







The Potential for *In situ* Transmission Electron Microscopy (TEM) of Electron and Ion Irradiation of Living Cells

Khalid Hattar

Department of Radiation Solid Interactions
Sandia National Laboratory, Albuquerque, NM

SAND2011-4232C

Ion Beam Lab Capabilities	
Sandia's Ne Ion Beam Lab	
	<ul style="list-style-type: none">multiple liquid metal ion source (LMIS)an $E \times B$ filter10 nm spot sizean ion column with a maximum accelerating voltage of 100 kVa high-resolution electron column <p>These capabilities greatly exceed the capabilities of commercially available Ga^+-based dual-beam systems in terms of irradiation doses, ion species, and nanofabrication.</p>

<i>In situ</i> TEM Ion Irradiation	<i>In situ</i> TEM Environmental stages	Potential for <i>in situ</i> research
<p><i>In situ</i> TEM triple beam facility</p> <p>This is only one of 11 facility world wide and only the second in the US.</p> <p>This one is better suited than the others for tomography and imaging of biological samples due to the wide polepiece gap and the single electron sensitive CCD camera.</p> <p>The facility is being developed to permit irradiation with electrons, protons, alpha particles, and a suite of heavy ions.</p> <p>The ion energy range is being developed to operate from 1 keV to 30 MeV.</p> <p>A schematic of the TEM beamline and its components</p> <p>Great care was taken in the development of the in-situ ion irradiation TEM to permit vacuum, electrical, mechanical isolation.</p> <p>The beamline is currently being developed to permit simultaneous concurrent implantation of protons, alpha particles, and heavy ions on the same location of a TEM specimen using a 6MeV Tandem and a 10 keV Colutron</p>	<p><i>In situ</i> TEM Environmental stages</p> <p>Fluid cell with microfluidic mixing and heating</p> <ul style="list-style-type: none">A microfluidic stage purchased from Protocells Inc has been purchased that permits the mixing of two microfluidic channels at elevated temperatures.This permits real time nanoscale observations of the interaction of materials in aqueous or other solutions. <p>Vapor cell with up to 1 atm pressure and heating</p> <ul style="list-style-type: none">Permits real time observation of the interaction that occurs at a solid – vapor interface at ambient temperature through 1200 °CTEM images have been collected of samples as they were exposed to room air at standard temperature and pressure. <p>3D tomography</p> <ul style="list-style-type: none">Image from A.J. Koster and W.J.C. Geerts at Utrecht UniversityWe have the hardware and software for 3D electron tomography of similar cells. Including cells that are interacting with nanoparticles.We have done 3D electron tomography on nanoparticles	<p><i>Ex situ</i> experiments in Literature</p> <p>cellular penetration</p> <ul style="list-style-type: none">Image from NanoBiotix, a commercial company that uses nanoparticles to enhance X-ray absorption by targeted tumorsWe could do similar investigations in real time <p>Conclusions</p> <ul style="list-style-type: none">The recent capabilities developed at the Ion Beam Lab should permit the potential for direct real time observation at the nanoscale of:<ol style="list-style-type: none">1. The uptake of nanoparticles by living cells as a function of cell and nanoparticle parameters.2. The death of the cell structure as exposed to electron and ion irradiation.3. 3D reconstruction of a cell during phases of both processFundamental Understanding of the Mechanisms Governing Nanoparticle Uptake and Irradiation Damage in Targeted Cells