rank() == 0) {

move_entites.push_back(std::pair(&wedge,2));
}

// Parallel collective call
bulk_data.change_entity_owner(move_entities);

// The field data will also be moved with the wedge

48

Creating a new wedge

 Creating new entities

• When new entities are created the creating process is the owner of
the entity

• If two or more processes create an entity with the same rank and
identifier, the entity will be shared

//Declare a new wedge element
stk::mesh::PartVector add_parts;
add_parts.push_back(wedge_part);
stk::mesh::Entity & wedge = bulk_data.declare_entity(

element_rank,
element_id,
add_parts

);

49

Creating new nodes

 Generating new entities

• The bulk data function generate_new_entities is a parallel collective
call that will create new entities of the requested ranks with globally
unique ids

//create 6 nodes on process 0
std::vector<size_t> num_requested_entities(num_entities_rank,0);

if (bulk_data.parallel_rank() == 0) {
num_requested_entities[node_rank]=6;

}

stk::mesh::EntityVector requested_nodes;

//parallel collective call
bulk_data.generate_new_entities(

num_requested_entities,
request_nodes
);

50

Attaching the nodes to the wedge

 Creating/Destroying entity relations

• Relations are directed from the higher ranking entity to the lower ranking
entity, the converse relation is automatically inserted/deleted

• Processes can only create/destroy relations when they own or share the
higher ranking entity

• Creating or deleting relations may change entity’s induced mesh part
membership

// declare relations from the wedge to the nodes
for (size_t i=0; i<6; ++i) {

bulk_data.declare_relation (
wedge, // from entity

requested_nodes[i], // to entity
i // relation identifer

);
}

51

Destroying nodes

 Destroying entities

• A process may destroy its reference to an entity if the entity does
not have a relation to a higher ranking entity in its owned closure.

• If the owning process destroys an entity and another process
shares the entity, ownership automatically transfers to a sharing
process

// destroy the old nodes attached to the wedge
stk::mesh::PairIterRelations

node_relations = wedge.relations(node_rank);

for (size_t i=0; i<node_relations.size(); ++i) {
stk::mesh::Entity * node = node_relations[i].entity();
//destroy relation to wedge
bulk_data.destroy_relation(wedge, *node);
//destroy the entity
bulk_data.destroy_entity(node);

}

52

Changing mesh part membership

 Processes can only change part membership when they own or share the
entity

 The entity will be moved to a different bucket

 The fields available to the entity will change to match the fields restrictions

// add the wedge to the cylindrical coordinate part
stk::mesh::PartVector add_parts, remove_parts;
add_parts.push_back(& cylindrical_coord_part);

bulk_data.change_entity_parts(
wedge,
add_parts,
remove_parts
);

// If cylindrical_coord_part was declare to be of rank element,
then the nodes will be induced into this part and the
cylindrical coordinate field will be available to the nodes

53

Gear Demo: Putting it all together

54

Sandia National Laboratories is a multi-program laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. SAND2009-2803P

STK: Beyond stk-mesh
(what else is in STK?)

STK Tutorial

Carter Edwards, Todd Coffey,
Dan Sunderland, Alan Williams

STK modules overview

Stk_util

Stk_mesh

Stk_linsys

Stk_transfer

Stk_search

Stk_algsup

Stk_io

Dependency diagram:
•Arrows point towards a module
that is used (depended on) by
another module.

Stk_rebalance

Algorithm-Support (AlgSup)
• Multi-threaded execution of

bucket-loop algorithms
Search

• Proximity, mesh independent
Linsys, IO, Rebalance

• Bridges from mesh-data to
external capabilities

• Built optionally
Util

• Everything depends on util
directly or indirectly

Transfer
• Not yet implemented

STK linsys – bridge between mesh-data and
linear-systems

Stk_mesh

Stk_linsys

FEI
FETI-DP
Epetra

AztecOO
…

0
1
2
3
4
5
6
7
8

Global Sparse
Matrix

0

4

21

3

6 8

5

7

E1

E3 E4

E2

FE Mesh
Connectivities

Stiffness-matrices
Constraint-

relations
etc

Stk_linsys provides
helpers for

assembling linear-systems

STK IO – Bridge between mesh-data and disk IO

Stk_mesh

Stk_io

Ioss

ExodusII
Nemesis
NetCDF

Stk_io is a Bridge layer that understands
the interfaces of stk_mesh and Ioss.

• Provides functions for moving data to/from
stk_io and Ioss.

• Provides high-level functions for creating a
mesh input and/or results outputwith
minimal code.

• Lower-level functions also provided for more
control of the data movement.

IOSS: Abstract Finite Element mesh interface
• Object-Oriented
• Database-Independent
• ExodusII is primary output format
• Also supports XDMF, heartbeat, history, and
pamgen

STK_AlgSup – Algorithm Support

Stk_mesh

Stk_algsup

Infrastructure for executing bucket-loop algorithms,
including multi-threaded.

Intel TBB
Others…

Recall the gears demo had loops for
updating coordinates, etc.

