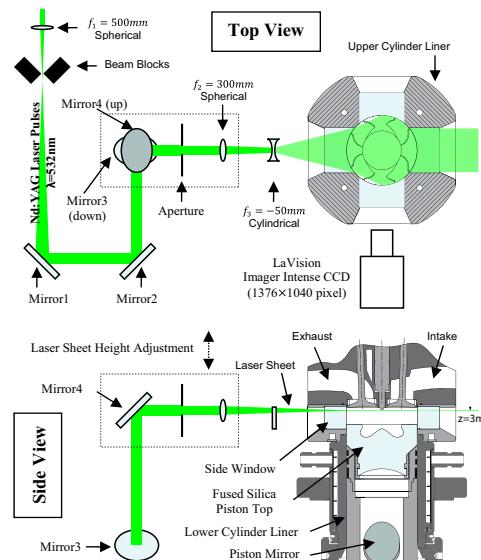
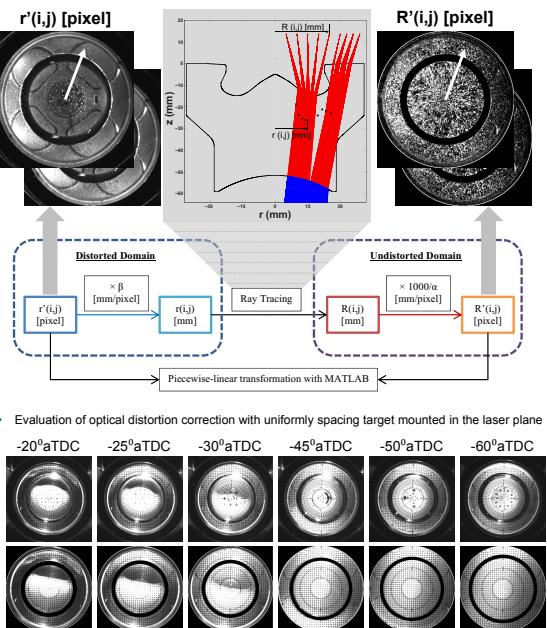


Piston Geometry Effects on In-cylinder Swirl Asymmetry in a Light-Duty Optical Diesel Engine

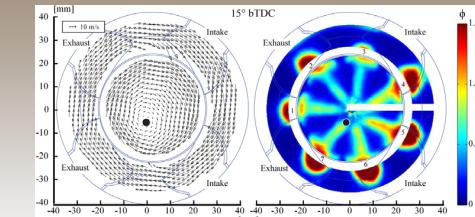

Kan Zha¹, Stephen Busch¹, Cheolwoong Park², Paul C. Miles¹¹ Sandia National Laboratories² Korea Institute of Machinery and Materials

Motivation

For direct-injection, swirl-supported light-duty Diesel engines, asymmetrical in-cylinder flow topologies prior to fuel injection can lead to an asymmetrical mixture preparation process. Reducing these asymmetries is considered as one strategy to reduce unburned hydrocarbon (UHC) emissions under Low-Temperature Combustion (LTC) conditions. In order to faithfully reproduce in-cylinder swirl asymmetries present in production light-duty Diesel engines, a transparent piston top with near-production bowl geometry is employed in a single-cylinder optical Diesel engine. Planar particle image velocimetry (PIV) measurements are performed to characterize the in-cylinder flow in several horizontal (swirl) planes.

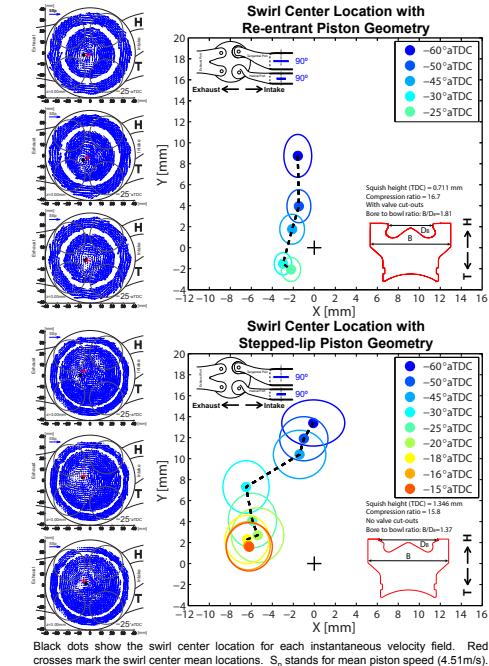

Experimental Setup

- Optical access is provided by a classic Bowditch piston extension with a fused-silica piston top. All PIV data are acquired while the engine is motored at 1500 rpm with no fuel injection.
- A slit imaging approach is implemented to achieve a thin laser sheet inside the combustion chamber (laser waist diameter = 450 μ m at chamber center, 800 μ m near the wall).
- Porous SiO₂ powder ($d_p = 2\mu$ m, true density $\rho_p = 600\text{kg/m}^3$) is used as tracer. The Stokes number is less than 0.1 throughout the full compression stroke.



Optical Distortion Correction

- To ensure reliable measurement of particle displacements, optical distortions (spatially and temporally variant) caused by the piston geometry must be corrected.
- Ray tracing and manual image registration provide a full dewarping transformation with any given laser plane position (z) and piston location (CAD).


- Evaluation of optical distortion correction with uniformly spacing target mounted in the laser plane

Petersen, B., Miles, P., and Sahoo, D., "Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions," SAE Int. J. Engines 8(2):526-537, 2012, doi:10.4271/2012-01-0692.

Results

- Comparison of swirl center locations for two different geometries: a conventional re-entrant bowl and a stepped-lip bowl.
- Laser plane: z=3mm for CAD $\leq -25^\circ$ aTDC; z=squish height/2 for CAD $\geq -20^\circ$ aTDC.

Black dots show the swirl center location for each instantaneous velocity field. Red crosses mark the swirl center mean locations. S_v stands for mean piston speed (4.51 m/s). "H": helical port. "T": tangential port. Each ellipse indicates one σ of swirl center location away from the mean position.

Future Work

- Comparison with 3D numerical simulation (UW-Madison, ERC) to understand the extent to which piston bowl geometries can affect flow asymmetry (i.e. bore to bowl ratio, valve cut-outs, etc.).

Conclusions

- In the late compression stroke, in-cylinder swirl in the stepped-lip piston case is more eccentric from chamber center and cyclic variability is larger than the re-entrant case. This is the joint effect of piston geometry change and increased squish height.