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NONLOCAL MODELS

nonlocal models are used in several diverse applications

our interest: nonlocal diffusion operators

e peridynamic model for mechanics
® jump processes

e nonlocal heat conduction

e image analyses

e machine learning

M. D'Elia — mdelia@sandia.gov



NONLOCAL MODELS

nonlocal models are used in several diverse applications

our interest: nonlocal diffusion operators

e peridynamic model for mechanics
® jump processes

e nonlocal heat conduction

e image analyses

e machine learning

how do they look like?

Luf@) = [ (uly) - u(@)) 2(@.v)dy
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NONLOCAL MODELS

e interactions can occur at distance, without contact

e used in many scientific and engineering applications, where the material dynamics
depends on microstructure
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NONLOCAL MODELS

[1] S.Silling, R.B.Lehoucq, Advances in Applied Mechanics, Elsevier, 2010.
[2] M.Di Paola, G.Failla, and M.Zingales, Journal of Elasticity, 2009. Wikipedia
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interactions can occur at distance, without contact

used in many scientific and engineering applications, where the material dynamics
depends on microstructure

example: nonlocal continuum mechanics theories, e.g. peridynamics[l] and physics-
based nonlocal elasticity[2] which can model fractures and material failures

nonlocal models are required to accurately resolve small scale features, e.g. crack
tips or dislocations
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ductile fracture,
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NONLOCAL MODELS

facts: e a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

e we have well-posedness results for a large class of nonlocal steady and
unsteady—state equations, control problems and parameter identification

e we have numerical convergence results for finite element approximations
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NONLOCAL vs LOCAL

facts: e the numerical solution of nonlocal models might be
prohibitively expensive

e we can compute the solution of PDEs efficiently
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NONLOCAL vs LOCAL

facts: e the numerical solution of nonlocal models might be
prohibitively expensive

e we can compute the solution of PDEs efficiently
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— Increasing interaction radius —



WHAT ABOUT COUPLING?

Goals: e merge two fundamentally different mathematical descriptions
of the same physical phenomena: PDEs and nonlocal models

e split the computational domain in a local and a nonlocal do-
main and couple, in a smart way, the models at the interfaces

or overlapping regions

l A}
,overlap,
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nonlocal local
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WHAT ABOUT COUPLING?

Contribution: define and analyze a local-to-nonlocal (LtN) coupling method
for nonlocal diffusion models that

e passes the patch test

e allows for separate softwares/solvers/meshes for the local and
nonlocal problems
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WHAT ABOUT COUPLING?

Contribution: define and analyze a local-to-nonlocal (LtIN) coupling method
for nonlocal diffusion models that

e passes the patch test

e allows for separate softwares/solvers/meshes for the local and
nonlocal problems

Novelty: design a method that differs fundamentally from previous strategies
reversing the roles of coupling conditions and models

e coupling conditions = optimization objective

e models = optimization constraints
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OUTLINE

Notation
Formulation of the optimization problem
Finite dimensional approximation

Numerical tests
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A NONLOCAL VECTOR CALCULUS

— Q. Du, M.D. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and

approximation of nonlocal diffusion problems with volume constraints.

SIAM Review, 54, 667-696, 2012

— Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector
calculus, nonlocal volume-constrained problems, and nonlocal balance laws.

Math. Model. Meth. Appl. Sci, 23, 493-540, 2013




NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart
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NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

Nonlocal operators acting on u(z): R? — R and v(x,y): R x RY — R?
o divergence of v: D(v)(z) = / (v(z,y) +v(y,x))  alz,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(x,y)

e nonlocal diffusion of u: Lu(x) = D(®Gu(x))

M. D'Elia — mdelia@sandia.gov



NONLOCAL VECTOR CALCULUS

e generalization of the classical vector calculus to nonlocal operators

e allows us to study nonlocal diffusion similarly to the classical, local, counterpart
Nonlocal operators acting on u(z): R? — R and v(x,y): R x RY — R?

o divergence of v: D(v)(z) = /n (v(z,y) +v(y,x))  alz,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(x,y)

e nonlocal diffusion of u: Lu(x) = D(®Gu(x))

Lu@) =2 [ (u(y) - (@) alz.y) - (B y)a(z.y) dy

Lu@) =2 [ (uly) ~ u()) (e.y) dy
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NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region 2 € R¢
Q={yeR\Q: a(z,y)#0, z €9},

Define: Ot =QUQ
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NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region 2 € R¢
Q={yeR\Q: a(z,y)#0, z €9},

Define: Ot =QUQ

Kernel: we assume

{’y(w,y)>0 Vy € B:(x)
v(x,y) =0 VyeQ\ B.(x),

B(x)={yeQt: |[z—y|<e, ze}
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THE LtN OPTIMIZATION PROBLEM

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local
and nonlocal diffusion models with mixed volume constraints and boundary
conditions, submitted, 2015
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MODEL PROBLEMS

The nonlocal problem

—Lu, = fn xe
Uy = O, &XEC ﬁD
~N(Gu,) = n, ey,

where o,, € ‘7(62), fn € L?(Q) and n,, € L? (QN)

nonlocal counterpart of a Neumann condition
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MODEL PROBLEMS

