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M

O Backqground

* MgO is abundantly found the Earth’s
mantle and likely other terrestrial exo-
planets

» Understanding the high P-T behavior of
MgO is important for modeling Earth’s
interior

e Static pressure data show no phase
transition up to 227 Gpa at ambient
temperature

 Hugoniot data (starting at ambient
temperature) to ~ 200 GPa — no phase
transition

* Pre-heat Hugoniot measurements
(Fat’yanov et al SCCM 2009) show no
indications of melt to 203 GPa and 6.5 kK

* Belonoshko et al predict a B1-B2 phase
transition near 350 GPa and melt near 5
Mbar and 12kK.
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Objectives

e Use Sandia’s Z — accelerator to shock compress
MgO, measuring the Hugoniot to 10 Mbar

 Experimental determine the proposed solid-
solid phase transition

e Determine melt on the Hugoniot

 Apply Density Functional Theory methods to
corroborate experimental findings
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Experimental Approach

 Current pulse loops through
shorting cap inducing a B — field.

» Resulting J x B force accelerates
anodes (flyers) outward up to 40 km/s

* Asymmetric AK Gaps result in two
different flyer velocities (two Hugoniot
points per experiment

» Multiple samples per experiment

» MgO windows are transparent and are
backed by quartz windows

* VISAR used to measure flyer velocity

» Multiple VPFs per sample — reduces

uncertainty
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Experimental Measurements
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* VISAR tracks flyer plate velocity up to impact
« Shock front in MgO not reflective — Loss of contrast in VISAR signal
» Clear impact and shock transit fiducials
 Transit time analysis to determine shock velocity
» Shock front in quartz reflective — release state for MgO can be Sk
determined (not discussed here) | e




Monte Carlo (MC) Impedance Matching

» Uncertainty exists in experimental T T T T T T T T T T
measurements and the aluminum Hugoniot ! A
Measurement Ne o
« Creates a region of uncertainty that the - Best Value p,, U N\ .
9 , y . oo 'X.” Reflected Flyer Hugoniot
target Up and P can exist | Varied p,, Ug 7 Best Fit
© /,// 3 .
) ) a \ W/ N Varied C_,S
* MC method varies experimental measured ¢ r oA
values (Us, Vg, po) Within uncertainty using o |
<D Q /,/ N
uncorrelated random numbers 5| 0)\3/,/,
/7] Vd \\\\ 7]
. . . . [O)] Vd W
« Al Hugoniot fit parameters varied using al N/ N Sgli::ity L
correlated random numbers. R/ N s
» Impedance calculation performed 10° times i N
to build a large sample for statistical analysis T .
Particle Velocity, U_ (km/s
» Data reported as the average of the Y. Up (kms)

resulting calculations with error of 1 —
standard deviation

Monte Carlo techniques allow for calculation of uncertainties and error
propagation of the aluminum standard into the resulting MgO data. A i,
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Experimental Data
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* No reflective shock front below 10 Mbar, but very slight reflectivity at 10 Mbar

» Up to 330 GPa, the Hugoniot point lies on the extrapolation of the gun data fit

 Slope change in Ug — U, starting at 440 Gpa — suggests a phase

* No obvious changes at higher pressures that would suggest melt

transition
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Density Functional Theory

» Use DFT-MD to assess the state of MgO at high pressures

 DFT-MD simulations performed using VASP 5.1.40*

 Electronic states occupied according to Mermin’s finite-temperature
formulation

» Calculate energy and pressure for a given density and finite temperature

* Minimize the Hugoniot Condition:

Z(E o Eref )_ (P + Pref eref _V): 0

« Simulations start from the B1 and proposed B2 phase

«216 atoms per simulation (B1 phase); 250 atoms (B2 phase)
* AMO5 (Armiento-Mattsson) exchange correlation functional
* VASP PAW potentials for Mg(2p®3s?) and O(2s2p?)

* G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994).
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DFT Results and Comparison

» Bl-phase DFT results show 1100 = = ZExpt, SNL =
: 1000 k™ LASLHandbook i
good agreement with gun b 5 g iaesiliouaial
data fo 200 Gpa 200 _— Expt. Svendsen & Ahrens 7
200 Fit to Gun Data (< 200 GPa) =
» Simulations from the B2 5 700l © DFTBfphase 1
. . g o O
phase show significantly R |
lower Hugoniot pressure 2 ol TR
o
states than B1 phase S Lol :
D- =
e The B1 and B2 initial phase 300 .
simulations converge at 700 200 .
GPa and 16.5 kK — where HE0EE =
Mgo me“: IS Complete 03.5 40 . 4.5 . 50 . 55 . 6.0 . 6.5 . 7.0 . 75 . 8.0 . 85
« SESAME 7460 agrees well Density
Wlth hlgh pressure Hugoniot DFT Simulations — Kyle Cochrane
data and DFT results
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Summary

« MgO Hugoniot extended to 10 Mbar

» Shock front is not reflective below
10 Mbar

» Slope change in Hugoniot suggests
phase transition between 330 and
440 Gpa

* No significant changes in Hugoniot
data between 4.4 Mbar and 10 Mbar

 DFT simulations indicate that melt
on the Hugoniot is complete by 7
Mbar and 16.5 kK in both B1 and B2
phases
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