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Outline

• Intro to metasurfaces, intersubband transitions

• Strong light-matter interaction

• Nonlinearity in intersubband transitions of 
quantum-wells:
• giant χ(2) but only in z direction

• A doubly resonant nanocavity:
• Fully engineerable resonances
• Field enhancement
• Phase control

• Putting it all together: an IR source with a 
engineerable beam shape
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A matter of resonance:
Intersubband transitions in quantum wells

• Conduction band is 
quantized in growth 
direction

• Transitions are 
optically active

InGaAs homogeneously doped

Optical point of view: ISTs in QWs  Lorentzian oscillator 
in z direction only
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Light-matter coupling in 
metasurfaces

Weak coupling
- Losses > Coupling
- Purcell regime

Strong coupling
- Coupling > Losses
- Energy exchange 

at Rabi frequency
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Observing Strong coupling
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Strong coupling: from mid- to near-IR

Benz et al., Nat. Commun. 4, 2882 (2013)

InGaAs QWs (mid IR) GaN QWs (near IR)
Benz et al., ACS Photon. 1, 906 (2014)

Alex Benz
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Linear summary

•Metallic resonators have a fully tunable 
resonance

•Can be strongly coupled to matter 
resonances 

– energy is transferred back and forth: 
matter  light

•Works througout most of IR
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Resonant χ(2) and Intersubband 
Transitions in Quantum-Wells

3-level systems exhibit resonant χ(2).

Properly designed ISTs exhibit very 
high resonant χ(2)
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Design principles:

• Maximize carrier concentration in the wells.

• Maximize transition dipole moment.

• Levels equally spaced.

• Minimize losses
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Our Nonlinear Medium

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)

Rosencher et al. Electron. Lett. 25, 1063 (1989)

Khurgin J. Opt. Soc. Am. B 6, 1673 (1989)
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resonant metamaterial for 
second harmonic generation

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)

30 THz 60 THz

Gorkunov et al. Appl. Phys. Lett. 88, 071912 (2006)
Klein et al. Science 313, 502 (2006)

• Resonant metamaterials enhance second harmonic generation

• We propose a split-ring resonator design supporting two resonances for orthogonal polarizations of the 
incoming wave

Proposed design Supported resonances

X

Y

Kanazawa et al. Appl. Phys. Lett. 99, 024101 (2011)
Thyagarajan et al. Opt. Express 20, 12860 (2012)
Ginzburg et al. ACS Photon. 2, 8 (2014)
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Nanocavity:
doubly resonant design
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Nanocavity:
Field Enhancement

Normal incidence 
10µm plane wave 
excitation
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Saturation

• High pump intensity 
using pulsed OPA

• CW data shown at 
different frequency

max conversion: 
~0.36% 

in ~700nm path 
length

10
-2

10
-1

10
0

10
1

10
0

10
2

10
4

FF power [W]

S
H

 p
o
w

e
r
 [

W

]

CW pump

pulsed pump

quad. fit to pulsed

quad. fit to CW

linear fit

Pump: ~6kW/cm2

For bare QWs: MW/cm2



16

laser polarization

laser sample detector

analyzer

laser sample detector

polarizer

X

y

y

Xin
out

-- --

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Polarizer angle [deg]

P
S

H
 [


W
]

Fit to cos8

Experiment

x

y

-50 0 50
0

0.2

0.4

0.6

0.8

1

Analyzer angle [deg]

P
S

H
 [


W
]

Experiment

Fit to sin2

 --

Polarization properties

Complete device has 
effective χ(2)

yyx



17

Second harmonic generation 
based source

•Subwavelength source based on second 
harmonic generation

•High efficiency considering an ultra-thin 
device

•Full polarization control at the source level
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Phased Arrays

Identical point sources
+
Radiating with controllable phase 
difference 
==
Full control over beam direction and 
shape

Image from Wikipedia
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Coherence Demonstration

•Resonant process  χ(2) has phase

• Involves real transitions

•Resonant cavity mediated process 

•Resonator inhomogeneity adds random phase

•COHERENT ???
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Beam Manipulation I

flipping induces π phase shift

Period 
determines  
angular 
separation
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Beam Manipulation II

•Cavities radiate polarized light

5µm

(F)

u

v

-60

-50

-40

-30
-20

-10 0 10
20

30

40

50

60

unpolarized

-60

-50

-40

-30
-20

-10 0 10
20

30

40

50

60-60

-50

-40

-30
-20

-10 0 10
20

30

40

50

60

v polarized u polarized

Pump 
polarization

3-in-1: 

Source + 
Polarizer +  
Beam Splitter



22

Moving to shorter 
wavelengths

•Challenges:

– Very large CB offset required  III-Nitrides 
are hard to control

– Resonators dimensions shrink  fabrication 
approaches the limit of conventional EBL

– Metal losses increase  will strong coupling 
prevail??

Conduction 
band offset
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SHG in III-N

•Actual working wavelength 3.2 µm  1.6 µm
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Summary

• SHG in ULTRATHIN device based on quantum-wells strongly coupled 
to metallic nanoresonators.

• High Efficiency operation in transmission.

– SH is cross polarized from fundamental

– Saturation observed

• Coherent SH radiation confirmed.

• Spatial and polarization Beam Manipulation demonstrated.

• Transition to shorter wavelengths via III-N demonstrated.

O. Wolf et al. Nature Commun. 6, 7667 (2015)

S. Campione et al. Appl. Phys. Lett. 104, 131104 (2014).

Dr. Omri Wolf – Sandia National Labs –
owolf@sandia.gov


