
Introduction
High-performance computing architectures are undergoing a marked transformation. 
Increasing performance of the largest parallel machines at the same exponential rate will 
require that applications expose more parallelism at an accelerated pace due to the advent of 
multi-core processors at relatively flat clock rates. The extreme number of hardware 
components in this machines along with I/O bottlenecks will necessitate looking beyond the 
traditional checkpoint/restart mechanism for dealing with machine failures. Additionally, as a 
result of the high power requirements of these machines the energy required to obtain a result 
will become as important as the time to solution. These changes mean that a new approach to 
the development of extreme-scale hardware and software is needed relying on the 
simulaneous exploration of both the hardware and software design space, a process referred 
to as co-design.

The Structural Simulation Toolkit (SST) enables co-design of extreme-scale architectures by 
allowing simulation of diverse aspects of hardware and software relevant to such 
environments.  Innovations in instruction set architecture, memory systems, the network 
interface, and full system network can be explored in the context of design choices for the 
programming model and algorithms. Our toolkit provides two novel capabilities. The first is a 
fully modular design that enables extensive exploration of an individual system parameter 
without the need for intrusive changes to the simulator. The second is a parallel simulation 
environment based on MPI. This provides a high level of performance and the ability to look at 
large systems. The framework has been successfully used to model concepts ranging from 
processing in memory to conventional processors connected by conventional network 
interfaces and running MPI.

SST/macro
The macroscale components of SST provide the ability to explore the interaction of software 
and hardware for full scale machines using a coarse-grained simulation approach. The parallel 
machine is represented by models which are used to estimate the performance of processing 
and network components. Applications can be represented by skeleton applications which 
replicate the control flow and message passing behavior of an actual application without the 
cost of doing actual message passing or heavyweight computation. The behavior of existing 
Message Passing Interface (MPI) applications can be captured using the DUMPI library 
distributed as a part of SST/macro. DUMPI traces can be replayed in SST/macro to simulate a 
machine different from that used to collect the original trace. SST/macro can be easily be 
extended with additional network models, trace file formats, and more detailed processor 
models.

Simulation using application traces
SST/macro is able to generate network traffic and processor workloads using trace files that 
record MPI calls and the time spent performing computation between MPI calls. Currently, two 
trace formats can be processed: Open Trace Format (OTF) and DUMPI. Different trace formats 
provide differing levels of detail about the MPI call signature, and this impacts the accuracy of 
the simulator.

The DUMPI format is a custom MPI trace file format, recorded in binary, which has been 
developed as part of the SST/macro simulator. DUMPI files are obtained by linking the 
application with a library that uses the PMPI interface to intercept MPI calls. The DUMPI format 
records more information than OTF, including the full signature of all MPI-1 and MPI-2 calls. 
With this additional detail we are able to more accurately simulate an application. The DUMPI 
format also records return values and MPI request information. This allows error checking and 
permits us to match immediate mode MPI operations with the MPI operations that complete 
them. In addition, DUMPI allows individual functions to be profiled instead of the entire 
program. Processor hardware performance counter information can also be stored in DUMPI 
files using the Performance Application Programming Interface (PAPI). This allows information 
such as cache misses and floating point operations to be logged. Such data is recorded both 
within and between MPI calls. This information will be used by the simulator in more detailed 
processor models, as they are made available.

Simulation using skeleton applications
Trace files are generated with specific application input and parallel task configuration, yielding 
a detailed profile of one particular run. Through the manipulation of parameters used to model 
the hardware and swapping in different messaging models and strategies, trace-driven 
simulation can contribute significantly to performance optimization and hardware design at 
parallelism scales on the same order as that used to generate the trace. However, the 

The system architecture of the Structural Simulation Toolkit. The SST/macro components for coarse-grained simulation are 
shown in blue.
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challenge of optimizing codes or designing hardware for extreme scales requires simulation 
capabilities long before hardware is actually available for trace file generation. Additionally, 
many distributed-memory codes have branch statements that are dependent on which of a set 
of requests was matched at a given stage. These execution details cannot be adequately 
captured in trace-driven execution, since the trace file reader cannot retroactively redirect 
control flow in the application.

Skeleton applications are supported in SST/macro to remedy the above deficiencies in the 
trace-based approach. A skeleton application models the control flow, communication pattern, 
and computation pattern of the application in a coarse-grained manner. Creating skeleton 
applications requires a greater programmer effort than trace-driven simulation. However, it 
provides an immensely powerful approach to evaluate efficiency and scalability at extreme 
scales and to experiment with code reorganization or high-level refactoring without having to 
rewrite the numerical part of an application. This is further facilitated by the reduction in code 
size that happens when the bulk of computation is removed.

