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Outline

e What are Epsilon Near Zero modes, what can we do
with them?

— Fundamentals
— ENZ modes: coupling to metamaterial resonators
— Berreman modes: Thermal emission

e Other examples and uses of Epsilon Near Zero modes

— ENZ modes coupled to Intersubband transitions and
Metamaterials
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Surface Plasmons in Thin Films

Econoumou, 1969 E. N. Economou*{
Burke et al, 1986 The James Franck Institute and Department of Physics, The Universily of Chicago, Chicago, Illinois 60637
etc (Received 15 January 1969)
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16, 4. Geometry and the dispersion relations for SPO of a
metal film between two semi-infinite insulators (en=1—wy/w?,
e;=1). The analytical expressions for k2>k,, or k< k,, for the curves
shown schematically here are (3.23h) and (3.18).

What happens when the layer becomes much thinner?
(<< skin depth)
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Dispersion relations
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Film thickness dependence on surface &
plasmons and ENZ mode dispersions

thickness ~ skin depth

—r — d=100 nm

thickness << skin depth
d =2 nm “ENZ Mode”

1. Vassant, Marquier, Greffet et
al., Phys. Rev. Lett. 109, 237401
. . (2012)

Flat dlSpel’SIOH? 2. Vassant, Marquier, Greffet et

4 al., Opt. Express 20, 23971
(2012)

3. Campione, Brener, Marquier,
Phys. Rev. B Rapid Commun. 91,
121408 (2015)
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ENZ mode dispersion
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The ENZ mode dispersion is a part of the the long-range surface plasmon
dispersion that reaches the plasma frequency, where the metal dielectric
constant vanishes.

Campione, Brener, Marquier, Phys. Rev. B Rapid Commun. 91, 121408 (2015)
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Campione et al., Phys. Rev. B 87, 035120 (2013)
Campione, Brener, Marquier, Phys. Rev. B Rapid Commun. 91, 121408 (2015)
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ENZ Modes: E, is Constant and Large
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Campione, Brener, Marquier, Phys. Rev. B Rapid Commun. 91, 121408 (2015)



What Can We Do With ENZ Modes: ) .
Coupling to Planar Metamaterials

|
MM resonators create strong optical fields that E

lead to strong coupling substrate

“Transmission
O%_‘
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Optical Phonons: Nano Letters 11, 2104 (2011); Journal of Physical Chemistry C 114, 7299 (2010)
Intersubband Transitions: Nature Communications 4, 2882 (2013) ; Advanced Optical Materials 2, 1057 (2014)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013); New J. Phys. 16, 043029 (2014)
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I Strong Coupling to ENZ Modes

Numerical simulation (FDTD) FTIR transmission measurement
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Nano Letters 13, 5391 (2013)
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@ Electrically Tuning the Coupling to T 5.
the ENZ Mode v
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Fundamentally different than tuning just by changing a local permittivity!
Removal of carriers -> removal of ENZ mode

Nano Letters 13, 5391 (2013)
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Where Can We Find ENZ Modes?
Rule of Thumb:
Condition for ENZ modes %2 <k, << 4 J e
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Campione, Brener, Marquier, Phys. Rev. B Rapid Commun. 91, 121408 (2015)
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Related to ENZ: Berreman Modes

“Berreman ——> Leaky modes: can couple from free space
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Coupling to Berreman Modes From Free
Space

Transmission vs angle (p-pol):
A sharp dip is observed in
transmission, where £~0
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Berreman, Physical Review 130 (6), 2193 (1963).

McAlister and Stern, Physical Review 132, 1599 (1963). 14
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e Berreman Modes for Thermal Emission

Kirchhoff's law of thermal radiation: the absorptivity of an object should be
equal to its emissivity (A = €)

(a) Spectrally selective thermal emission
from an unpatterned film

. Ferrel, Phys. Rev. 111, 1214 (1958)

2. Berreman, Phys. Rev. 130, 2193 (1963)

. Vassant, Marquier, Greffet et al., Opt.
Express 20, 23971 (2012)

S A\ 4. Ward, Jacob et al., ACS Photonics 2, 2
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é‘"ﬁ Angle-resolved, polarization-dependent @ &:..
emissivity measurements (140°C)
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Appl. Phys. Lett. 105, 131109 (2014)
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See also recent work by Z. Jacob
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Outline

e Other examples and uses of Epsilon Near Zero modes

— ENZ modes coupled to Intersubband transitions and
Metamaterials
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Strong Coupling of Metamaterials to Inter-
subband Transitions in Quantum Wells
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Optically active transition: between
ground state (black) and first excited
state (red)

» Stack of different
semiconductors

* Quantized energy level
designed

» Narrow absorption

Opt. Express 20, 6584 (2012)
Appl. Phys. Lett. 98, 203103 (2011)
Nat. Commun. 4, 2882 (2013)

Appl. Phys. Lett. 104, 131104 (2014)
Phys. Rev. B 89, 165133 (2014)
Nano Lett. 15, 1959 (2015)

Nat. Commun. 6, 7667 (2015)
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Strong Coupling: From Mid-IR to Near IR

InGaAs QWs (mid IR)
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ENZ and QW for tailored platform

Fully engineerable
Doped semiconductor and ISTs

()

Block diagram of the proposed platform

(a)
ENZ modes (phonons,
doped semiconductors)
_ 10
= 9 ]
2 \
E-10 / ENZ
5 -20
(-9
-30
Dipole resonance 1 Dipole resonance 2
(MM resonators) (phonons, ISTs)
20
= —Real
- ’ “ 5 == Imag
' ?’ =10
e PN
0= B .
* One of the resonant systems will always

be MM resonators

« This is a system where ENZ modes interact with ¢ The other will be quantum well ISTs

two, distinct, dipole resonant systems « also semiconductor phonons may
be possible, limited capabilities
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[ST permittivity

Addition of ENZ layer to QWs
®x#IST transition frequency

IST ~ 800 cm-?
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[ST permittivity

Addition of ENZ layer to QWs
®,=IST transition frequency
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Rabi splitting increases with ENZ thickness
®p=IST transition frequency

Simulations
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Campione et al. under review
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Why does the Rabi splitting increase with

ENZ thickness?

®p=IST transition frequency

Compute the (complex) eigenmodes of the layered medium without MM

Free space

Doped semiconductor D d,
ISTs in quantum wells d,

Substrate

« The semiconductor stack effectively behaves
as a “thicker” ENZ structure, leading to an
enhanced Rabi splitting

* Alower |Im(w)| allows better coupling and thus
larger Rabi splitting
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« The MM then allows to couple to this ENZ mode by generating the required wave

spectrum
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Summary

0.8

ENZ Modes 06

Metafilms

 Metamaterial resonators + semiconductor heterostructures + ENZ modes :
platform for tunable spectral behavior and variable coupling

* Addition of ENZ layer to metafilms enhances coupling to other dipole resonances
(useful for spectral tuning, enhanced nonlinearities, etc)

* Berreman modes (close-relative of ENZ modes) can be used for spectrally selective
thermal emission
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