Sandia
National
Laboratories

Introduction

High-performance computing architectures are undergoing a marked transformation.
Increasing performance of the largest parallel machines at the same exponential rate will
require that applications expose more parallelism at an accelerated pace due to the advent of
multi-core processors at relatively flat clock rates. The extreme number of hardware
components in this machines along with 1/O bottlenecks will necessitate looking beyond the
traditional checkpoint/restart mechanism for dealing with machine failures. Additionally, as a
result of the high power requirements of these machines the energy required to obtain a result
will become as important as the time to solution. These changes mean that a new approach to
the development of extreme-scale hardware and software is needed relying on the
simulaneous exploration of both the hardware and software design space, a process referred
to as co-design.

The Structural Simulation Toolkit (SST) enables co-design of extreme-scale architectures by
allowing simulation of diverse aspects of hardware and software relevant to such
environments. Innovations in instruction set architecture, memory systems, the network
Interface, and full system network can be explored in the context of design choices for the
programming model and algorithms. Our toolkit provides two novel capabilities. The first is a
fully modular design that enables extensive exploration of an individual system parameter
without the need for intrusive changes to the simulator. The second is a parallel simulation
environment based on MPI. This provides a high level of performance and the ability to look at
large systems. The framework has been successfully used to model concepts ranging from
processing in memory to conventional processors connected by conventional network
Interfaces and running MPI.

SST/macro

The macroscale components of SST provide the ability to explore the interaction of software
and hardware for full scale machines using a coarse-grained simulation approach. The parallel
machine is represented by models which are used to estimate the performance of processing
and network components. Applications can be represented by skeleton applications which
replicate the control flow and message passing behavior of an actual application without the
cost of doing actual message passing or heavyweight computation. The behavior of existing
Message Passing Interface (MPI) applications can be captured using the DUMPI library
distributed as a part of SST/macro. DUMPI traces can be replayed in SST/macro to simulate a
machine different from that used to collect the original trace. SST/macro can be easily be
extended with additional network models, trace file formats, and more detailed processor
models.

SST/macro coarse- SST core and fine-grained components

grained components

SST core SST components
Programming Model -
ime _ genericProc
Message Passing Setup _ DRAMsim
Actor Model vae"t _ Seastar
ower
Distribution)
Network Model
Topology

Congestion Model

DUMPI tracing library

Application Model MPI C

MPI Fortran 77

Skeleton App. L MPI Fortran 90

Trace Reader

The system architecture of the Structural Simulation Toolkit. The SST/macro components for coarse-grained simulation are
shown in blue.

Simulation using application traces

SST/macro is able to generate network traffic and processor workloads using trace files that
record MPI calls and the time spent performing computation between MPI calls. Currently, two

trace formats can be processed: Open Trace Format (OTF) and DUMPI. Different trace formats

provide differing levels of detail about the MPI call signature, and this impacts the accuracy of
the simulator.

The DUMPI format is a custom MPI trace file format, recorded in binary, which has been
developed as part of the SST/macro simulator. DUMPI files are obtained by linking the

application with a library that uses the PMPI interface to intercept MPI calls. The DUMPI format

records more information than OTF, including the full signature of all MPI-1 and MPI-2 calls.
With this additional detail we are able to more accurately simulate an application. The DUMPI
format also records return values and MPI request information. This allows error checking and
permits us to match immediate mode MPI operations with the MPI operations that complete
them. In addition, DUMPI allows individual functions to be profiled instead of the entire
program. Processor hardware performance counter information can also be stored in DUMPI
files using the Performance Application Programming Interface (PAPI). This allows information
such as cache misses and floating point operations to be logged. Such data is recorded both
within and between MPI calls. This information will be used by the simulator in more detailed
processor models, as they are made available.

Simulation using skeleton applications

Trace files are generated with specific application input and parallel task configuration, yielding
a detailed profile of one particular run. Through the manipulation of parameters used to model
the hardware and swapping in different messaging models and strategies, trace-driven
simulation can contribute significantly to performance optimization and hardware design at
parallelism scales on the same order as that used to generate the trace. However, the

for coarse-grained architecture simulation

Sandia National Laboratories, Livermore, CA

challenge of optimizing codes or designing hardware for extreme scales requires simulation
capabilities long before hardware is actually available for trace file generation. Additionally,
many distributed-memory codes have branch statements that are dependent on which of a set
of requests was matched at a given stage. These execution details cannot be adequately
captured in trace-driven execution, since the trace file reader cannot retroactively redirect
control flow in the application.

