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NONLOCAL MODELS

nonlocal models are used in several diverse applications

our interest: nonlocal diffusion operators

e peridynamic model for mechanics
e jump processes

e nonlocal heat conduction
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NONLOCAL MODELS

nonlocal models are used in several diverse applications

our interest: nonlocal diffusion operators

e peridynamic model for mechanics
e jump processes

e nonlocal heat conduction

how do they look like?

Luf@) = [ (uly) - u(@) 1(e.y) dy
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NONLOCAL MODELS

e interactions can occur at distance, without contact

e used in many scientific and engineering applications, where the material dynamics
depends on microstructure
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NONLOCAL MODELS

[1] S.Silling, R.B.Lehoucq, Advances in Applied Mechanics, Elsevier, 2010.
[2] M.Di Paola, G.Failla, and M.Zingales, Journal of Elasticity, 2009. Wikipedia
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interactions can occur at distance, without contact

used in many scientific and engineering applications, where the material dynamics
depends on microstructure

example: nonlocal continuum mechanics theories, e.g. peridynamics[l] and physics-
based nonlocal elasticity[2] which can model fractures and material failures

nonlocal models are required to accurately resolve small scale features, e.g. crack
tips or dislocations

&

/

ductile fracture,
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NONLOCAL MODELS

e used to model stochastic jump processes, e.g. Lévy jump processes [1,2]

e example: estimate the first exit time of a particle from a bounded domain [3]

[1] M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq, submitted, 2014

2] O. Defterli, M. DElia, Q. Du, M. Gunzburger, R. Lehoucq, M.M. Meerschaert,
Fractional Derivatives and Applications, 2015

[3] N. Burch, M. D’Elia, R. Lehoucq, The European Physical Journal Special Topics, 2014
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NONLOCAL MODELS

facts: e a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

e we have well-posedness results for a large class of nonlocal steady and
unsteady—state equations, control problems and parameter identification

e we have numerical convergence results for finite element approximations
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NONLOCAL vs LOCAL

facts: e the numerical solution of nonlocal models might be
prohibitively expensive

e we can compute the solution of PDEs efficiently
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NONLOCAL vs LOCAL

facts: e the numerical solution of nonlocal models might be
prohibitively expensive

e we can compute the solution of PDEs efficiently
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— Increasing interaction radius —



WHAT ABOUT COUPLING?

Goals: e merge two fundamentally different mathematical descriptions
of the same physical phenomena: PDEs and nonlocal models

e split the computational domain in a local and a nonlocal do-
main and couple, in a smart way, the models at the interfaces

or overlapping regions

l A}
,overlap,
[ | 1
[ ] 1

nonlocal local

L}
1

7
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WHAT ABOUT COUPLING?

Goals: e merge two fundamentally different mathematical descriptions
of the same physical phenomena: PDEs and nonlocal models

e split the computational domain in a local and a nonlocal do-
main and couple, in a smart way, the models at the interfaces
or overlapping regions

l A}
,overlap,
[ ] |
[ ] 1

nonlocal local
| )
/]

Contribution: define and analyze a local-to-nonlocal (LtIN) coupling method
for nonlocal diffusion models that

e passes the patch test

e allows for separate softwares/solvers/meshes for the local
and nonlocal problems
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OUTLINE

Notation
Formulation of the optimization problem
Finite dimensional approximation

Numerical tests
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A NONLOCAL VECTOR CALCULUS

— Q. Du, M.D. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and

approximation of nonlocal diffusion problems with volume constraints.

SIAM Review, 54, 667-696, 2012

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector
calculus, nonlocal volume-constrained problems, and nonlocal balance laws.

Math. Model. Meth. Appl. Sci, 23, 493-540, 2013




NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart
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NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

Nonlocal operators acting on u(z): R? — R and v(x,y): R x RY — R?
o divergence of v: D(v)(z) = / (v(z,y) +v(y,x))  alz,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(x,y)

e nonlocal diffusion of u: Lu(x) = D(®Gu(x))

M. D'Elia — mdelia@sandia.gov



NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart
Nonlocal operators acting on u(z): R? — R and v(x,y): R x RY — R?

o divergence of v: D(v)(z) = /n (v(z,y) +v(y,x))  alz,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(x,y)

e nonlocal diffusion of u: Lu(x) = D(®Gu(x))

Lu@) =2 [ (u(y) - (@) alz.y) - (B y)a(z.y) dy

Lu@) =2 [ (uly) ~ u()) (e.y) dy
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NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region 2 € R¢
Q={yeR\Q: a(z,y)#0, z €9},

