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¢ extremely small size (distributed sensing near critical components)
¢ very low power consumption (minimal energy for nuclear safety) _
¢ long-term stability SN A
¢ high selectivity 1 10 100 1000 10000

¢ ability for self-calibration (an “Achilles heel” of many potential sensor systems) P/ ppm

® A fully instrumented weapon test platform could provide in-situ data to validate high-fidelity _ _
composition and transport models for gases within weapons. Trace gas detection using MOF-coated MEMS sensors

® The unique adsorptive properties of MOFs (high intrinsic surface areas, guest-induced

. _ . expansion/contraction) suggest several routes to chemical sensing using micro-electro-

What is our innovation? mechanical systems (MEMS)

® \We are developing microcantilevers (MCLs) as a platform for on-
demand weapon atmosphere surveillance. These are extremely
compact, high resonant-frequency, low-power devices in which the
transduction mechanism is the stress at the cantilever surface induced
by analyte adsorption.

B Potential transduction mechanismes:

¢ stress induced at the MOF-MCL interface, detected with a built-in piezoresistive stress sensor
¢ change in the resonant frequency of an oscillating MCL sensor induced by mass adsorption

¢ change in the resonant frequency of a SAW sensor through changes in mass loading and film
moduli

® Sensors are coated with a new class of crystalline nanoporous
materials known as metal-organic frameworks (MOFs) to provide both
selectivity and high sensitivity. MOFs are flexible materials with
ultrahigh surface areas (up to 6000 m?/g), high radiation resistance,
and synthetic tailorability for selective adsorption.

® \We have demonstrated humidity sensing by SAWs coated with a MOF (Cu-BTC) over a very
broad concentration range, as well as detection of alcohols and CO,. MOF-coated SAWS for
methane detection are currently undergoing testing.

Key results
® \We have demonstrated the use of MOF-coated MCL sensors for a

variety of analytes: water vapor, alcohols, CO,. Thus, practical MOF-

Structure of Cu-BTC, consisting of Cu(ll) ions

. o connected by benzene tricarboxylate (BTC)
based multigas sensors appear to be within reach. linkers. Unit cell shown is 2.6 nm x 2.6 nm.

Setup for gas detection using MOF-coated SAWS

What have we learned so far?

Force field modeling to rapidly screen potential MOF coatings

SAW sensor fixture and data acquisition hardware. At right, a close-up of a SAW on the

® While MOFs are known for extraordinary gas storage and separation properties,' it has become _
opened fixture.

apparent that low-level gas detection (< 5 mbar P/P,) is also possible with these materials.?
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Dimethylformamide (DMF) functionalization significantly enhances methane uptake.
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® DHS-related real-time chemical detection schemes could also benefit from this technology.
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