Skeleton applications are supported in SST/macro to remedy the above deficiencies in the
trace-based approach. A skeleton application models the control flow, communication pattern,
and computation pattern of the application in a coarse-grained manner. Creating skeleton
applications requires a greater programmer effort than trace-driven simulation. However, it
provides an immensely powerful approach to evaluate efficiency and scalability at extreme
scales and to experiment with code reorganization or high-level refactoring without having to
rewrite the numerical part of an application. This is further facilitated by the reduction in code
size that happens when the bulk of computation is removed.

Using simulation for programming model exploration

Major effort is required to rewrite an application using a new programming model, thus it is
highly desirable to attempt to understand the ease of expressing algorithms in the new model
and the expected performance advantages on future machines before doing so. Skeleton
applications provide the basis for programming model exploration in SST/macro. The
application control flow is represented by lightweight threads and each of these threads
represents one or more threads in the application (depending on the level of detail desired In
the model). This approach allows programmers to specify control flow in a straightforward way.
Here we will discuss two programming models, message-passing and the actor model.

Systolic Matrix Multiplication
We base our systolic matrix multiply skeleton application on Cannon's 2D algorithm. Given two
nxn matrices, A and B, we wish to compute elements C; = EkAkBkj . Assigning the nodes to a

logical 2D mesh, the A and B matrices are partitioned into one block per processor as

Node (0,0) Node (0.1) Node (0.2) llustrated in the figure to the left. Each A block is shifted left
AorBoo | | AoBor | | AcaiBos by its row number and each B block is shifted up by its column
number (wrapping around in both dimensions) so that the
— —~ initial block locations are as in Maeo OSTET Y
;\“'e‘é”’ X’“‘el‘;” ;“’del‘;’z’ the figure to the right. The AB, (| AB,. €| AB, |
wBio | | AnBi | | Awbi | { algorithm iterates n,, -1
— — times, at each step using non- == _— —
N .) Node (1,0) Node (1,1) Node (1,2)
Node (2,0) Node (2,1) Node (2,2) blocking send/receive calls to AB. €| AB €|AB.
ABy (Il ALB. [l A.B., [simulate shifting its current A e 1272 10202
__ plock one node to the left and - = -
— — Its current B block one node Node (2,0) Node (2,1) Node (2,2)
The glven block layout and shifts needed up. Simulation O_f the _ AzBy ‘ A20Bo; ‘ AxB:; ‘
to prepare for matrix multiplication. overlapped multiplication of
the current blocks with _— — -

accumulation of the result into the local C block is performed. Initial block distribution for matrix
Upon completion of the n, . —1 iterations, a final compute call multiplication and block shift pattern.

simulates the multiplication of the blocks received during the
final loop iteration, completing simulation of the algorithm. The SST/macro skeleton code
performing this operation is shown below.

// Set up the instructions object to tell the processor model
// how many fused multiply-add instructions each compute call executes
boost: :shared_ptr<sstmac::eventdata> instructions =
sstmac: :eventdata: :construct();
instructions->set_event("FMA",blockrowsize*blockcolsize*blocklnksize);
// Iterate over number of remote row and column blocks
for (int i=0; i<nblock-1; i++) {
std: :vector<sstmac: :mpiapi: :mpirequest_t> regs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_t req;
mpi1()->1send(blocksize, sstmac::mpitype::mpi_double,
sstmac::mpiid(myleft), sstmac::mpitag(0), world, req);
reqgs.push_back(req);
mpi()->1recv(blocksize, sstmac::mpitype::mpi_double,
sstmac: :mpiid(myright), sstmac::mpitag(0), world, req);
reqs.push_back(req) ;
// Begin non-blocking down shift of B blocks
sstmac::mpiapi::mpirequest_t req;
mpi()->1send(blocksize, sstmac::mpitype::mpi_double,
sstmac: :mpiid(myup), sstmac::mpitag(0), world, req);
reqgs.push_back(req);
mpi()->1recv(blocksize, sstmac::mpitype::mpi_double,
sstmac: :mpiid(mydown), sstmac::mpitag(0), world, req);
reqs.push_back(req) ;
// Simulate computation with current blocks
compute_api ()->compute(instructions);
std: :vector<sstmac: :mpiapi::const_mpistatus_t> statuses;
// Wait for data needed for next iteration
mpi()->waitall(reqs, statuses);
}
// Simulate computation with blocks received during last loop iteration
compute_api () ->compute(instructions);

A code fragment implementing a skeleton program for a systolic matrix multiplication (restricted to square blocks).