Define: Ot =QUQ

. @ o
National
Laboratories
M. D'Elia — mdelia@sandia.gov /



NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region 2 € R¢
Q={yeR\Q: a(z,y)#0, z €9},

Define: Ot =QUQ

Kernel: we assume

{’y(w,y)>0 Vy € B:(x)
v(x,y) =0 VyeQ\ B.(x),

B(x)={yeQt: |[z—y|<e, ze}
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THE LtN OPTIMIZATION PROBLEM

— M. D'Elia, P. Bochev, Optimization-Based Coupling of Nonlocal and Local
Diffusion Models, Materials Research Society Proceedings, 2014

— M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an
optimization-based Local-to-Nonlocal Coupling Method, 2015




MODEL PROBLEMS

The nonlocal problem

{Eun = fn xell

U, = o0, x€XI),

where o, € V(Q) and f,, € L2(Q)
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MODEL PROBLEMS

The nonlocal problem

{[,un = [, axecll

U, = o, xcI ],

where 0, € V(Q) and f,, € L2(Q)

The local problem

local diffusion model given by the Poisson equation

—Au; = fi xeQ
u = o7 x € 0,

where o; € H2(9) and f; € L2(Q)
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LtN COUPLING
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LtN COUPLING

Notation:
Qf =Q,UQ, c ot
Q=0 NQ #0
Q, = Q; UQ,
oy =1, Ul
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LtN COUPLING

Notation:
Qf =Q,UQ, c ot
Q=0 NQ #0
Q, = Q; UQ,
oy =1, Ul

State equations:

—Lu, = [n xTE Qn —Au; = fi x €
u, = 6, xefll, Uy 0, xel,
u, = 0 x € () uy = 0 xzelj
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LtN COUPLING

Notation:
Qf =Q,UQ, c ot
Q=0 NQ #0
Q, = UQ.
oy =Ir;,ul’.

Optimization problem:

1

1 2
min  J(u,,u;) = = w, —uy)’de = =||u, —wl?
'U;naulae’n,ael ( " l) 2 /{;b( " l) 2 || " l |O’Qb
—Eun = fn T c S}/n —Aul = fl T c Ql
S.t. u, = 0, xe, w = 0, xel,
u, = 0 x € () wy = 0 xelj.
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LtN COUPLING

Notation:
Qf =Q,UQ, c ot
Q=0 NQ #0
Q, = UQ.
oy =Ir;,ul’.

Optimization problem:

1

1 2
min  J(u,.,u;) = — u, —w)de = =||lu, —wll?
'U;naulae’n,ael ( " l) 2 /{;b( " l) 2 || " l |O’Qb
—Eun = fn T c 9” —Aul = fl T c Ql
S.t. u, = 0, xe, uy = 6 xel.
u, = 0 x € () wy = 0 xelj.

~

control variables (0,,,60;) € ©,, x ©; = {(op,07) : o € ‘N/ﬁi(Qc), o€ H2(I'.)}

Laboratories
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LtN COUPLING

LtN solution e optimal solution: (6},60) € ©,, x 6,

wEOF)  xeQt

n\-n

e LtN solution: u* =
{ uj (0]) x e\ Q
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LtN COUPLING

LtN solution e optimal solution: (6},60) € ©,, x 6,

wEOF)  xeQt

n

e LtN solution: u* =
{ uj (0]) x e\ Q

Questions: e is it unique?

e what is the “error” wrt the global nonlocal solution u,,?

—Lu, = f xx€Q
u, = 0 x € Q)
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IS THE SOLUTION UNIQUE?

Reduced form:

1

' 1
min J(6,.0;) = & / (tn (0) — 1 (0))2 A = < [[tun (0) — w (0|20,
00,0, 2 Jq, 2
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IS THE SOLUTION UNIQUE?

