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Outline

1. Deterministic horizon in nonlinear dynamical systems 
(sensitivity to initial conditions)

2. Example:  contact-impact system (bouncing ball)
3. Assessing mesh convergence beyond the deterministic 

horizon (KS statistic)
4. Example: ductile ring fragmentation
5. Optimal sample sizes
6. Summary



Deterministic Horizon

• result of extreme sensitivity to initial conditions

• inherent to the math/physics, not numerical scheme
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trajectories in phase space

 = Liapunov exponent

x1(t)

x2(t)

(t) = x1(t) – x2(t)

a = acceptable accuracy



g
)sin( t

Example: A Contact-Impact System, (Bouncing Ball)

1 degree of freedom (up and down)

initial drop height



bounce 1,2,3, and 4 bounce 5,6, and 7

1% variation on initial height

Height between Bounces



bounce 8 and 9 bounce 10 bounce 11

Height between Bounces

• Each bounce stretches and folds phase space (position and velocity).
• Correlation of bounce height with input height decreases with each bounce.
• Information is lost (entropy is created) with each bounce.
• There exists a deterministic time-horizon beyond which only a statistical 

description is possible.



What about a Polynomial-Chaos Expansion?
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 i Legendre polynomials

• Assume we have a uniform distribution on the initial drop height.
• Optimal basis is the Legendre chaos.
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Required PC order doubles with each bounce.



Nonlinear Dynamical Systems

turbulence

Rayleigh-Taylor instability

pervasive fracture

buckling

shear banding
necking

These deterministic systems exhibit extreme sensitivity to initial 
conditions and system parameters.

piecewise-smooth dynamical systems
• stick-slip
• contact-impact



Example:  Ductile Thin Ring Expansion
Grady, D. and D. Benson (1983). "Fragmentation of metal rings by electromagnetic loading." Experimental 
Mechanics 23(4): 393‐400.



“The simulations resulted in random
fragmentation patterns that are 
mesh size dependent.”



Definitions of Statistical Convergence
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Convergence in r-mean

hX random variable for a 
given mesh resolution h

X engineering quantity of interest, 
a random variable

increasing
strength

hF cumulative distribution for 
a given mesh resolution h
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How to Assess Convergence in Distribution?
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To have a complete function space with this norm, 
need to assume Fh is continuous.  

(Space of continuous functions is complete in the L norm.)

use L norm:

use L norm:



What about finite sampling effects?

empirical CDF, )(xSN
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Strong Law of Large Numbers:
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Kolmogorov-Smirnov statistic, DN



Kolmogorov-Smirnov Statistic
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What is the distribution for DN?

continuous CDF



Kolmogorov-Smirnov Statistic
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asymptotic result

(conservative to within 2% for N > 50) 
(tabulated for N < 50)
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• independent of distribution
• only for continuous CDFs
• gives confidence bounds

(convergence in probability)



Kolmogorov-Smirnov Statistic
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(conservative to within 2% for N > 50) 
(tabulated for N < 50)



Kolmogorov-Smirnov Statistic

N = 50 N = 500
95% confidence bounds



How to use KS-statistic to assess convergence-
in-distribution with finite sample sizes?
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Also, joint probability reduces confidence level.



Simulation



Four Mesh Refinement Levels

R0 R1 R2 R3
• 48K elements
• 1 proc. on workstation
• ~2 hour runtime

• 6K elements
• 1 proc. on workstation
• ~10 min runtime

• 385K elements
• 16 proc. on tbird
• ~2 hour runtime

• 3M elements
• 128 proc. on tbird
• ~4 hour runtime

4 elements through thickness

8 elements through thickness

16 elements through thickness

32 elements through thickness



Material Variability

with texture
each “cell” is iid

without texture
each element is iid

(independent, identically distributed)

R0

Weibull Probability Density

Weibull modulus = 25



Cross-Sectional Area
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Reduce 3D random field to 1D random field.



Neck Identification



sample sizes
N0 = 1714
N1 = 2274
N2 = 2386
N3 = 2421

Convergence in Distribution?

with material texture

100 run ensemble

quantization effect

Warning:  We have to be careful here.  The 
KS statistic is predicated on simple random 
sampling.  Combining multiple fragments 
from one simulation is cluster sampling.



Quantization Error

Fragment size is discretized to h in 1D.
h Fragment size is discretized to h2 in 2D.

Fragment size is discretized to h3 in 3D.
CDFlim

N
is not continuous.



Convergence in Distribution?
without material texture

sample sizes
N0 = 1686
N1 = 2424
N2 = 2766
N3 = 2905

100 run MC ensemble



Convergence in Distribution?

with material texture

90% confidence



Convergence in Distribution?

without material texture



Convergence in Distribution?



Optimal Sample Sizes

90% confidence

Need to increase sample size 
with mesh refinement to 
maintain a constant ratio of 
confidence-bound to error.



Optimal Sample Sizes

Cost function

Constraints

Augmented Lagrangian

Necessary conditions for an extremum

Lagrange multipliers

Can show that Hessian matrix of La is positive definite, 
so the critical points are relative minima.



n1 equations for n1 Lagrange multipliers

Optimal Sample Sizes

Get optimal sample sizes at 
each mesh level.

These equations “telescope” to give one 
nonlinear equation that can be solved 
numerically.  Then, back substitute and solve 
for all .



Optimal Sample Sizes

For two meshes we can solve explicitly.



Optimal Sample Sizes

piece-wise linear approximations 
to a quadratic map

optimal sample sizes
N1 = 1660
N2 = 6710
N3 = 26  103

N4 = 110  103

N5 = 400  103

N6 = 1.94  106

N7 = 5.37  106

N8 = 49  106

N9 = 48  106

uniform sample size, N = 106 near optimal sample sizes



Summary

1. Class of deterministic dynamical systems that are extremely 
sensitive to initial conditions.

2. For these systems, spectral methods and variance reduction 
methods are ineffective.  Need to resort to direct Monte Carlo 
sampling.

3. Presented a method based on the KS-statistic to verify 
convergence in distribution with mesh refinement.

4. Presented a method for finding the optimal sample sizes at each 
mesh level for minimizing a linear cost function.