The MPI-based matrix multiply skeleton application was used to simulate the parallel efficiency
of the skeleton algorithm for a hypothetical extreme-scale architecture. The machine
parameters used are 10 GByte/sec internode bandwidth, 1 us internode latency, 10 GByte/s
Intranode bandwidth, 10 ns intranode latency, a 4 Gop/sec fused multiply and add rate for each
core, and 250 cores per MPI rank. The skeleton application is organized so that a single MPI
rank runs on each node, and multi-threading is used for parallelism on the nodes. Since we
are primarily focused on the communications-related performance and programmability, we do
not explicitly model each of the threads on each node. Each node starts with a single matrix
block of size 10,000 on each side. The degraded runs include a single node running at half of
the computation rate as the other nodes. For the fat-tree and crossbar networks, the systolic
shifts in the initial redistribution phase are replaced by direct sends to the target nodes. We will
refer to this algorithm as DS.

Curtis Janssen, Helgi Adalsteinssen, Scott Cranford, Damian Dechev, David Evensky, Joe Kenny, Nicole Lemaster, Ali Pinar

The results are shown in the figure 1.00

to the right. Moving from a single

node to multiple nodes, we see a dip

In performance due to the necessity 0.80 |

of moving data through the network. >

As the number of nodes increases, 3 0.60 |

the crossbar and fat-tree outperform 2

the torus because they do not Ll . — —h——A 4
systolically form the initial data % 0.40 | B
distribution. The fat-tree is at times 5_? Crossbar (DS) —»—

slightly slower than the crossbarr, Fat-tree (DS) —a—
because it uses static routes and 0.20 | Tory ST(OS‘S —

some congestion is possible. For Degraded Fat-tree (DS) —a—

the degraded cases, performance is 0.00 ~ Degraded Torus ——
roughly halved because the systolic 102 103 10% 10° 108

nature of the algorithm forces all

nodes to wait for the degraded node

at each synchronization point.

For comparison, the torus results
were also obtained using the direct
send (DS) algorithm, and these are

Number of Cores

Weak scaling parallel efficiency of the systolic matrix matrix algorithm under

a variety of conditions: 1) full crossbar network (DS), 2) fat-tree formed from
radix 36 switches (DS), 3) 2D torus network, 4) 2D torus network (DS),5)

algorithm.

also shown in the above figure. For
the machine and problem parameters employed in our study, DS was faster than using a

systolic startup algorithm. The torus is still slower than the fat-tree and crossbar networks due
to network congestion in forming the initial block distribution.

Actor Model Matrix Multiplication
The actor model is a mathematical framework for parallel programming. Actors are the central
entity in this model, which communicate using using asynchronous messages (here referred to
as mail). Some of the key properties of an actor model are: 1) actors can create other actors,
2) actors can only communicate via mail, 3) an actor's behavior is determined by local
iInformation (including received mail), 4) mailing addresses can be sent via mail, and 5) there is
no guarantee of order of mail arrival.

fat-tree formed from radix 36 switches with a single degraded node (DS), 6)
2D torus with a single degraded node. DS designates use of the direct send

The goal for the asynchronous matrix multiply was to eliminate synchronization points, whether
explicit or implicit, if at all possible. To this end, each node prefetches the A and B matrix
elements directly from their owner, allowing for near-complete overlap of computation and
communication. While this approach has lower theoretical peak performance on a perfect
mesh layout than the systolic algorithm, it has the potential to be much more robust to
performance variations in processor or network performance, provides an easier way to add
dynamic load-balancing, and has a much clearer path to fault resilience than the systolic

algorithm.