Reduced form:

1 1

min J (6, 0;) = —/ (un(0n) — i (00))* dz = 5 [Jun(0n) — w (0I5 0,
On,0; 2 Ja, 2

Solution splitting:

Up = Up (0n) + ud and w; = vy (60;) + u

harmonic components v,, and v;

—Evn =0 T © Qn —A’Ul =0 xe€ Ql
v, =20, xecl and vy =60, xzel,
v, =0 xcQ vy =0 =zel;

0

0
n and u;

homogeneous components u

SO 3

W =0 xe, uw) =0 x €Y

{Euo = fn x€Q, {—Au? —fi xcQ
and
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(gn,el) — §an(9n)_vl(9l)’|(2),9b + (U’?L_u?avn(en)_vl(el))()’g)b_'_ 5”’&%—%?”3,91)
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(0n,01) = 5“%(971)—%(91)“3,9,, + (IU’?L_U’?7vn(e’II)_UZ(@l))O,Qb—'_ 5”“2—%?”3,9,,

Lemma: The reduced space problem has a unique solution
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(0n,0;) = §an(9n)—vz(91)llg,nb + (Ug—’d?,Un(en)—vz(Ql))O,Qb‘F 5““2—14?”3,91,
g ~ /
(O, 01)]]

Lemma: The reduced space problem has a unique solution

Key result: /Q (vn(om) = vi(on)) (vn(pn) —vi()) = (00, 01), (ttns 1))

defines an inner product in the control variable space

= [Jon(0n) =02 (0) 13,0, := ll (o, 00) ]

defines a norm in the control variable space
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THE COUPLING ERROR

Coupling error < ' Modeling error

[un —u*llo,or < C [tn — Ullo.g,

uy solves the local problem in §2; with Dirichlet data 6; = u,|r,

(9[ — anh‘c

M. D'Elia — mdelia@sandia.gov

—Lu, = f xe

u, = 0 =x¢€ Q
—Au; = f x €

al = ﬂnh*c xel,

ﬂl = 0 x el
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THE COUPLING ERROR

Coupling error < ' Modeling error

0.0t < C un —ljo

|wy, — u*

uy solves the local problem in §2; with Dirichlet data 6; = u,|r.

—Lu, = f xe

i, = 0 ze
(9[ — un|Fc
—Au; = f x €
al = ib\nh*c xel,
ﬂl = 0 x el

Theorem: if Aw — Lw ~ O(e?) for all w € C*(Q;),
then |G, — Gljo.q, < Ce? + O(e?)
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ASSUMPTIONS, LEMMAS AND TOOLS

Assumptions:

_ k .
o 7, = [l LF <00 with  y(x) = [, Vo(x,y)dy, k=1,2

e the global nonlocal solution has a trace on I'.
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ASSUMPTIONS, LEMMAS AND TOOLS

Assumptions:

_ k .
o 7, = klldF < oo with (@) = [, YF(x,y)dy, k=12

e the global nonlocal solution has a trace on I',

Lemmas:

e nonlocal trace inequality
e equivalence of L? norm and the nonlocal state space norm

e strong Cauchy-Schwarz inequality for the harmonic components

(W (on), vi(ar))o.0,| < dllvnlan)lo.g, (o), o<1
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ASSUMPTIONS, LEMMAS AND TOOLS

Assumptions:

_ k .
o 7, = klldF < oo with (@) = [, YF(x,y)dy, k=12

e the global nonlocal solution has a trace on I',

Lemmas:

e nonlocal trace inequality
e equivalence of L? norm and the nonlocal state space norm

e strong Cauchy-Schwarz inequality for the harmonic components

(W (on), vi(ar))o.0,| < dllvnlan)lo.g, (o), o<1

Tools:

e nonlocal (and local) Poincaré inequality

e local Caccioppoli inequality for harmonic functions ||Vl g < Cljv|ly g
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FINITE DIMENSIONAL APPROXIMATION

— M. D'Elia, P. Bochev, Optimization-Based Coupling of Nonlocal and Local
Diffusion Models, Materials Research Society Proceedings, 2014

— M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an
optimization-based Local-to-Nonlocal Coupling Method, 2015




THE ALGORITHM

Optimization problem:

. 1 1
BT = 5 (om0 = gl — il
—Eun = fn T c Qn —Aul = fl T c Ql
S.t. u, = 0, xefll, vy = 6, xzel,
u, = 0 xell; uy = 0 =xelj.
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THE ALGORITHM

Optimization problem:

. 1 1
BT = 5 (om0 = gl — il
—Eun = fn T c Qn —Aul = fl T c Ql
S.t. u, = 0, xefll, vy = 6, xzel,
u, = 0 xell; uy = 0 =xelj.

weak form + finite elements

(using the nonlocal vector calculus)

Q+t JQ+t Q

M. D'Elia — mdelia@sandia.gov

weak form + finite elements

VuyVz de = fizidx
Ql Ql

/ .
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THE ALGORITHM

discretized control variables: 6,,;, and 6y,

A gradient—based algorithm

Given an initial guess 6%, 69  for k=0,1,2,...

