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Abstract 

 
This paper presents a methodology for solving thermal-hydraulic flows that are prototypical to 
nuclear reactors, based upon a stabilized finite element method.  The flow equations including 
both steady-state and transient turbulence models and conjugate heat transfer are solved with a 
fully-coupled algebraic multigrid (AMG) preconditioned Newton-Krylov iterative solver. Of 
special interest is the efficiency and weak scaling behavior of the AMG based preconditioners, 
tailored for steady-state solves and those tailored for short time-scale transient time marching, as 
the problem size increases.  These studies will be useful in predicting computational resource 
requirements necessary to perform full-scale single- and multi-physics simulations.  These 
studies will also provide a baseline performance level for future turbulence model and solver 
development. 
 

Introduction 
 
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the name of a new 
U.S. Department of Energy Innovation Hub that is investing in the development of a “virtual 
reactor toolkit” that incorporates science-base models, state-of-the-art numerical methods, 
modern computational science and software engineering, uncertainty quantification (UQ) and 
validation against currently operating pressurized water reactors.  Under CASL there are five 
focus areas with different responsibilities.  One of these, Modeling and Numerical Methods 
(MNM) is tasked with developing computational fluid dynamics (CFD), multi-phase 
computational fluid dynamics (MCFD) and thermal-hydraulics (TH) codes that can simulate 
challenge problem flows.  
  
One of the challenge problems deals with grid-to-rod-fretting (GTRF).  This problem is 
characterized by flow induced rod vibrations that cause deterioration of the rod cladding material 
and support grids at points of contact. The vibrations are due to turbulent flow generated at the 
core inlet and by rod bundle support grid mixing vanes.  Turbulence is deliberately generated to 
enhance heat transfer and prevent localized hot spots from occurring. This problem is inherently 
three-dimensional and unsteady.  Better understanding of excitation phenomena through high-
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fidelity simulations has the potential to improve clad time-to-failure, and improve reactor core 
performance. 
	
Ultimately, full-scale simulations of the entire reactor core including inlet/outlet characterization 
will be performed.  Included in these will be coupled fluid/structure interaction simulations.  
Leading up to full-scale, various sub-scale rod bundle assemblies serving as prototypes will be 
simulated and analyzed.  Separate fluid and structural dynamic simulations will be conducted 
where the rod excitation predicted by the fluid simulations will be transfered to the structural 
code through surface boundary conditions. 
 
Our initial prototype problem is a turbulent simulation of a 3x3 rod bundle with support grid.  
Both unsteady Reynolds averaged Navier-Stokes (URANS) and large-eddy simulation (LES) 
turbulence model methodologies will be employed.   Several models will be evaluated based on 
solution data.  Also, of particular interest is how well recently developed linear system solver 
preconditioners perform on these high Reynolds number transient flows. 
This work follows closely the work by Benhamadouche et al.[1] who used an unstructured finite-
volume discretization and SIMPLEC iteration procedure to solve the flow equations. 
 
1. Governing equations 
 
This section describes the governing equations for modeling turbulent single-phase flows that are 
currently under development in the TH code.  The code is currently designed to solve the low-
flow Mach number Navier-Stokes system with coupled heat transfer, and chemical species 
transport with non-equilibrium bulk and surface phase reactions.  The code also has the 
capability to include heterogeneous multiphysics formulations such as fluid flow and conjugate 
heat transfer and/or chemically reacting transport. 

1.1 Flow equations 

	
A summary of the governing equations is presented in Table 1. 
	
Governing Equation 	
Continuity 

R 

t

 g%u 	

Momentum 
Rm 

( u)

t
 ·( u %u)  gT  fi 	

Energy 
RT 

(Cp
T )

t
 ·(Cp

T%u)  gq  gqr  g

Table 1. Summary of governing equations. 
 
In these equations,   is the density, u  is the velocity vector, and Cp is the specific heat. Also, T 

represents the stress tensor (containing pressure, P)  
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
T  PI  eff %u  %uT  

2

3
eff g%u I

, 
I is identity matrix, q, the heat flux vector, 
 


q  eff %T  

 
and qr, the heat flux vector due to radiation.  The “eff” subscript on viscosity and conductivity 
signifies that these coefficients contain both molecular and eddy viscosities, 
 

eff    t ,   eff    t ,    t 
tCp

Prt

. 