The nonlocal problem

—Lu, = fn xe
Uy = Op, &XEC QD
_ O I'p I'p
_N(gun) = Mn XTC QNa

where o,, € ‘N/(ﬁ), fn € L*(Q) and n,, € LQ(ﬁN)

nonlocal counterpart of a Neumann condition Iy

The local problem (Poisson equation)

—Au; = fl xcQF
uy = o x€Ip
Vu,-n = n xely,

where f; € L2(Q), 0y € H2(I'p) and n; € L2(T'y)
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LtN COUPLING

tii QD i QN EEE Q.
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LtN COUPLING

State equations:

( —Lu, = fn x €, ( Ay = fl x € ()
w, = 0, x¢€ fvlc wy = 0, xxel,
< u, = 0 =xeQb and < w = 0 xelP
| —N(Gu,) = 0 xeQl | Vyg'n = 0 zel},
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LtN COUPLING

Optimization problem:

| 1 1
in | wnew) = 5 [ (= w) de = 5w~ wli o,
Qp

unaulaenael 2
( _['un — fn Tr C Qn ( —Aul = fl T < Ql
w, = 0, xefl, w = 60, xel,
.t.
5509 u, = 0 xzecQb and < w = 0 xelP
| —N(Gu,) = 0 xeQl (| Vug'mn = 0 zel),
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LtN COUPLING

Optimization problem:

) = e =gl
( —Lu, = fn x €, ( Ay = fl x € ()
st < un = 0, x€Q, and < w = 0 xel,
u, = 0 xzecQb w = 0 xelP
| —N(Gu,) = 0 xeQl | Vyg'n = 0 zel},

~

control variables (0,,,0;) € ©,, x ©; = {(oy,07) : 0, € ‘7@_(90), o] € H%(I‘c)}
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LtN COUPLING

LtN solution e optimal solution: (6},60) € ©,, x 6,

wEOF)  xeQt

n\-n

e LtN solution: u* =
{ uj (0]) x e\ Q
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LtN COUPLING

LtN solution e optimal solution: (6},60) € ©,, x 6,

wEOF)  xeQt

n\-n

wiO) T eQ\

LtN solution: u* = {

Questions: e is it unique?
e what is the “error” wrt the global nonlocal solution u,,?
—Lu, = f xe

ﬂn = 0 CIZ‘EﬁD
—N(Qun) = 0 ZBEQN
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IS THE SOLUTION UNIQUE?

Reduced form:

1

' 1
min J(6,.0;) = & / (tn (0) — 1 (0))2 A = < [[tun (0) — w (0|20,
00,0, 2 Jq, 2

@ o
National
Laboratories
M. D'Elia - mdelia@sandia.gov /



IS THE SOLUTION UNIQUE?

Reduced form:

1 1

nﬂanm90=v—/n@mu%)—uwﬁw2iv=-4wnWﬁ%—uM%N%@b
On,0; 2 Ja, 2

Solution splitting:

Uy, = Un(0,,) + ul and w; = v (0)) + u?
n l

harmonic components v,, and v;

—Lv, =0 T Qn —Avyy =0 x ey
v, =260, xc ﬁc and vy =6, xxel,
+VC +BC

homogeneous components u? and u)

—Lud =f, TzEQ, —Au) =f; e
v, =20 wéﬁc and vy =0 xel,
+VC +BC
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(gn,el) — §an(9n)_vl(9l)’|(2),9b + (U’?L_u?avn(en)_vl(el))()’g)b_'_ 5”’&%—%?”3,91)
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(0n,01) = 5“%(971)—%(91)“3,9,, + (IU’?L_U’?7vn(e’II)_UZ(@l))O,Qb—'_ 5”“2—%?”3,9,,

Lemma: The reduced space problem has a unique solution
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IS THE SOLUTION UNIQUE?

Reduced functional:

1 1
J(0n,0;) = §an(9n)—vz(91)llg,nb + (Ug—’d?,Un(en)—vz(Ql))O,Qb‘F 5““2—14?”3,91,
g ~ /
(O, 01)]]

Lemma: The reduced space problem has a unique solution

Key result: /Q (vn(om) = vi(on)) (vn(pn) —vi()) = (00, 01), (ttns 1))

defines an inner product in the control variable space

= [Jon(0n) =02 (0) 13,0, := ll (o, 00) ]

defines a norm in the control variable space
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ASSUMPTIONS, LEMMAS AND TOOLS

Assumptions:

_ k .
o 7, = |llif < oo with  yp(m) = Jor Vo (z,y)dy, k=1,2
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ASSUMPTIONS, LEMMAS AND TOOLS

Assumptions:

_ 1/k .
o 7, = |llif < oo with  yp(m) = Jor Vo (z,y)dy, k=1,2

Lemmas:

e nonlocal trace inequality
e nonlocal maximum principle

e strong Cauchy-Schwarz inequality for the harmonic components

|(Vn (o), vi(01))o,0,] < 0l|lvn(on)llo.qs lvi(o)]on,, 6 <1

Tools:

e nonlocal vector calculus
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FINITE DIMENSIONAL APPROXIMATION

