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Outline

Deterministic horizon in nonlinear dynamical systems
(sensitivity to initial conditions)

Example: contact-impact system (bouncing ball)

. Assessing mesh convergence beyond the deterministic
horizon (KS statistic)

Example: ductile ring fragmentation
. Optimal sample sizes
. Summary
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Deterministic Horizon

» result of extreme sensitivity to initial conditions

* inherent to the math/physics, not numerical scheme

trajectories in phase space

t=20

two initial conditions
nearly identical

0(t) = Xy (t) — xx(t)
|3 ~[3o]e™

A = Liapunov exponent

U= Yorizon X1(t)

deterministic
prediction fails
out here

X,(t)

1
thorizon ~ O(X In@}

a = acceptable accuracy

)
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Example: A Contact-Impact System, (Bouncing Ball)
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bounce height

Height between Bounces

bounce 1,2,3, and 4
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bounce height

Height between Bounces

bounce 8 and 9 bounce 10 bounce 11
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» Each bounce stretches and folds phase space (position and velocity).
 Correlation of bounce height with input height decreases with each bounce.
* Information is lost (entropy is created) with each bounce.

* There exists a deterministic time-horizon beyond which only a statistical
description is possible.
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What about a Polynomial-Chaos Expansion?

« Assume we have a uniform distribution on the initial drop height.
« Optimal basis is the Legendre chaos.

H(h) = i H, o,(2) bounce PC order
i=0 1-4 1
5 2
@ (&) Legendre polynomials - ;
() =1 -1<g<1 8 4
(&)=t ° 8
e 10 >20
1 (5.2
0,(8)= §(3§ -1) 11 >40
12 >80

0:(6)=> 62 - )

Required PC order doubles with each bounce.
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Nonlinear Dynamical Systems

Rayleigh-Taylor instability

VW

piecewise-smooth dynamical systems buckling
o stick-slip
 contact-impact

pervasive fr

acture

turbulence

These deterministic systems exhibit extreme sensitivity to initial
conditions and system parameters.



Example: Ductile Thin Ring Expansion

Grady, D. and D. Benson (1983). "Fragmentation of metal rings by electromagnetic loading." Experimental
Mechanics 23(4): 393-400.

Fragmentation of Metal Rings by

Electromagnetic Loading

Fragmentation studies on rapidly expanding metal rings are
performed with electromagnetic loading. Dynamic-fracture strain and
fragment-size measurements are reported for aluminum and copper

by D.E. Grady and D.A. Benson

ABSTAACT—A method is gescribed for performing “agfema
tion studies on rapidly expanding metal rings. A f;

mmp]lcalud by the expiosive violence, product gases, and

system g forees which accaletare

the fings lo maximurn radial velocities of approximately

200 m/s corresponding to circumferential-strain rates of

10's at . Streak-camera tech-

fiques are used to record the time-resolved motion of the

rings. Fracture-strain and fragmeniation experiments have

been performed on samples of OFHC copper and 11000
aluminum,

Introduction

The fragmentation of a body duc to a violent impulsive
load is a complicated phenomenon which currently cannot
be calculated with confidence. Dynamic loading leads o
myriad interactions of stress waves which govern the
fragmentation event. In addition, material-property
effects and statistics of the fracture nucleation and
growth process are also important.

lmemmatlon of dynamic fracture experiments s

and

of samples through application of the
initial high-amplitude shock wave. An improved labora-
tory technique has been explored' - where the sample ring
is isolated from the explosive by a cylindrical, high-
strengh metal mandrel. Recently, Warnes er al* have
extended this technique and used velocity interferometry
to determine time-resolved motion of the expanding ring.
Again, there is concern about shock preconditioning of
the sample. Shock-wave studies indicate that material
properties in metals can be severely aliered by shock
stresses above approximately 10 GPa.** Also, the impulse
provided by this method is not sufficient to produce
significant fragmentation.

The application of magnetic forces to load ring or
cylindrical geometries appears to have been described in
the literature first by Niordson.” A similar system has
been described by Walling and Forrestal' and used by
Wesenberg and Smm‘ to conducl fragmentation studies
on large all ing the energy
capab{hly of this technique. Magnem loading has several

by the i SIress
slates occurring in  most mpaci- or explosive-loading
studies. Consequently, experimental methods which
simplify the stress conditions leading to fi ion of

(1) motion is imparted to the sample
through conunuuus body I'or\:cs rather than shock loading

and shock effects are

the body offer a better ibility of unds ding the

principles governing dynamic fragmentation. One attrac-
tive method is provided by radial loading of ring-shape
specimens with magnetic forces in which dynamic fracture
and fragmentation is brought about by the rapid applica-
tion of a hamogencou.s one-dimensional tensile stress. The
present report d ibes such radial-loadi

experiments. Data on ring samples of IIOIHJ aluminum
and OFHC copper are also provided.