 
The bar/tilde denotes time/ensemble averaging in the context of URANS and spatial filtering in 
LES.  The filter operator is mass weighted (Favre) if density is not constant.  The turbulent 
Prandtl number Prt , is user specified.  Note that the dissipation 
 

  %ugT  
 
can be neglected in certain situations because in general the kinetic energy is much less than the 
internal energy.  This assumption will be evaluated on a case-by-case basis. 
It should be noted that there are several versions of the energy equation that could be substituted 
for the temperature equation listed in Table 1.  The code can accommodate any of these and the 
most appropriate one will be chosen on a case-by-case basis.   Boundary conditions common to 
most fluid dynamics codes will be required.  Among these are inflow/outflow, no-slip surface 
and periodic. 

1.2 Turbulence equations 

	
The Reynolds number for this class of flows can typically reach tens of thousands and sub-
assembly hardware can be several meters in length rendering direct numerical simulation un-
tractable.  It is therefore necessary to apply averaging or filtering to the governing equations 
resulting in URANS and LES models for turbulent flows.  This section presents the model 
equations and several specific models that are evaluated for the rod bundle sub-assembly flow 
problem. 

1.2.1  Reynolds Averaged Navier-Stokes 

The effect of turbulence is modeled using the Boussinesq approximation relating Reynolds stress 
to the resolved strain rate; 
 


 t  u ''u ''Š  t %u  %uT  

2

3
t g%u  k I

 
 



 	 The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14, Toronto, 
Ontario, Canada, September 25-30, 2011 	

and is coupled to the momentum and energy equations through the eddy-viscosity.  Here k is the 
turbulent kinetic energy that appears in some RANS models such as the k    model. 
 
1.2.1.1  Spalart-Allmaras model 
 
The Spalart-Allmaras one-equation eddy viscosity model [2] will be utilized due to it’s 
simplicity and robustness.  While not widely used by the thermal hydraulics modeling 
community, it is quite effective in situations of attached flows.  The affects of turbulence are 
coupled to the Navier-Stokes equations through the eddy viscosity and turbulent heat flux.  The 
transport equation is; 
 


RSA  

̂
t

 %ug̂  geff̂ Cw1 fw
̂
d







2

Cb1̂Ŝ 
Cb2


̂ 2
 

Table 2. Spalart-Allmaras RANS turbulence model. 
 
The eddy viscosity is defined as; t  ̂ fv1 . 

At no-slip surfaces the eddy-viscosity is zero and so the dependent variable in the Spalart-

Allmaras equation is set to zero there. 

 
1.2.1.2  k Ú model 
 
Additional RANS models that will be investigated are derived from a family of two equation 
eddy-viscosity models that include the turbulent kinetic energy equation along with an equation 
that describes the local turbulent scale determining equation such as the turbulent dissipation 
(presented here) or specific dissipation [3,4]. 
 
Turbulent Kinetic Energy 



Rk  
k

t
 %ugk  g  

t

 k







k  Pk    

Turbulent Dissipation 



R  

t

 %ug  g  
t









  f1C1


k

Pk  f2C 2

Table 3.  k Ú RANS Model. 
 

The eddy-viscosity is defined as t  C f
k2

 ,
and production of turbulent kinetic energy is, 


Pk  t %u  %uT  

2

3
t g%u  k  I







:%u
.
 

The three functions f , f1, f2  are part of the low Reynolds number version, taking into account 

the important influence of walls.  It is common practice to include the turbulent kinetic with the 
pressure 
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P  P 
2

3
k  

 
and thus T is modified appropriately.  In general three boundary conditions for inflow/outflow, 
periodic and no-slip walls will be required.  At a no-slip surface the fluctuating velocity equals 
zero so k=0.  No natural condition for w  exists and is model dependent. 

1.2.2  Large eddy simulation equations 

RANS equations model all of the turbulent fluctuations thus lumping all the physical processes 
associated with unsteady turbulent fluctuations into effective constitutive parameters such as 
eddy viscosity or conductivity.  Higher fidelity flow analysis will also be pursued based on large 
eddy simulation where two assumptions are made; 1) most of the turbulent transport is carried 
out by the large scales which are directly computed and 2) the small (sub-grid) unresolved scales 
are more universal than the large scales and can be described by relatively simple eddy-viscosity 
models.   
 
