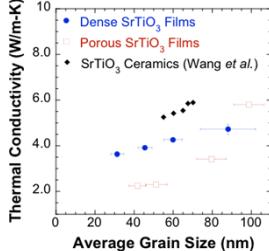
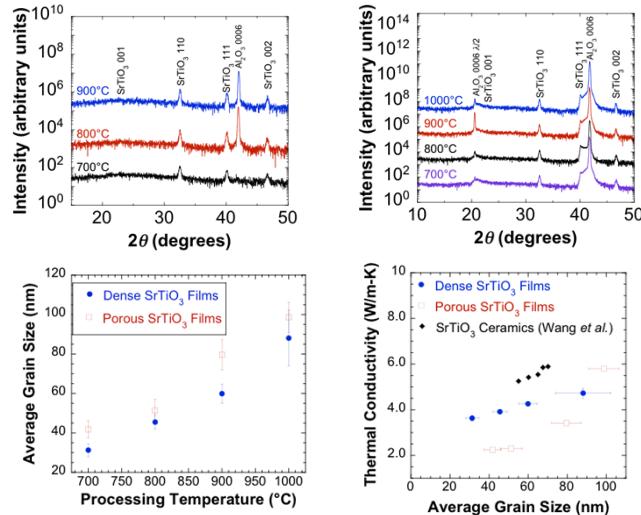
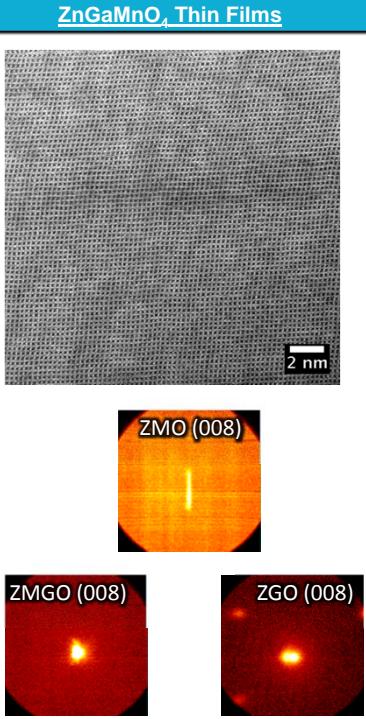
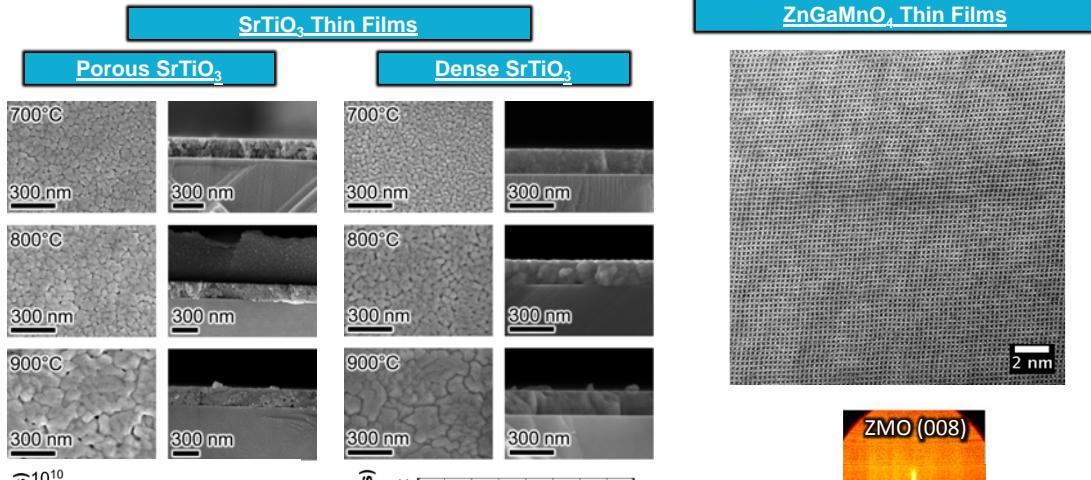


Role of Interfaces and Defects on the Thermal Properties of Complex Oxide Thin Films

Jon F. Ihlefeld,¹ Patrick E. Hopkins,^{1,2} Harlan Brown-Shaklee,¹ John Leonard,³ Brian M. Foley,² James LeBeau,³ Bryan Huey,⁴ Carolina Adamo,⁴ Darrell G. Schlom,⁵ and Jon-Paul Maria³

¹ Sandia National Laboratories, ² University of Virginia, ³ North Carolina State University, ⁴ University of Connecticut ⁵ Cornell University

Motivation





Thermal and thermoelectric properties of oxides have recently garnered increased interest as an environmentally friendly alternatives to conventional *p*-block-based thermoelectrics. Many oxides have competitive power factors, but high thermal conductivities limit *ZT* values and utility in energy harvesting applications. In this work we have studied the effect of interfaces and defects on the thermal conductivity of SrTiO₃, BiFeO₃, and ZnGaMnO₄ thin films.