The expansion of rings and cylindrical shells has been
used productively in the past to investigate the pheno-
menon of dynamic deformation. Numerous studies by
direct application of explosive loading to the interior wall
of cylmdnml samples have been made. The method is

getic, however. control is

D.E. Grody and D.A. Benson are Reséarch Scientists, Sandio National
Laborotories, Albuquerque, NM §7185.

Original manuscrips submutted: Marck 29, 1952. Final version received:
July 11, 1983,

Limi; 2 Iuad.mg raies are readily controlled through
variation in rate and amphmde of the driving-current
pulse; and (3) the methed is more conducive Lo a labora-
tory than loading schemes, A
magnetic-loading technique is not without its drawbacks,
however. Since it is based on the principle of opposing
forces between primary and induced currents, inductive
heating, which may also have preconditioning effects, can
occur in the sample material. Also, when fragmentation
occurs, arcing of induced currents can result in additional
local-heating effects.

The system that we have developed to conduct frag-
mentation experiments on metal rings is modest compared
to the 250-kJ fast-discharge capacitor system described by
Walling and Forrestal.* The present method uses approxi-
mately 10 kJ of energy and l:ompax:s maost closely to the
work described by Niord of the

hni required additi d , however, and
consequently, some description is warranted. For example,
smaller experimental assemblies were found to be more
sensitive to loading instabilities and different techniques
were needed to apply the magnetic forces, The method

Experimental Mechanics » 393

Fig. 5—Photograph of fracture
and arrested-neck reglon from
dynamic expansion of an
aluminum ring

1 mm—
® FRACTURE

—1 mm—
* ARRESTED NECK

EXPANDING RING SPECIMEN ( 1100-0 ALUMINUM )
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International Journal of Impact Engineering 35 (2008) 1661-1665

Contents lists available at ScienceDirect

IMPACT
ENGINEERING

International Journal of Impact Engineering

EI. SEVIER journal homepage: www.elsevier.com/locate/ijimpeng

CTH simulations of an expanding ring to study fragmentation

J.P. Meulbroek ®*, K.T. Ramesh?, P.K. Swaminathan®, A.M. Lennon"

“Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA
" Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, USA

ARTICLE INFO ABSTRACT

Article history: A high velocity impact will result in fragmentation which can be seen through EOQ/IR/RF signatures.
Available online 3 August 2008 Understanding fragmentation and how it relates to signatures is key to being able to characterize the " . . .
impact. To study fragmentation in a computational context, an expanding ring was simulated using the Th e simu I ations resu |ted IN ran d om

Keywords: shock physics hydrocode CTH. The simulations were set up to approximate the conditions of experiments
Fragmentation

fitatio performed by Zhang and Ravi-Chandar [On the dynamics of necking and fragmentation - L. Real-time H
Expanding ring and post-mortem observations in Al 6061-0. Int J Fract 2006;142:183-217]. frag mentation patte rns th at are
Vc?;:‘:lgm:twe The simulations could not capture either

Simulations the fragment sizes and distributions or the physics of the failure mechanism seen in experiments. The m es h S i Ze d e pe N d e nt _"

mechanics of failure represented in the simulations is extremely sensitive to the material model and how
damage is treated in that model. However, the average fragment size in the simulations versus strain rate
was found to be consistent with popular fragmentation models such as Grady-Kipp and Zhou-Molinari—
Ramesh.

© 2008 Elsevier Ltd. All rights ~=e=ew=d
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Fig. 4. Fragmentation patterns for three different meshes. (a) Coarse mesh with 75 G 00k 00i ODE O 005 006 006G 00 0075
elements through the thickness. (b) Medium mesh with 10 elements through the Mesh Size (mm)

thickness. (c) Fine mesh with 15 elements through the thickness.
Fig. 5. Number of fragments versus mesh size. For three different mesh sizes, three
different fragmentation patterns emerged showing that fragmentation is mesh
dependent.



Definitions of Statistical Convergence

Almost Sure Convergence

Pr(lim X, = Xj =1 a.e.

