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Uncertainty Quantification

Model:
— u= M(N) —

Given parameter(s) A Calculate probabilities
with distribution(s). on quantfi}ie_s of
A aterest g (u()
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Monte Carlo Sampling (LHS, |S)
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Surrogate Models and Sampling
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Surrogate Models and Sampling

Spectral Methods for Uncertainty Quantification. O. P. Le Maitre and
O. M. Knio, pgs. 39-40:

. the statistics of the random variable can be estimated by means
of sampling strategies ... evaluation of the PC series at the sample
points. We shall rely heavily on such sampling procedure to estimate
densities, cumulative density functions, probabilities, etc.

“Stochastic spectral methods for efficient Bayesian solution of inverse

problems”. Y. Marzouk, H. Najm, and L. Rahn. Journal of Comp. Phys.

224 (2007) 560-586:

Indeed, the per-sample cost is three orders of magnitude smaller for
PC evaluations than for direct evaluations...

“Evaluation of failure probablhty ,vIa surrogate mod oJ Livan
Journal of Comp.: Phys., 229 (2010) 8966-8980: =

5 the ﬁrra}ghtforwérd sampling of a surrogate .;- -a.n lglg
C/, errone,das results, no mat}er how accurate the surrogate médel is.
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Model Problem and Approximations
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Model Problem

Model for nonlinear stochastic diffusive transport:

(% _ V- (A(z,t, \)Vu) + g(z,t;u) = f(z,1), (2,t) €Q,
{ AVu-n =0, (z,1) € 0Q,
| u(z,0) =0, z €S

where S is a convex polygonal domain, = S x [0,7T] and
(-,-)s is the L? inner product.

Variational formulation for a fixed A\: Find u € L*([0,T]; H'(S)) s.t.
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Polynomial Chaos Expansions

Let {€), F, P} be a probability space.

Let Z(w) be a random variable and let {®;(Z)},~, be a set of
polynomials orthogonal w.r.t density of Z.

Model parameter as a random variable A = A(w) with finite variance,

y (A, ;)
= )\z(I)z Z(w : where )\z = :
2, el @0
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Variational Formulation

Find uy € L*([0,T]; H*(S)) such that for k = 0,1,..., P,

T
/ (Oug /0t,v)g dt
0
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Discretization

Let

e 7, be a quasiuniform triangulation of S,

e 0=ty <t;<--- <ty =T discretize [0, T] with intervals
In — (tn—latn)-

e V) denote the space of continuous piecewise linear polynomials

on 7j,.

o W\ =V, x PW@ (I,,) where P(9)(1,,) is the space of polynomials
of degree q on I,,.

We compute Uy € W for n = 1,2,
fformulgtlon holds for all v e,W,;@
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Adjoint-Based A Posteriori
Error Analysis
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Adjoint-Based Error Estimation

Consider the linear algebraic equation: Ax = b.

Let X ~x and definee=2x— X and R=b0— AX.

Let ¢ solve the adjoint problem: A ¢ = 1.

Error representation:

(e 7¢) = (e, 4" ¢) = (4e, ¢) = (R, ¢).
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Differential Operators

Linear differential equation:

Lu=—-V -KVu+b-Vu+cu=Ff,

with appropriate boundary conditions.
Adjoint differential equation:

L'¢=-V -K'Vp—V-(bd)+ co =1,
with adjoint boundary conditions.

Let up be a finite element approximation of u.

_Error representatlon
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Steady State: No Convection




Steady State: Strong Convection \
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Time Dependent Adjoints

Time dependent linear differential equation:

ou
E + Lu = f(:L‘,t),

subject to appropriate initial and boundary conditions.

Adjoint differential equation:

09
ot

with adjoint boundary conditions and “initial condition”: ¢(x,T) = 1.

+ L7 =

Error representation has the form:
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Adjoints for Nonlinear Operators

Nonlinear differential equation: D(u) = f(z).

Adjoint operator is defined such that:

(D(u, uh)e,¢> — (6,D(U,Uh)*¢>

where the linearized operator, D(u,uy ), satisfies

D(u,up) = /0 OuD(su+ (1 — s)up) ds.