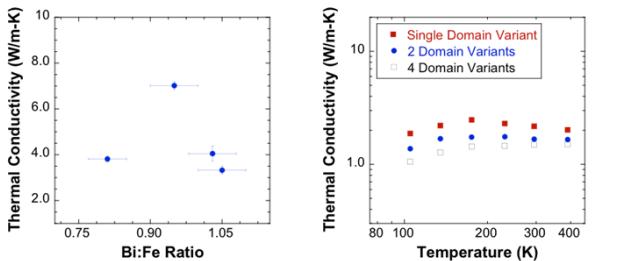
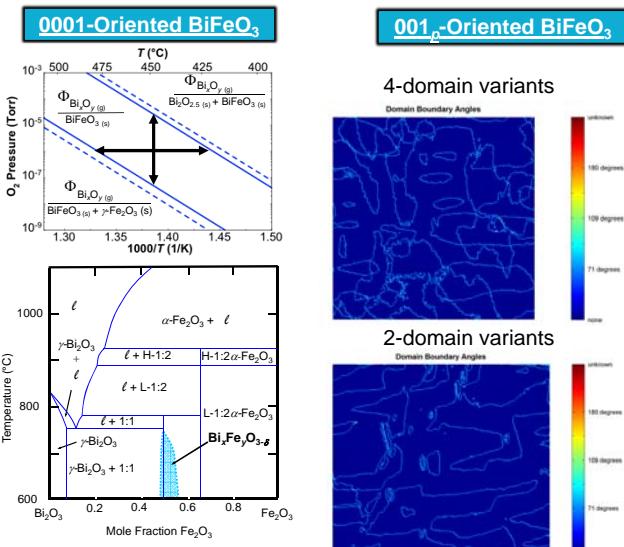
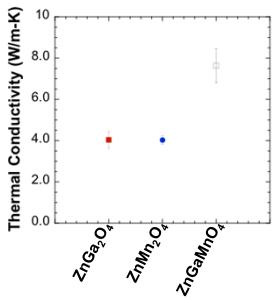
Samples Studied

- Polycrystalline SrTiO₃ on sapphire (CSD)
 - Porous grain size series
 - Dense grain size series
- Epitaxial BiFeO₃ on SrTiO₃ (001) (MBE)
 - Engineered domain structures
 - Stoichiometry series
- Zn(Ga,Mn)₂O₄ (PLD)
 - Phase separating nanostructures

Sample Details/Measurement

- SrTiO₃
 - 0.15M chelate chemistry with methanol solvent
 - Spin cast and fire every 3 layers (porous) fire every layer (dense) at 700°C on 0001-oriented sapphire substrates for 1 hour in air to coarsen grain size
- BiFeO₃
 - Reactive MBE with metallic Bi and Fe sources and O₂/O₃ reactive gas atmosphere at 1x10⁻⁶ Torr background pressure
 - Variable substrate temperature with fixed bismuth flux (modify Bi:Fe ratio) on SrTiO₃ (111) substrates. Samples are single domain (0001)-oriented.
 - Non-vicinal SrTiO₃ (001) and vicinal 4° miscut toward <011> for 2 domain variants and toward <110> for a single domain variant. Virtually all domain walls are 71°.
- ZnGaMnO₄
 - Pulsed laser ablation on MgO (001) substrates
 - End-member ZnGa₂O₄ and ZnMn₂O₄ films prepared in same manner
- Time domain thermoreflectance used to characterize thermal conductivities

Average Grain Size (nm)




Processing Temperature (°C)

Dense SrTiO₃ Films

Porous SrTiO₃ Films

SrTiO₃ Ceramics (Wang et al.)

Cross-Plane Thermal Conductivity

Conclusions

- Porosity and grain size greatly affect the thermal conductivity of SrTiO₃ thin films
- Tuning grain size may be an attractive approach for thermoelectric preparation
- Stoichiometry greatly affects thermal conductivity in BiFeO₃ single crystal films
- Ferroelastic domain boundaries act as phonon scattering sites in BiFeO₃ single crystal films
- ZnGaMnO₄ films display higher cross-plane thermal conductivities than the end member compositions. This is likely due to improved crystalline quality in the phase separating material.

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Sandia National Laboratories