The matrix multiply skeleton application was constructed using the actor model. Each physical
node has one actormatmul actor which owns a submatrix of the A, B, and C matrices. The
actormatmul creates one or more computor actors, each of which in turn manages one or
more hardware threads to carry out the actual matrix multiplication. Each actormatmul starts
with a list of work units, and it begins prefetching the matrix blocks required to perform some of
those units. When all required data arrives for one of the work units and a computor is
available, it dispatches that work unit to the computor. The matrix blocks are passed by
reference if the computor is local (which it is unless load-balancing is employed, see below),
otherwise the blocks are forwarded by the actormatmul to the computor. Asmall actorid
handle specifying the actormatmul to which the computation results should be sent is also
sent to computor. If the C block is local, then a reference to the result data is given to the
local actormatmul to avoid a (simulated) copy.

1.00
0.80 +
>
@)
o
[0.60
L
[7)
Ic 0.40 |
©
al
0.20 +
0.00

Theoretically optimal scaling —
Expected without load balancing -
Simple dynamic load balancing ——
Systolic algorithm —»—

4 16 64 256 1024 4096

Number of Nodes

A comparison of the effect of a single degraded node on the parallel efficiency of an

actor-based algorithm with simple dynamic load-balancing and the traditional systolic

algorithm. A fat-tree formed from radix 36 switches was simulated.

Based on this actor matrix
multiplication application, a
simple dynamic load-
balancing scheme was
Implemented as follows.
When an actormatmul has
completed all its local work, it
will offer its computor actors
to a neighboring node, which
then has the option of either
offloading a portion of its
calculation or rejecting the
donation by sending it on to a
nearby neighbor. The figure
at the left compares the
performance of this load-
balancing scheme with the
systolic algorithm for the
case where a single node is
suffering a 50% performance
degradation. The machine
and application parameters
are the same as used for the
systolic matrix multiplication.

Despite the simplicity of this load-balancing scheme, the effects are immediately apparent
when one of the nodes is degraded. While the systolic algorithm approaches an efficiency of
approximately 0.5, the load-balancing algorithm recovers a large-fraction of the otherwise
underutilized nodes,eventually achieving nearly optimal efficiency.

CoDEXx: Co-Design for Exascale

Skeleton applications provide the ultimate flexibility in trying out new algorithms, runtime
systems, and in predicting performance at scales not yet available on existing platforms.
However, human effort is currently required to produce the skeleton application, even when a
full application is available. The Co-Design for Exascale (CoDEX) project is a collaboration

SAND2011-1201C
SST/macro: The Structural Simulation Toolkit macroscale components

between LBNL, LLNL, and Sandia to remedy this issue. A key CoDEX thrust is to provide a tool
which can convert application source code into a skeleton application which is capable of

driving the simulator. The figure below depicts the architecture of this tool, which will use ROSE
compiler infrastructure to perform the transformation.

Application Source

\ i Z
Fortran Front End C & C++ Front End
(Opené4) (EDG)
EDG’s AST EDG’s AST

A\
High-level
AST Builders

A\
Sage lll Intermediate
Representation (IR)

o
c
LL]
e
c
3
-
L
LL]
N
O
o

B
ROSE Program Transformation

LS
ROSE Program Analysis
& Loop Optimizations AST

| Rewrite

Mechanism
AST Traversal

ROSE Middle Layer

Skeleton App. IR

C++ Code Generator

Skeleton App. Source

SST/macro Architecture Simulator '
-/

The software architecture of the skeleton application generator.

ROSE'’s front end is first used to construct an abstract syntax tree (AST) for the program using
the Open64 front end for Fortran and EDG for C and C++. The AST Is converted into the Sage
Il Intermediate Representation (IR) and then given to the analysis phase. In this phase, the
AST Is transformed and rewritten to capture the essence of the control flow and the
communication operations. This phase produces the IR for the skeleton application. The
skeleton IR and then processed by the ROSE backend, which produces source code that can
be used to drive the SST/macro simulator.

Funding Statement

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Disclaimer of Liability

This work of authorship was prepared as an account of work sponsored by an agency of the
United States Government. Accordingly, the United States Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow
others to do so for United States Government purposes. Neither Sandia Corporation, the
United States Government, nor any agency thereof, nor any of their employees makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately-owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Sandia Corporation, the United States Government, or any agency thereof. The
views and opinions expressed herein do not necessarily state or reflect those of Sandia
Corporation, the United States Government or any agency thereof.

adphill
Typewritten Text

adphill
Typewritten Text