In practice, u is unavailable so the operator is linearized around wy,.
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Navier-Stokes: Re = 100

~
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Forward solution (ug, u,,p) Adjoint solution (¢, ¢y, w)
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A Posteriori Error Analysis for
Polynomial Chaos Approximations
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The Adjoint Operator

The strong from of the adjoint to the nonlinear stochastic diffusion
transport problem is,

(99 _ . (AT(2,t, V) + g(u, U3 \) =11, z€8,T >1t>0,
§ ATVo -n =0, r€0S,T>t>0,
\qb(ZC,T) :¢27 T € S,

where g(u,U; \) = fol Oug(x,t;su+ (1 —s)U) ds.

Either 11 or v is usually zero depending on the quantity of interest.

We approximate gb using a PC expansmn
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The Error Representation

We follow standard steps (substitutions, integration-by-parts, etc.)
to derive the error representation:

[) (6(37,t; >‘)7¢1)S dt + (€(£L',T; A)’¢2)S =

(e(z,0; 1), ¢z, 0 \)g = 3 /I (OU (2, 1) /0t, (x, £ \)) dt

N

+> (U@, N)], o2, 15 0)) g + Z/ (f, oz, t;0))g dt
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(A, t; \)VU(x, 8 X), Vo(x, A

-
: r s Py \
- ) v . . 7% .
N * 4, agte,
p RS Rl O o R
I e 3 3 - 7 RN gl W » .
- - - H ol T, P 4
s R =+ e AR o TN
. ey - B -
- =
v - i
3 N el o~ 4
£.4 . ¥ -
' y -
4 &

' s ¢ ! -
4 ; - s T8 1 ! i :
(F : ’ . :
5 97 4 £ # 5 Sandia
4 < ‘9{ o . ‘& e N National
- P A » h .7 B € : 3 Laboratories



Numerical Results
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Problem Description

Consider the contaminant source problem?:

ou S A — x|?
LS N . e (1)
ot R Y exp( 202 )( =)

with § = [0,1]%, T = 0.21, u(x,0) =0, s = 10 and o = 0.1.

Random variable A uniformly distributed on [0, 1]?.

Quantities of interest: Concentration at t = 0.05 and ¢ = 0.15
at 9 measurement locations.

Discretiz,ation;__h = O it t’— O 005 a 6t ex)
f’ ;*’ Y ‘/

Iﬁ?{tlg/spectral methodg' for eﬁi(nent Bayesian solutlon

ms”. Y/ Marzouk, ‘H. Najm and' L. Rahn. 2007. ~ el



Contaminant Approximation: A = (0.4,0.8)
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First Quantity of Interest at t = 0.05

PC approximation
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Fourth Quantity of Interest at t = 0.05

PC approximation
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Fifth Quantity of Interest at t = 0.05

PC approximation
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First Quantity of Interest att = 0.15
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PC approximation
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Fourth Quantity of Interest at t = 0.15

PC app

roximation
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Fifth Quantity of Interest att = 0.15

x 10

PC approximation
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Effectivity of Error Estimate

Time A Std Err Est u(x11},t) | PC Err Est u(x1},t) | Ratio
0.05 | (0.25,0.25) —1.094E — 02 —1.207E — 02 | 1.103
0.05 | (0.75,0.25) 2.142E — 03 2.144E — 03 | 1.001
0.05 | (0.25,0.75) 2.347E — 03 2.348E — 03 | 1.001
0.05 | (0.75,0.75) 1.439E — 03 1.466E — 03 | 1.019
0.05 | (0.4,0.375) 4.273E — 03 4.508E — 03 | 1.055
0.15 | (0.25,0.25) 5.754E — 03 5.812E — 03 | 1.010
0.15 | (0.75,0.25) —3.637E — 03 —3.670E — 03 | 1.009
0.15 | (0.25,0.75) _3.511F — 03 —3.553E — 03 | 1.012
0.15 | (0.75,0.75) 1.444F — 03 1.4376E — 03 | 0.996
0.15 | (0.4,0.375) 7.686E — 05 9.389E — 05 | 1.222
; 4 R O 1 3
&Y 7 y_ Fy y ; AR el
Ty ,#’ . 3 & ot o .
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Effectivity of Error Estimate