Using simulation for programming model exploration
Major effort is required to rewrite an application using a new programming model, thus it is 
highly desirable to attempt to understand the ease of expressing algorithms in the new model 
and the expected performance advantages on future machines before doing so. Skeleton 
applications provide the basis for programming model exploration in SST/macro. The 
application control flow is represented by lightweight threads and each of these threads 
represents one or more threads in the application (depending on the level of detail desired in 
the model). This approach allows programmers to specify control flow in a straightforward way. 
Here we will discuss two programming models, message-passing and the actor model.

Systolic Matrix Multiplication
We base our systolic matrix multiply skeleton application on Cannon's 2D algorithm. Given two 
n × n  matrices, A and B, we wish to compute elements Cij = Aik Bkjk∑ . Assigning the nodes to a 
logical 2D mesh, the A and B matrices are partitioned into one block per processor as 

illustrated in the figure to the left. Each A block is shifted left 
by its row number and each B block is shifted up by its column 
number (wrapping around in both dimensions) so that the 
initial block locations are as in 
the figure to the right. The 
algorithm iterates nblock −1 
times, at each step using non-
blocking send/receive calls to 
simulate shifting its current A 
block one node to the left and 
its current B block one node 
up. Simulation of the 
overlapped multiplication of 
the current blocks with 

accumulation of the result into the local C block is performed. 
Upon completion of the nblock −1 iterations, a final compute call 
simulates the multiplication of the blocks received during the 
final loop iteration, completing simulation of the algorithm. The SST/macro skeleton code 
performing this operation is shown below.

The MPI-based matrix multiply skeleton application was used to simulate the parallel efficiency 
of the skeleton algorithm for a hypothetical extreme-scale architecture. The machine 
parameters used are 10 GByte/sec internode bandwidth, 1 μs internode latency, 10 GByte/s 
intranode bandwidth, 10 ns intranode latency, a 4 Gop/sec fused multiply and add rate for each 
core, and 250 cores per MPI rank. The skeleton application is organized so that a single MPI 
rank runs on each node, and multi-threading is used for parallelism on the nodes.  Since we 
are primarily focused on the communications-related performance and programmability, we do 
not explicitly model each of the threads on each node. Each node starts with a single matrix 
block of size 10,000 on each side. The degraded runs include a single node running at half of 
the computation rate as the other nodes.  For the fat-tree and crossbar networks, the systolic 
shifts in the initial redistribution phase are replaced by direct sends to the target nodes. We will 
refer to this algorithm as DS.

The gIven block layout and shifts needed 
to prepare for matrix multiplication.
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  // Set up the instructions object to tell the processor model
  // how many fused multiply-add instructions each compute call executes
  boost::shared_ptr<sstmac::eventdata> instructions =
    sstmac::eventdata::construct();
  instructions->set_event("FMA",blockrowsize*blockcolsize*blocklnksize);
  // Iterate over number of remote row and column blocks
  for (int i=0; i<nblock-1; i++) {
    std::vector<sstmac::mpiapi::mpirequest_t> reqs;
    // Begin non-blocking left shift of A blocks
    sstmac::mpiapi::mpirequest_t req;
    mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myleft), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myright), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    // Begin non-blocking down shift of B blocks
    sstmac::mpiapi::mpirequest_t req;
    mpi()->isend(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(myup), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    mpi()->irecv(blocksize, sstmac::mpitype::mpi_double,
                 sstmac::mpiid(mydown), sstmac::mpitag(0), world, req);
    reqs.push_back(req);
    // Simulate computation with current blocks
    compute_api()->compute(instructions);
    std::vector<sstmac::mpiapi::const_mpistatus_t> statuses;
    // Wait for data needed for next iteration
    mpi()->waitall(reqs, statuses);
  }
  // Simulate computation with blocks received during last loop iteration
  compute_api()->compute(instructions);

A code fragment implementing a skeleton program for a systolic matrix multiplication (restricted to square blocks).

The results are shown in the figure 
to the right. Moving from a single 
node to multiple nodes, we see a dip 
in performance due to the necessity 
of moving data through the network. 
As the number of nodes increases, 
the crossbar and fat-tree outperform 
the torus because they do not 
systolically form the initial data 
distribution. The fat-tree is at times 
slightly slower than the crossbar, 
because it uses static routes and 
some congestion is possible.  For 
the degraded cases, performance is 
roughly halved because the systolic 
nature of the algorithm forces all 
nodes to wait for the degraded node 
at each synchronization point.