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local
and nonlocal diffusion models with mixed volume constraints and boundary
conditions, submitted, 2015
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THE DISCRETIZATION

Goal: exploit the flexibility of the method and use two fundamentally dif-
ferent discretization schemes for the local and the nonlocal models

( —Lu, = fn x€ Q. ( —Au; = fi x ey

u, = 0, x€ (NZC w = 60, xel,
) u, = 0 =xecQb ) w = 0 xelP
 N(Gu,) = 0 xzecQl  Vuyyn = 0 xel)Y

strong form 4 particle method weak form + finite element method
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THE DISCRETIZATION

Goal: exploit the flexibility of the method and use two fundamentally dif-
ferent discretization schemes for the local and the nonlocal models

( —Lu, = f, x¢c Q. ( —Au; = fi x ey
u, = 0, x€ (NZC w = 60, xel,

\ _ D \ _ D
u, = 0 xe uy = 0 =zeclj

| —N(Gu,) = 0 z e QN  Vuyyn = 0 xel)Y

strong form 4 particle method weak form + finite element method

Advantage: the particle and finite element solvers can be used as black boxes
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THE DISCRETIZATION

Note: the nonlocal solution is defined on points while the local solution is a
piecewise polynomial over the computational domain
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THE DISCRETIZATION

Note: the nonlocal solution is defined on points while the local solution is a
piecewise polynomial over the computational domain

A modified functional: pointwise misfit

1 & 1
Ja(wn, w) = 3 S ((Snun)i — (Siw);)” = 5 15 un — S 3.
1=1

S,,: nonlocal selection matrix

Si: (S1)ij = ¢;(x;), where ¢, is the j-th FE basis
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THE DISCRETIZATION

Note: the nonlocal solution is defined on points while the local solution is a
piecewise polynomial over the computational domain

A modified functional: pointwise misfit

1 & 1
Ja(wn, w) = 3 S ((Snun)i — (Siw);)” = 5 15 un — S 3.
1=1

S,,: nonlocal selection matrix

Si: (S1)ij = ¢;(x;), where ¢, is the j-th FE basis

What about uniqueness?
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THE ALGORITHM

A gradient—based algorithm

Given an initial guess 6%, .69 for k=0,1,2,...

1. solve the state equations to obtain u*, (6%, ) and uf, (6%,) and compute Jj,

dJp,
Ao )| g3,

2. compute the gradient of the functional and evaluate it

3. Use 1. and 2. to compute the increments §(6%,) and §(6F,)

4. Set 97’221 =0k, +§(0%,), and efh+1 = 05, +6(0f;,)
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THE ALGORITHM

A gradient—based algorithm

Given an initial guess 6%, .69 for k=0,1,2,...

1. solve the state equations to obtain u*, (6%, ) and uf, (6%,) and compute Jj,

dJp,
Ao )| g3,

2. compute the gradient of the functional and evaluate it

3. Use 1. and 2. to compute the increments §(6%,) and §(6F ) — BFGS algorithm

4. Set 97’221 =0k, +§(0%,), and efh+1 = 05, +6(0f;,)
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NUMERICAL TESTS

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local
and nonlocal diffusion models with mixed volume constraints and boundary
conditions, submitted, 2015




GEOMETRY

Coupling Peridigm and Albany

peridigm.sandia.gov software.sandia.qgov/albanvy/
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GEOMETRY

Coupling Peridigm and Albany

peridigm.sandia.gov

software.sandia.qgov/albanvy/
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GEOMETRY

0.5]

Y

0

[

X
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% [0, 0.5] % [0, 0.5]

, 0.5

Q,, := [0, 2.5] x [0

Nonlocal domain
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THE PATCH TEST

* —

anl — & —

| Ot

Analytic solution: u , prescribed in 0 < x < 0.5 and on x =4

LtIN control: initialized at zeroin 2 <z <25 and on x = 1.5
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THE PATCH TEST

a

Analytic solution: v} , =z — 3’ prescribed in 0 < x < 0.5 and on x =4

LtIN control: initialized at zeroin 2 <z <25 and on x = 1.5

u:*r
2.34-
2.00

1.00

O
o
o

4
o
o
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THE PATCH TEST

a

Analytic solution: v} , =z — 3’ prescribed in 0 < x < 0.5 and on x =4

LtIN control: initialized at zeroin 2 <z <25 and on x = 1.5

u:*r
2.34-
2.00

1.00

O
o
o

4
o
o

What about uniqueness?

Sandia
National
Laboratories

M. D'Elia — mdelia@sandia.gov



THE PATCH TEST

u*

2.34-
2.00

S N B 1.00
LT LRI R A

SRR R0

LT E R R AR -
...... Tryyib g =0.00
B T T L T R —

-1.00

What about uniqueness?
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MANAGING A CRACK
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MANAGING A CRACK

Lots of things to do!

— time dependent problems
— crack propagation

— real geometries

— improve performance

— better initialization
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Thank you
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