In general, many algorithms on mesh data
can be described as:

- create selector for desired parts
- get buckets
- for each bucket:

get field-data
perform computations

The bucket-loop is often compute-intensive and
can benefit from thread-parallel (or GPU) execution.

for (BucketVector::iterator b_itr = selected_node_buckets.begin();
b_itr != selected_node_buckets.end(); ++b_itr) {

Bucket & b = **b_itr;

const BucketArray<CartesianField> old_coord_data(cartesian_coord_field, b);
BucketArray<CartesianField> displ_data(displacement_field.field_of_state(StateNew), b);
…

for (size_t node_index = 0; node_index < b.size(); ++index) {

// Compute new and old coordinate data and assign to displacements:

displ_data(0,index) = new_coord_data[0] – old_coord_data(0,index);
…

}
}

Gear Rotation Computation (bucket-wise)

struct My_Algorithm {

void apply(stk::mesh::Bucket::iterator begin,
stk::mesh::Bucket::iterator end) const

{
size_t num_nodes = std::distance(end – begin);

const BucketArray<CartesianField> old_coord_data(cartesian_coord_field, begin, end)
BucketArray<CartesianField>

displ_data(displacement_field.field_of_state(StateNew), begin, end);

for (size_t node_index = 0; node_index < num_nodes; ++node_index) {
// Compute new and old coordinate data and assign to displacements:

displ_data(0,node_index) = new_coord_data[0] – old_coord_data(0,node_index);
…

}
}
…

};

STK_AlgSup – Algorithm Support (continued)
An Algorithm can be any class that has an ‘apply’ method…
(and the apply method contains the body of your bucket-loop)

STK_AlgSup – Algorithm Support

Example using Intel Thread Building Blocks (TBB)

stk::AlgorithmRunnerInterface*
alg_runner = stk::algorithm_runner_tbb(num_threads);

stk::mesh::Part& gear_part = …
stk::mesh::Selector select_nodes = gear_part & meta_data.locally_owned_part();

My_Algorithm alg;

alg_runner->run(select_nodes, …, bulk_data.buckets(NODE_RANK), alg);

The algorithm-runner implementation can launch buckets on
different threads.

The goal is for application code (My_Algorithm) to be unaware
of threading, as much as possible.
(Of course thread-safety issues must still be kept in mind…)

STK_Search, STK_Transfer

Stk_mesh

Stk_transfer

Stk_search

• Geometric proximity searches including:
OctTree, BIH

• Proximity search doesn’t depend on
stk_mesh

• Users provide lists of bounding boxes
or bounding spheres

• Stk_transfer will use stk_search, and will
depend on stk_mesh

• …but there will also be stk_mesh – to –
non-stk_mesh transfers

STK_adapt, STK_percept

Stk_mesh

Stk_adapt

Stk_percept

• Stk_percept
• Verification tools, including:

• Postprocessing
• Error metrics (e.g. norms)
• Manufactured solutions

• Stk_adapt
• Extend/modify the discretization

• Refine elements
• Increase polynomial order
• Convert topology (e.g. hex to tet)

STK_util - Utilities

STK_util doesn’t depend on
any other STK module

STK_util contains several
subdirectories of related
tools

•Diag
•Timers
•Ostream manipulators

•Environment
•Error Reporting
•Output Logging

•Parallel
•Comm utils
•Distributed-Index

•Util
•String comparisons
•Array Ops
•etc

Future Modules

 Stk_transfer:
• Mesh to mesh transfers
• Including stk-mesh – to – non-stk-mesh transfers

 Stk_parser:
• Input deck parsing
• Sierra SDDM

 Stk_coupling:
• Code coupling layer

Goals of the Toolkit Team

 Clarity of code
 Use-case driven API & implementation
 Capability/Flexibility/Performance

• Growing collection of performance tests, use-cases, …
 Modularity
 Highly unit-tested code

 Threading/GPU support
 Facilitate external collaborations with Sierra
 Agile development

Current Users

• Sierra (suite of finite-element analysis applications), SNL
• Cubit (Mesh generation)

Steve Owen/Matt Staten, SNL
• Albany (Prototyping rapid PDE-application development)

Andy Salinger, SNL
• Adaptive Mesh Refinement

Ulrich Küttler, Technische Universität München
• Superconductivity simulations

Nico Schloemer, University of Antwerp
• Fracture mechanics

Joe Bishop, Fracture LDRD, SNL
• Charon (planned for FY11), SNL

STK Capability in Albany

STK Mesh

CubitSTK_IO

Exodus Hand-Coded:

Abstract Discretization
Coordinates
Fields
Connectivity
Vector Maps

• Solution (DOF)
• Coordinate
• Node

Jacobian Graph
Node Sets

Pamgen

output

STK_Rebalance

Thank you!

 For more information:
http://trilinos.sandia.gov/packages/stk/
stk-users@software.sandia.gov email list

 We want more feedback!
• Good clean clear APIs and code can’t be achieved without user

feedback!

 Thanks for attending this tutorial!

 Developers:
Dave Baur, Todd Coffey, Carter Edwards,
Jim Foucar, Russell Hooper, James Overfelt,
Greg Sjaardema, Dan Sunderland, Alan Williams

