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Background

= Large body of work on estimating visual saliency of natural
scene imagery

= “Standard” models readily available for downloading

Inpiat image

Itti & Koch, 2001 A

= Some efforts to continue making improvements

= “Large-scale Scene Understanding Challenge” -
http://lsun.cs.princeton.edu/ )



http://lsun.cs.princeton.edu/
http://lsun.cs.princeton.edu/

Advanced Imaging Sensors ) .

= But many of today’s advanced sensors produce
image products with novel visual characteristics

IR & Thermal Radar

* Shadowing « Saturation - Layover
* Orientation « Resolution » Shadowing
» False color * Noise




Challenge/Problem ) i,

= Data from advanced sensor systems are ultimately
interpreted by human analysts - traditional saliency
models will have some applicability

= |nformation still encoded and displayed using standard
visualization parameters such as contrast and color

= Developing technologies will continue to provide
challenging imagery

= “While dual-energy imaging is now a reality in medical
practice, multienergy is still in its early stage, but a promising
research activity.”

'Pacella, D., Reports in Medical Imaging, Vol. 8, 2015 4




Study Overview ) i,

= How well does existing model (Itti & Koch) predict saliency in
synthetic aperture radar (SAR) imagery?

= How can standard saliency estimation be improved to better
predict gaze patterns of sensor-knowledgeable viewers?

= Study task - change detection in SAR imagery
= Participants

= 3 with no SAR experience (“novices”
= 6 radar engineers familiar with SAR (“engineers”)

= 3 professional SAR imagery analysts (“experienced |As”)




SAR Example — Saliency vs. Actual Gaze

Salience Map Gaze Map
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Saliency Comparison Metrics* )
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1. Linear Correlation Coefficient (CC)

= Measure of the strength of a linear relationship between fixation map
(G) and saliency map (S)
cov(G,S)

" CC(G, S) =— —————— WhenCCisclose to £1, there is almost a perfectly linear relationship
O-GO'S

2. Normalized Scanpath Saliency (NSS)

= Average of saliency values at human gaze positions (saliency normalized
to have zero mean and unit standard deviation)

= NSS =1 indicates that the subjects’ gaze positions fall in a region whose predicted saliency is one standard
deviation above average

= When NSS 2 1, the saliency map exhibits significantly higher saliency values at human gaze locations compared to
other locations

= NSS <0 indicates the saliency model performs no better than picking a random position

3. Area Under Curve (AUC)

= Human gaze positions are considered positive set, other points are negative set
= Saliency map is treated as binary classifier to separate positive and negative sets

*Boriji, A., et al. (2013). "Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study." IEEE Transactions on Imag,g

Processinﬁ 22‘1 I: 55-69.
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Example Gaze Maps By Expertise h) e,

Image Analysts SAR Engineers - Same Domain




Standard Saliency Estimation Applied to SAR Imagery 3 i,
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Image Type*
Kootstra & Shomacker Image Set

SAR Images

CC

Metric
NSS

NNNNNN

AUC

Itti COI2 Used for all

Buildings - Nature — Animals — Flowers - Automan
SAR Images




Reducing Salience Estimates in = e
Shadow Regions
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= Pixel-statistical methods used to segment* the scene and
characterize the segment properties?

= These properties can serve as filters to modulate traditional
saliency estimates
= SAR Phenomenology - shadow regions have low coherence
Segment Classify
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M. M. Moya, et al, “Superpixel segmentation using multiple SAR image products” RADAR SENSOR TECHNOLOGY XVIII, Proceedings of SPIE VOL
9077, Conference on Radar Sensor Technology XVIII, MAY 05-07, 2014, Baltimore, MD
2M.M. Moya, et al., “Superpixel Classification for Signature Search in Synthetic Aperture Radar Imagery,” Conference on Data Analysis (CoDA), March, 1

2014, Santa Fe, NM.
I EEEEEEEE—————————



Method (1): Natural Scene Saliency Map(®&=..

1tti citation
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Method (2): Select and Filter Based on
Superpixel Characteristics

= Select superpixels with
certain characteristics
(i.e. shadows)

= Classify using pixel
statistics within each
superpixel

= Apply mask to original
saliency map

= Can add Gaussian, or
other smoothing to
reduce discontinuities
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Study Results ) i,

Gaze Map Comparison Metrics

0.8

_ =§Lapr;dr§irgel Saliency map modulated by

superpixel characteristics is
more similar to analyst
fixation maps

cC nss auc

* Linear correlation (cc) + Normalized scan path » Area under receiver-

improvement factor is saliency (nss) operator curve (auc)
3.8X improvement factor is improvement factor is 1.1X
3.9X
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Conclusion )

= Saliency estimates from “standard” model have high variance
in agreement with gaze maps

= Modulating standard model using superpixel segmentation
and classification based on sensor phenomenology can
improve salience — gaze agreement

= Using eye tracking technology to explore relationships
between traditional saliency models and pixel-statistical
properties we can understand eye movements of domain
experts interacting with imagery from today’s most advanced
Sensors