X engineering quantity of interest, h—0 _
a random variable Convergence In r-mean /\
X, random variable for a IimE“Xh—X H:O
given mesh resolution h h—0 _ _
Increasing
: . . Tt strength
F.cumulative distribution for Convergence in Probability
a given mesh resolution h _
limPr(X, - X|>¢)=0
h—0 H

———————————————————————————

Convergence in Distribution
lim F, (x) = F(x)
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How to Assess Convergence in Distribution?
limF, (x) = F(x)

CDF

0 0.2 0.4 0.6 0.8 1
X

use L, norm: L_(F,F)=sup|F (x)-F(x)|

To have a complete function space with this norm,
need to assume F, is continuous.

National

(Space of continuous functions is complete in the L, norm.) @ Sandia
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CDF

0.8

0.6

0.4

0.2

What about finite sampling effects?

empirical CDF, S, (x)

0, X< X
Sy(x)= ﬁ X, <X<X, r=1..,N-1

1 Xy < X

Strong Law of Large Numbers:

|!1im Sy (X) =F(X) (almost sure convergence)
—o©

Kolmogorov-Smirnov statistic, D,

Dy, =supSy (x) — Fy(x)|
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0.8

O
fo)

empirical CDF

o
~

0.2

Kolmogorov-Smirnov Statistic

What is the distribution for D,?

Dy, =SUp[Sy, (X) ~ F (X))
X
= continuous CDF
sample, N, =50
sample, N, =50
0.4 0.6 0.8 1.2

1.4

)
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Kolmogorov-Smirnov Statistic

A. KoLMmMoGorov, Sulla determinazione empirica di una legge di distribuzione, Giornale
dell’Istituto Italiano degli Attuari, 4 (1933), pp. 83-91.

D, =sup|S (x) — F(x)|

asymptotic result

lim Pr(D,, < z/\/N) :1—22(—1)"‘1 exp(-2 j?z?) = p(2)

(convergence in probability)

(conservative to within 2% for N > 50)
(tabulated for N < 50)

* independent of distribution
 only for continuous CDFs
* gives confidence bounds
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0.95

0.8

0.6

p(2)

0.4

0.2

Kolmogorov-Smirnov Statistic

0.4

0.8

1.2

1.36

1.6

Dy =sup|Sy (x) — F(x)

1.63

Pr(DN <222 =99%
JN
1.36

Pr| D, < == | = 95%
JN
1.19

Pr| D, < == | = 90%
JN j

(conservative to within 2% for N > 50)
(tabulated for N < 50)
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0.9

0.8

Kolmogorov-Smirnov Statistic

95% confidence bounds

Weibull
eCDF, N=50
95% confidence band

0.9

0.8

0.7

0.3

0.2

0.1

—— Weibull

eCDF, N= 500
- === 95% confidence band

)
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CDF(y)

0.8

0.6

0.4

0.2

How to use KS-statistic to assess convergence-
In-distribution with finite sample sizes?

—— FO)
— SATDlE

confidence
band

0.2 0.4 0.6 0.8

Also, joint probability reduces confidence level.
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Simulation

Time = 0.000000

0.38
0.25
012
0.00




Four Mesh Refinement Levels

RO R1 R2 R3
* 6K elements . « 48K elements « 385K elements  3M elements
* 1 proc. on workstation « 1 proc. on workstation « 16 proc. on third + 128 proc. on tbird
¢ ~10 min runtime « ~2 hour runtime « ~2 hour runtime « ~4 hour runtime

16 elements through thickness

8 elements through thickness 32 elements through thickness
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Material Variability

Weibull Probability Density

PDF

Weibull modulus = 25

without texture

each element is iid
(independent, identically distributed)

with texture
each “cell” is iid
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Cross-Sectional Area

ING)
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Reduce 3D random field to 1D random field.
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Neck Identification
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CDF

0.5

0.4

0.3

0.2

0.1

Convergence in Distribution?

with material texture

quantization effect

100 run ensemble

1;” sample sizes
o N, = 1714
iy N, = 2274
: N, = 2386
N, = 2421

Dyog, = 0.40

i Dy, = 0.12
Dy, gy = 0.045

B Warning: We have to be careful here. The
KS statistic is predicated on simple random

. sampling. Combining multiple fragments
from one simulation is cluster sampling.

1 1 1 1
0 10 20 30 40 50 60

pre-fragment size
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Quantization Error

\
PHRES Fragment size is discretized to h in 1D.
S Fragment size is discretized to h2in 2D. > limCDF is not continuous.
k«?‘f.'zﬁ::aé'; L . 3 N =
S 5 Fragment size is discretized to h® in 3D.
J
|
09
08 |
0.7
0.6
& o b
)
o
04
03
02 continuous
— quantized
0.1
0 L | 1 1 1 1 1

-

1. 1.4 1.6 1.8 2
! /N

1
2]
Dg = max ((:I_F) Ay.

