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Outline

Intro to metasurfaces, intersubband transitions
Strong light-matter interaction

Nonlinearity in intersubband transitions of

quantum-wells:
« giant @ but only in z direction

A doubly resonant nanocavity:
* Fully engineerable resonances
* Field enhancement
* Phase control

Putting it all together: an IR source with a
engineerable beam shape
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Metasurface - Array of
optical cavities

« Resonance of
single cavity
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A matter of resonance:
Intersubband transitions in quantum wells
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Conduction band is
quantized in growth
direction
Transitions are
optically active

L. C. Westand S. J. Eglash, Appl. Phys. Lett., 46,

1156-1157, (1985)
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Light-matter coupling in
metasurfaces

Weak_ coupling
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Benz et al., Nature Commun. 4, 2882 (2013) 5
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Observing Strong coupling

IST resonance
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Strong coupling: from mid- to near-IR

InGaAs QWs (mid IR) GaN QWs (near IR)

Benz et al., Nat. Commun. 4, 2882 (2013) Benz et al., ACS Photon. 1, 906 (2014)
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Linear summary

* Metallic resonators have a fully tunable
resonance

*Can be strongly coupled to matter
resonances

- energy is transferred back and forth:
matter <> light

*Works througout most of IR
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Resonant ¢(® and Intersubband
Transitions in Quantum-Wells

3-level systems exhibit resonant (2.

A
Proper'ly designed ISTs exhibit very W3
high resonant % “nl
2 N-z,z,,2,
3 )(a))oc (a)_a)lz _irl2)(2a)_a)l3 _iFB)
~ W,,
z; < (W[RY,) v

Design principles:
Maximize carrier concentration in the wells.
Maximize transition dipole moment.
Levels equally spaced.

Minimize losses



Sandia
m National
Laboratories

Our Nonlinear Medium

Design for 10um > 5uym SHG 0.6 ‘ 32X
-aysymetric double well
-highly doped well

1.2nm InAlAs

10nm InAlAs
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10  Khurgin J. Opt. Soc. Am. B 6, 1673 (1989)
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resonant metamaterial for
second harmonic generation

«  Resonant metamaterials enhance second harmonic generation

Gorkunov et al. Appl. Phys. Lett. 88, 071912 (2006) Kanazawa et al. Appl. Phys. Lett. 99, 024101 (2011)
Klein et al. Science 313, 502 (2006) Thyagarajan et al. Opt. Express 20, 12860 (2012)
Ginzburg et al. ACS Photon. 2, 8 (2014)

*  We propose a split-ring resonator design supporting two resonances for orthogonal polarizations of the
incoming wave

Proposed design Supported resonances

«—> X

30 THz 60 THz

Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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Nanocavity:
doubly resonant design
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Nanocavity:

Field Enhancement
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(7 Power and Frequency Dependence

Pump is CW CO, laser
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Saturation
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* High pump intensity "»"
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Polarization properties

polarizer
analyzer

laser > sample ——>| detector

laser |—>| sample > detector

Experiment
Fit to sin
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Second harmonic generation ) .
based source

- Subwavelength source based on second
harmonic generation

High efficiency considering an ultra-thin
device

*Full polarization control at the source level

17



Phased Arrays

LITTT
i

Identical point sources

+

Radiating with controllable phase
difference

Full control over beam direction and
shape

Image from Wikipedia 18
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Coherence Demonstration

- Resonant p~---ess > y® has phase
- Involves rew: tHENS¥ibns

Coherent array
! 260"
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flipping induces n phase shift

A
Period
determines
angular
separation
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Beam Manipulation I
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3-in-1:
Source +

Polarizer +
Beam Splitter
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Moving to shorter
wavelengths

Conduction
band offset

*Challenges:

- Very large CB offset required - III-Nitrides
are hard to control

- Resonators dimensions shrink = fabrication
approaches the limit of conventional EBL

- Metal losses increase > will strong coupling
prevail??

22




Sandia
m National
Laboratories

SHG in ITI-N

* Design: SHG 3 ym > 1.5 ym (0.4 eV > 0.8 eV)
- Traditional band structure calculation not enough
- Over estimation of IST
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SHG in ITI-N

- Actual working wavelength 3.2 ym > 1.6 ym

SH signal [arb. u.]

0.37 0.38 0.39 040 041 042 043
Pump Photon Energy [eV]

» 2+ order of magnitude improvement
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Summary ) S,

- SHG in ULTRATHIN device based on quantum-wells strongly coupled
to metallic nanoresonators.

» High Efficiency operation in transmission.
- SH is cross polarized from fundamental
- Saturation observed

» Coherent SH radiation confirmed.
- Spatial and polarization Beam Manipulation demonstrated.

* Transition to shorter wavelengths via ITI-N demonstrated.

0. Wolf et al. Nature Commun. 6, 7667 (2015) Dr. Omri Wolf — Sandia National Labs —

S. Campione et al. Appl. Phys. Lett. 104, 131104 (2014). - owolf@sandia.gov