Consider a single constituent incompressible fluid.  The sub-grid stress tensor arising in the 
filtered momentum equation is; 
 

 sgs  uu  uu . 
 
Similar to RANS, the sub-grid stress tensor is modeled using the Boussinesq assumption; 
 

 sgs 
1

3
 sgsI  2tS

 
 
where the filtered strain rate tensor is defined as; 
 

S 
1

2
u  uT 

. 
 
1.2.2.1  Smagorinsky model 
 
The eddy viscosity will be computed using a variation of the Smagorinsky model. 
The first variation contains Van Driest damping suitable for wall-bounded flows [5,6]; 
 

t  CS 1 exp y / A   2 S
 

 

where A  26 , y  yu /  , u  w /   and w is the wall shear stress. 

 
1.2.2.2   Wall adapting local eddy viscosity model 
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The second variation is a model called wall adapting local eddy-viscosity (WALE).  The WALE 
model [7] contains the attractive properties that it is spatially local and the eddy-viscosity goes to 
zero at the wall without the aid of a damping function.  The eddy-viscosity model is defined as; 
 

t  Cw 2
Sij

dSij
d 3/2

SijSij 5 /2
 Sij

dSij
d 5 /4

 
 
where the square of the deviatoric stress tensor is defined as, 
 

Sij
d  SikSkj ikkj 

1

3
 ij SmnSmn mnmn 

 
 

Cw  0.5 , and the rotation tensor is defined as;  
1

2
u  uT 

.
 

 
1.2.2.3  Sub-grid kinetic energy model 
 
In addition to Smagorinsky’s model, an eddy-viscosity model derived from the sub-grid kinetic 
energy [8] will be investigated.  This model makes no assumption of equilibrium (i.e., production 
does not have to equal dissipation of sub-grid kinetic energy, Psgs  Dsgs ).  In addition it 
provides a rational sub-grid turbulence quantity that can be used for closure of other transported 
quantities such as species mixing.  The sub-grid kinetic energy is defined as; 
 


ksgs 

1

2
ugu  ugu . 

 
The transport equation for the sub-grid kinetic energy is; 
 
Sub-Grid Kinetic Energy 

Rk 
ksgs

t
 ugksgs  gtksgs  Psgs  Dsgs  

Table 4. Sub-grid kinetic energy model equation. 
 

The sub-grid eddy-viscosity is defined ast  C ksgs 1/2
, production of sub-grid kinetic energy 

is P
sgs  Ck

sgs gu , and the dissipation is Dsgs  C ksgs 3/2
/  .  The model constants are 

C  0.0854,   Ck  1.0,   C  0.916  and the grid scale is   x1x2x 3 1/3
.  At a no-slip 

surface, ksgs  0 .  Similar to Smagorinski’s model, Van Driest damping is also required by this 
model. 
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2. Spatial and temporal discretization 

	
In this section we very briefly describe the stabilized FE methods used for discretization of the 
Navier-Stokes equations with coupled transport. The governing PDEs for the flow and transport 
system are presented in Table 1-4. Our stabilized FE formulation is capable of handling 
incompressible, low Mach number, variable density (temperature and chemical species 
dependent), and low speed compressible flows.  This flexibility is enabled by the fully-implicit 
time integration and fully-coupled nonlinear solver technology that is described below.  
	
2.1	 Stabilized FE discretization 
 
Consistently stabilized finite element methods [9,10] are constructed in the current formulation.  
Table 5 presents the associated FE weak form for the PDEs presented in Table 1-4. This system 
employs equal-order interpolation, which allows one to simplify the data structures of a parallel 
unstructured FE code and the linear algebra interface for iterative solution methods [11-13]. To 
improve stability for highly convected flows we employ discontinuity-capturing operators that 
provide additional crosswind diffusion to supplement the natural streamline diffusion 
contribution of the GLS stabilization. The resulting finite element formulation decreases 
numerical oscillations (compared with standard SUPG schemes) and allows for stable and 
accurate finite element solutions when the cell Reynolds, Rec , and thermal energy and mass 
transport Peclet numbers, Pec , are greater than one.  The stabilized FE formulation described 
above has been shown numerically to be 2nd order accurate in space and time on smooth 
solutions when combined with an appropriate semi-discrete time discretization (e.g. Trapezoidal 
rule, BDF2, or Midpoint rule). 
 