0 02 04 06 08

Y
di,j —dn;,N;| < 2i/V/Ni +

yeR ]
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CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Convergence in Distribution?
without material texture

100 run MC ensemble

sample sizes
N, = 1686
N, = 2424
N, = 2766
N, = 2905

10 20 30 40 50 60
pre-fragment size
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L, difference norm

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

-0.1

Convergence in Distribution?

with material texture

sampling error, 90% confidence

quantization error

o

L, difference norm

0.01

90% confidence

0.01

)
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L, difference norm

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

-0.1

Convergence in Distribution?

without material texture

sampling error, 90% confidence

quantization error

R, - R,

0

0.04 0.08 0.12

0.1

L, difference norm

0.01

sampling error, 90% confidence

0.01

0.1
h,,-h,
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L, difference norm
(=]

0.01

Convergence in Distribution?

with texture
————— no texture

0.01

0.1
By, -

)
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e

L, difference norm

0.01

Optimal Sample Sizes

0.01

Need to increase sample size
T - with mesh refinement to
S maintain a constant ratio of
confidence-bound to error.
R,-R,
90% confidence
0.1 1
hf-r'h;‘
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Optimal Sample Sizes

Cost function F¢(Ni,Na,...,Ny):=aNy+axN2+---+a, N,

) Zi/ N +7z; N .
Constraints  Ci(Ni, Niy1):= i/ 'd it/ Ni S o i
ii+1

Augmented Lagrangian La(Ny, ..., Ny, iy ooy zp—1):=Fo(Nj)+ 41 C1+- -+ iy 1Cpy

Lagrange multipliers

Necessary conditions for an extremum - =0, i=1L...n

Can show that Hessian matrix of L, is positive definite,
so the critical points are relative minima.
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Optimal Sample Sizes

n-1 equations for n—1 Lagrange multipliers

/1 _l/3+ A1+ 72
2(!|:| 2(13.'.3

A ;. " g
A+ A2 I/'+ A2+ A3
20222 2a323

—1/3 . \
/ An—21An—1
13
LUpn—12n—1

(/~u—3 T An—2

2an—22n—2

\ . —11/3 \
(/-112+/~ul ) / +( fn—1
2an—12n—1 2anzn

These equations “telescope” to

_if3
) = 0d] 2,

—-1/3
= (5([3_3,

Get optimal sample sizes at
each mesh level.

(/:1:1)3/3
Nj = :
2a

~1/3
) = 0dp—2,n—1,

give one

nonlinear equation that can be solved
numerically. Then, back substitute and solve

for all A.

Ny — (M)ﬂ
2a»

4 130\ 2/3

, Ny — ((/._Jr/.))ﬂz) ‘
2a3

2(1;1— 1

) _N2/3
/n—12
N” = ( .F.i) II) .
2a,
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; : 2/3
N,_ = ((/-II—2+/'II—]):11—I ) / ‘




Optimal Sample Sizes

optimum sample size

1000000
cost function=N, + 8 N, + 64 N, +. ..
cost function=N, +4 N, + 16 N, +. ..
100000 b cost function=N, +2 N, +4 N, +. .. e
cost function=N, + N, + N; +... 5
=
10000
1000 ¢
n=2
—e n=3
100 ¢ p—— =0}
n=>5 _
i T — i For two meshes we can solve explicitly.
10 : : : : : : _ (@1/2a)) N3 _\2/373
0 | 2 3 4 5 6 7 N = W[Q“L-l) + az2z2)""1°,
mesh level ' "
=~ /24 N2/ .
- %[(m:l 3 L Daszs PP,
(od 2)*
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pairwise L difference

piece-wise linear approximations

to

Optimal Sample Sizes

a quadratic map

1

0.75

L g
£ uniform sample size, N = 108 near optimal sample sizes
0.1 3 3
0.01 F 3
0.001 [ .
Y Vv
0.000] L——wenl 0w uninl il el ol
0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1
h h

optimal sample sizes
N, = 1660

N, =6710

N; =26 x 103

N, =110 x 10°

N: =400 x 103

Ng = 1.94 x 108

N, =5.37 x 10°

Ng = 49 x 10°

Ny = 48 x 10°
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Summary

. Class of deterministic dynamical systems that are extremely
sensitive to initial conditions.

. For these systems, spectral methods and variance reduction
methods are ineffective. Need to resort to direct Monte Carlo
sampling.

. Presented a method based on the KS-statistic to verify
convergence in distribution with mesh refinement.

. Presented a method for finding the optimal sample sizes at each
mesh level for minimizing a linear cost function.
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