Time A Std Err Est u(x1*,t) | PC Err Est u(x*},t) | Ratio
0.05 | (0.25,0.25) 5 477E — 03 —5.936E — 03 | 1.084
0.05 | (0.75,0.25) 2.352E — 03 2.352E — 03 | 1.000
0.05 | (0.25,0.75) _1.211F — 03 _1.833E — 03 | 1.513
0.05 | (0.75,0.75) 1.953E — 03 1.943E — 03 | 0.995
0.05 | (0.4,0.375) _3.628E — 03 ~3.883E — 03 | 1.070
0.15 | (0.25,0.25) 4.951E — 04 5.018E — 04 | 1.013
0.15 | (0.75,0.25) _5.848E — 04 —5.950F — 04 | 1.019
0.15 | (0.25,0.75) 6.266E — 04 6.301E — 04 | 1.006
0.15 | (0.75,0.75) _5.766E — 04 _5.778E — 04 | 1.002
0.15 | (0.4,0.375) 4 516E — 04 4.447E — 04 | 0.985
lr’ V ,f S
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Effectivity of Error Estimate

Time A Std Err Est u(x®,t) | PC Err Est u(x®!, t) | Ratio
0.05 | (0.25,0.25) 2.387E — 03 2.238E — 03 | 0.938
0.05 | (0.75,0.25) —8.675E — 03 —8.803E — 03 | 1.015
0.05 | (0.25,0.75) _8.377E — 03 ~8.383E — 03 | 1.051
0.05 | (0.75,0.75) —1.499E — 03 —1.707E — 03 | 1.139
0.05 | (0.4,0.375) 1.918E — 02 1.860E — 02 | 0.970
0.15 | (0.25,0.25) 2.782E — 04 2.815E — 04 | 1.012
0.15 | (0.75,0.25) _2.299E — 04 _2.286E — 04 | 0.994
0.15 | (0.25,0.75) —3.882E — 04 —3.893E — 04 | 1.003
0.15 | (0.75,0.75) 3.887E — 04 3.935E — 04 | 1.012
0.15 | (0.4,0.375) 1.439F — 03 1.439F — 03 | 1.000
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Problem Description

Consider the contaminant source problem:

ou . 9 T — x|?
i V- A(x,t; \)Vu = 52 EXP (— 2 ) (1— H(t—0.05))

with S =[0,1]%, T = 0.21, u(z,0) =0, s = 10 and o = 0.1.

[ Aexp(2sin(27mx) cos(4my) 0
Al = ( 0 exp(2sin(4my) + 2 cos(2nx)

Random variable A uniformly distributed on [0.5,1.5].

Quantltles of interest: Concentration at ¢ = 0.05 anﬁ 5~
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Approximation and PC Errorat A =1

PC approximation PC truncation error

V’ v, G 2 ANTYY @ National
2 . <X . » ; Laboratories



Fifth Quantity of Interest at t = 0.05
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Effectivity of Error Estimate

A | Std Err Est u(x®},t) | PC Err Est u(x%®,t) | Ratio
0.50 0.22660 0.22667 1.00032
0.75 0.19693 0.19694 1.00006
1.00 0.17823 0.17823 1.00000
1.25 0.16520 0.16519 0.99996
1.50 0.15550 0.15548 0.99983
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Improved Linear Functionals for
Parameterized Linear Systems
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Parameterized Linear Systems

Let x(s) € R™ solve the parameterized linear system,
A(s)x(s) =b(s), se€l,
for a given A(s) € R™ x R™ and b(s) € R™.
Let zn be a surrogate approximation and define, e(s) = z(s) — xn(s).

We assume the following point-wise error estimate holds,
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Error Analysis

Let ¢(s) solve the adjoint problem,

AT (s)p(s) =, Vse.
At each § € () we derive the error representation:

(¥, e(8)) = (R(5), 9(3))
= (R(8), o (3)) + (R(8), ¢(8) — dn1(3))

where ¢/ (s) is some approximation of ¢(s).