1. solve the state equations and compute Jj,

dJp

2. compute the gradient of the functional and evaluate it

d(enha elh) (0%, 0k

3. Use 1. and 2. to compute the increments §(6%,) and §(6F,)

4. Set 0%t =0k, +5(0F,), and 05T =08 +5(0F).
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THE ALGORITHM

discretized control variables: 6,,;, and 6y,

A gradient—based algorithm

Given an initial guess 6%, 69  for k=0,1,2,...

1. solve the state equations and compute J, — independently!

dJp

2. compute the gradient of the functional and evaluate it

d(enha elh) (0%, 0k

3. Use 1. and 2. to compute the increments §(6%,) and §(6F,)

4. Set 0%t =0k, +5(0F,), and 05T =08 +5(0F).
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THE ALGORITHM

discretized control variables: 6,,;, and 6y,

A gradient—based algorithm

Given an initial guess 6%, 69  for k=0,1,2,...

1. solve the state equations and compute J, — independently!

dJp

d(enha elh) (0%, 0k

2. compute the gradient of the functional and evaluate it

3. Use 1. and 2. to compute the increments §(6%,) and 6(6F%) — BFGS algorithm

4. Set 0%t =0k, +5(0F,), and 05T =08 +5(0F).
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NUMERICAL TESTS

— M. D'Elia, P. Bochev, Optimization-Based Coupling of Nonlocal and Local
Diffusion Models, Materials Research Society Proceedings, 2014

— M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an
optimization-based Local-to-Nonlocal Coupling Method, 2015
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PROBLEM SETTING (1D)

sey
-----------------------------------------------------------------------------------------------------------------------
. -

—e 0 0.75 1 1+4e¢ 1.75
A A A A
homogeneous Dirichlet 0, 0,, homogeneous Dirichlet
Up — 0 U — 0

- Sandia
National
laboratories
M. D'Elia — mdelia@sandia.gov /



NUMERICAL TESTS

1

— — g, €
€2|x_y‘x(w et e)

Kernel: v(z,y) =
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NUMERICAL TESTS

1

Kernel: ’}/(.’,C,y) = m}(

(x —e,x+¢)

The patch test:
e U, =U =T

o un|g~21 =z

o u;(1.75) =1.75
e fn=,1=0
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NUMERICAL TESTS

Accuracy tests:

1. ® u, =u; =2

2
O, — L

o u;(1.75) = 1.752
o fn=Jf1=-2

® U,

M. D'Elia — mdelia@sandia.gov




NUMERICAL TESTS

Accuracy tests:

2. 0 u, =u =x>—zt

2 4

® Uplg =T —X

o u;(1.75) = 1.75% — 1.75%
o f,=—2+41222 4 2

o fi=—-2+1222

M. D'Elia — mdelia@sandia.gov



NUMERICAL TESTS

Accuracy tests:

£ h e(uy) rate  e(uy) rate e(0,) rate

273 2.36e-03 - 2.62e-03 - 6.52e-04 -

274 754e-04 1.65 7.12e-04 1.88 1.78¢-04 1.87

test 1. 0.065 27° 1.88e-04 2.00 1.78e-04 2.00 4.45e-05 2.00
276 4.67e-05 2.01 4.44e-05 2.00 1.11e-05 2.00

277 1.14e-05 2.04 1.10e-05 2.01 2.76e-06 2.01

273 9.70e-03 - 2.95e-02 - 4.86e-03 -

274 2.68e-03 1.86 7.54e-03 1.97 1.20e-03 2.01

test 2. 0.065 27° 7.02e-04 1.93 1.90e-03 1.99 3.11e-04 1.95
276 1.78-04 1.98 4.76e-04 2.00 7.89e-05 1.98

277 4.48e-05 1.99 1.19e-04 2.00 1.99¢-05 1.98
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NUMERICAL TESTS

More tests:

3. @ unﬁi:()

[ ) ul(1.75) =0

M. D'Elia — mdelia@sandia.gov

600

4001

_200_”””._”””..m”4

-400f

-600—

0.5

15

i)
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NUMERICAL TESTS

More tests:

5 =0 B -

e u(1.75) =0 " 0

3. & u,
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CURRENT WORK

e Consider mixed boundary/volume value problems

e Do computational tests on 3D problems coupling Sandia’s software
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MIXED BOUNDARY/VOLUME VALUE PROBLEM

Qn

Neumann

Neumann

QN

Qp () D
Dirichlet Dirichlet
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Thank you
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