For comparison, the torus results 
were also obtained using the direct 
send (DS) algorithm, and these are 
also shown in the above figure. For 
the machine and problem parameters employed in our study, DS was faster than using a 
systolic startup algorithm.  The torus is still slower than the fat-tree and crossbar networks due 
to network congestion in forming the initial block distribution.

Actor Model Matrix Multiplication
The actor model is a mathematical framework for parallel programming. Actors are the central 
entity in this model, which communicate using using asynchronous messages (here referred to 
as mail). Some of the key properties of an actor model are: 1) actors can create other actors, 
2) actors can only communicate via mail, 3) an actor's behavior is determined by local 
information (including received mail), 4) mailing addresses can be sent via mail, and 5) there is 
no guarantee of order of mail arrival.

The goal for the asynchronous matrix multiply was to eliminate synchronization points, whether 
explicit or implicit, if at all possible.  To this end, each node prefetches the A and B matrix 
elements directly from their owner, allowing for near-complete overlap of computation and 
communication.  While this approach has lower theoretical peak performance on a perfect 
mesh layout than the systolic algorithm, it has the potential to be much more robust to 
performance variations in processor or network performance, provides an easier way to add 
dynamic load-balancing, and has a much clearer path to fault resilience than the systolic 
algorithm.

The matrix multiply skeleton application was constructed using the actor model.  Each physical 
node has one actormatmul actor which owns a submatrix of the A, B, and C matrices.  The 
actormatmul creates one or more computor actors, each of which in turn manages one or 
more hardware threads to carry out the actual matrix multiplication.  Each actormatmul starts 
with a list of work units, and it begins prefetching the matrix blocks required to perform some of 
those units. When all required data arrives for one of the work units and a computor is 
available, it dispatches that work unit to the computor. The matrix blocks are passed by 
reference if the computor is local (which it is unless load-balancing is employed, see below), 
otherwise the blocks are forwarded by the actormatmul to the computor.  A small actorid 
handle specifying the actormatmul to which the computation results should be sent is also 
sent to computor. If the C block is local, then a reference to the result data is given to the 
local actormatmul to avoid a (simulated) copy.

Based on this actor matrix 
multiplication application, a 
simple dynamic load-
balancing scheme was 
implemented as follows.  
When an actormatmul has 
completed all its local work, it 
will offer its computor actors 
to a neighboring node, which 
then has the option of either 
offloading a portion of its 
calculation or rejecting the 
donation by sending it on to a 
nearby neighbor. The figure 
at the left compares the 
performance of this load-
balancing scheme with the 
systolic algorithm for the 
case where a single node is 
suffering a 50% performance 
degradation. The machine 
and application parameters 
are the same as used for the 
systolic matrix multiplication.  

Despite the simplicity of this load-balancing scheme, the effects are immediately apparent 
when one of the nodes is degraded.  While the systolic algorithm approaches an efficiency of 
approximately 0.5, the load-balancing algorithm recovers a large-fraction of the otherwise 
underutilized nodes,eventually achieving nearly optimal efficiency.

CoDEx: Co-Design for Exascale
Skeleton applications provide the ultimate flexibility in trying out new algorithms, runtime 
systems, and in predicting performance at scales not yet available on existing platforms. 
However, human effort is currently required to produce the skeleton application, even when a 
full application is available. The Co-Design for Exascale (CoDEx) project is a collaboration 

Weak scaling parallel efficiency of the systolic matrix matrix algorithm under 
a variety of conditions: 1) full crossbar network (DS), 2) fat-tree formed from 
radix 36 switches (DS), 3) 2D torus network, 4) 2D torus network (DS),5) 
fat-tree formed from radix 36 switches with a single degraded node (DS), 6) 
2D torus with a single degraded node. DS designates use of the direct send 
algorithm.
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between LBNL, LLNL, and Sandia to remedy this issue. A key CoDEx thrust is to provide a tool 
which can convert application source code into a skeleton application which is capable of 
driving the simulator. The figure below depicts the architecture of this tool, which will use ROSE 
compiler infrastructure to perform the transformation.

ROSEʼs front end is first used to construct an abstract syntax tree (AST) for the program using 
the Open64 front end for Fortran and EDG for C and C++. The AST is converted into the Sage 
III Intermediate Representation (IR) and then given to the analysis phase. In this phase, the 
AST is transformed and rewritten to capture the essence of the control flow and the 
communication operations. This phase produces the IR for the skeleton application. The 
skeleton IR and then processed by the ROSE backend, which produces source code that can 
be used to drive the SST/macro simulator.
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The software architecture of the skeleton application generator.
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