Motlvates deﬁnmg an zmpmfved linear functzonal

ol -t "‘."’?* ; .’ , .."
g gt I g ) @75 zN(s ﬁ(?-_ i (s)) =
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An Improved Linear Functional

If the pointwise error in the adjoint solution satisfies,

10(5) — dar(8)| Lo (2mnyy < €2(M),

then the pointwise error in the improved linear functional is
bounded by,

1 ¥, 2(s)) — g(wn(s), par(s))[| L) < Cer(N)ea(M),
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Example: Smooth Solution

—©— |inear Functional ||
—&— 13t Order Adjoint |
—0—2nd Order Adjoint ||
—4—3rd Order Adjoint
—*—4th Order Adjoint ||
—— 5th Order Adjoint ]

Parameterized linear system:

RS-0

with s € [-1,1] and € = 0.8. .

1 2 3 4 5

Approximation Order
Quantity of interest is x1(s). i . .
—©—Forward Error
. —©—Improved Error
10 7 4

Parameterized adjoint system:

[1+€ ] {@Zﬁl() _*-H; ; -
o ?2(s)) |0 e

] \ ’
4 J,ri“ 2 /
ey ;

o o J ¢ 7 ’ I /’:- F § & 0
I J / N, 10 1 1 1 1
s U : 0 ] 10 15 20 25
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Example: Discontinuous Solution

Parameterized linear system:

2 —s1| |x1(s)| 1
—so 1 | |z2(s)| ||s3—1/3]
where [-] is the ceiling operator
and s; € [—1,1].

Discontinuity at s = —2/3,1/3
Quantity of interest is x1(s).
Param_eterized adjoint systemf
{7 2wl
=51 1 | |9a(s) y 0\.,{

7 727

P

|

1

O True Functional Value
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-1 -0.58 ] 0.5 1
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Example: Discontinuous Solution

‘ O Error Estimate

Parameterized linear system: .
2 —s1| |x1(s)| 1 -
2 1 x2(8) (83 N 1/3—‘ 0.055 "'J' -
where [-] is the ceiling operator 005
and S (© [—17 1] 04}

-0.15 ' ! !
-1 -0.5 0 0.5 1

Discontinuity at s3 = —2/3,1/3 1

09r

Quantity of interest is x1(s). &)

Param_eterized adjoint system:
2 ou(8)| _ (1]
—51 I Cbz( ) ,"" O}

7 ¥ 47
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Example: Discontinuous Solution

2 1 1 1 1 1 1 1 1
—©—Forward Error

—©—Improved Error

Approximation Order
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Example: Discretized PDE

Linear partial differential equation,

-V (K(ZE,:(J,S)VU) E f(xay)a
with s; € [<1,1],i=1,2,...,8

Parameterization of K(x,y, s):
6
K(x,y,s) =151 + Z sk (sin(kmz) + cos(kmy)) L,
k=1
Discretize using Galerkin finite element method.

~ Parameterize

>
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Example: Discretized PDE

Quantity of interest is solution at (x,y) = (0.8,0.6)

V(x,y) = 4% exp(—400(x — 0.8)* — 400(y — 0.6)?),

Project onto the finite element space to obtain data for
discrete adjoint,

ST o3 " X 3 b .
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Example: Discretized PDE

1
1':' F T U L ] 10 T T T T
—€—Forward Error | —O©—Forward Error ]
—8—|mproved Error |} —&—|mproved Error ||
1]
10 F 7
5 5
L 10 5
B %
=
-2
il 10 ;
I -3
-3 10 1 Ll L Lol 1 111l L L1 o1l
10 : : : - 2 3 4 5 B 7
g 10 10 10 10 10 10

1 2 3 4 5
4 } _ Computatio
e h w s B s

ol 47
o &

@ National
Laboratories




Conclusions and Future Work
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Conclusions and Future Work

e Surrogate models typically have errors due to:

— gpatial and temporal discretizations

— truncated stochastic expansions or quadrature

e We can produce a posteriori error estimates for a quantity of interest
obtained by sampling a surrogate model.

e Can be used for error estimates, error bounds, defining improved quantities
of interest, and adaptivity.

e Future work will include:

— Error estimates for stochast}c PDE’s
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