 
Governing  
Equation 

Stabilized FE Weak Form Residual Equation for Low Mach Number Flow 

Momentum Fm,i  Rm,i d m (u·)Rm,i d
e


e



 m,i·ui d

e


e
  

Continuity Fp  Rp d m·Rm d
e


e



  

Energy FT  R
T

d ĈpT (u·)RT d
e


e



 T·T d

e


e
  

Spalart-
Allmaras 

FSA  RSA d  SA (u·)RSA d
e


e



 SA·̂ d

e


e
  

Table	5.	Stabilized	FE	weak	form	residuals	for	the	Spalart‐Allmaras	RANS	model.	The	first	
term	is	the	Galerkin	term,	followed	by	the	SUPG	term	and	the	discontinuity	capturing	term.	
Here	the	 	operator	is	a	cross‐stream	oriented	tensor,	that	adds	diffusion	in	the	cross‐
stream	direction,	that	is	orthogonal	to	the	SUPG	contribution.		
	
2.2	 Preconditioned	Newton‐Krylov	method	
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The result of a fully-implicit or direct-to-steady-state solution technique is the construction of 
very large-scale, coupled highly nonlinear algebraic system(s) that must be solved.  
Therefore, these techniques place a heavy burden on both the nonlinear and linear solvers and 
require robust, scalable, and efficient nonlinear solution methods. In the present code, Newton-
based iterative nonlinear solvers [14] are employed to solve the nonlinear systems that result in 
this application. These solvers can exhibit quadratic convergence rates independently of the 
problem size when sufficiently robust linear solvers are available. For the latter, we employ 
Krylov iterative techniques. A Newton-Krylov (NK) method [15,16] is an implementation of 
Newton's method in which a Krylov iterative solution technique is used to approximately solve 
the linear systems, Jksk1  Fk , that are generated at each step of Newton's method.   The 
Jacobian matrix, Jk , that is used for the Jacobian-vector products in the Krylov solvers, and as 
the basis for computing the preconditioners described here, is developed from automatic 
differentiation (AD) techniques. These methods are applied to the programmed functions 
representing the weak form residuals outlined in Table 5.  

2.3 Parallel preconditioning methods 

For the considered class of linear systems described above, convergence is only achieved with 
preconditioning due to ill-conditioning in the underlying matrix equations [17].   Traditionally, 
Schwarz domain decomposition (DD) with block incomplete factorization, ILU(k) has been used 
to precondition the systems.  However, these techniques do not scale well as the problem size is 
increased.  In fact, the number of iterations required to solve the linear system increases as the 
number of processors is increased.  Instead, algebraic multi-grid (AMG) solution methods will 
be used.  These are significantly easier to implement and integrate within complicated 
unstructured simulation codes compared with traditional geometric multi-grid methods, which 
require coarse grids [18,12,19].   The advantage of AMG is that the iteration count does not 
increase nearly as much, as the number of processors increased, compared to traditional 
preconditioners.  In addition, approximate block factorization (ABF) [20-22] and physics-based 
approaches [23] are used to take advantage of small time scale transients in a way that improves 
convergence of the linear solvers.  By employing AMG and ABF techniques, fully implicit 
methods applied to small time scale transient flows becomes much more tractable than previous 
generation stabilized FE formulations. 
 
3. Results included in final draft 
 
Results that contribute to the two major themes in this paper will be presented in the final draft.  
One theme is how well URANS and LES methodologies predict the flow characteristics in a 3x3 
rod bundle reactor core incompressible, single-phase adiabatic prototype model.  While using 
URANS is desirable from a cost stand point, in general, it has been accepted that LES produces 
higher fidelity solutions especially for anisotropic unsteady turbulent flows.  The relative cost of 
URANS vs. LES and the relative fidelity of the two solution methods will be investigated and 
reported on in the final version of this paper. 
 
The second theme has to do with how well the linear equation system solver preconditioners 
perform for high Reynolds number transient flows.  Various preconditioning techniques 
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developed specifically for this flow regime will be compared and reported on.  These results will 
provide important data to be used on future simulations of larger rod bundles. 
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