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  With	
  Large	
  Surface	
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§  Nanoporous	
  materials	
  have	
  high	
  
surface	
  areas	
  
§  High	
  surface	
  area	
  can	
  improve	
  surface-­‐
limited	
  reac+on	
  rates	
  (catalysis)	
  

§  Provides	
  an	
  escape	
  path	
  for	
  helium	
  
decay	
  product	
  (hydrogen	
  storage)	
  
§  He	
  bubbles	
  can	
  cause	
  s+ffening	
  of	
  bulk	
  
Pd	
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Pd	
  Materials	
  With	
  Large	
  Surface	
  Area	
  
§  Nanoporous	
  materials	
  have	
  high	
  
surface	
  areas	
  
§  High	
  surface	
  area	
  can	
  improve	
  surface-­‐
limited	
  reac+on	
  rates	
  (catalysis)	
  

§  Provides	
  an	
  escape	
  path	
  for	
  helium	
  
decay	
  product	
  (hydrogen	
  storage)	
  
§  He	
  bubbles	
  can	
  cause	
  s+ffening	
  of	
  bulk	
  
Pd	
  

§  Goals	
  
§  Uniform	
  pore	
  structure	
  homogeneously	
  
distributed	
  in	
  material	
  

§  Stable	
  pore	
  structure	
  over	
  wide	
  T	
  range	
  

Nanoporous	
  Pd/Rh	
  alloys	
  for	
  H	
  Storage	
  
§  Nanoporous	
  Pd	
  shows	
  reduced	
  
capacity	
  

§  Nanoporous	
  Pd	
  has	
  poor	
  elevated	
  
temperature	
  stability	
  

	
  
	
  

200 ° C  
12 min 
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Nanoporous	
  Pd/Rh	
  alloys	
  for	
  H	
  Storage	
  
§  Nanoporous	
  Pd	
  shows	
  reduced	
  
capacity	
  

§  Nanoporous	
  Pd	
  has	
  poor	
  elevated	
  
temperature	
  stability	
  

§  Nanoporous	
  Pd/Rh	
  alloys	
  show	
  
promise	
  for	
  H	
  storage	
  
§  No	
  reduced	
  capacity	
  

§  Addi+on	
  of	
  Rh	
  improves	
  
temperature	
  stability	
  
§  10	
  at.	
  %	
  Rh-­‐Pd	
  has	
  more	
  stable	
  pores	
  

§  Stable	
  up	
  to	
  300°C	
  

§  Where	
  is	
  the	
  Rh	
  and	
  is	
  it	
  uniform?	
  
§  Pd/Rh	
  overlap	
  
§  Composi+onal	
  varia+on	
  at	
  small	
  length	
  scales	
  
§  Low	
  count	
  rates	
  

	
  

200 ° C  
30 min 

STEM-­‐EDS	
  Quan+fica+on	
  
§  EDS	
  spectrum	
  imaging	
  

§  Spectrum	
  at	
  every	
  pixel	
  
§  Overlap	
  of	
  PdL	
  and	
  RhL	
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STEM-­‐EDS	
  Quan+fica+on	
  
§  EDS	
  spectrum	
  imaging	
  

§  Spectrum	
  at	
  every	
  pixel	
  
§  Overlap	
  of	
  PdL	
  and	
  RhL	
  

§  Mul+variate	
  Sta+s+cal	
  Analysis:	
  AXSIA	
  
§  Decomposi+on	
  of	
  data	
  matrix	
  

§  D=C*ST	
  
–  C	
  is	
  a	
  matrix	
  of	
  spectral	
  weight	
  at	
  each	
  

pixel	
  
–  S	
  are	
  “pure”	
  component	
  spectra	
  

§  Weighted	
  for	
  Poisson	
  Sta+s+cs	
  
§  Rotated	
  for	
  spectral	
  simplicity	
  

–  Kotula	
  PG,	
  et	
  al.	
  Microsc	
  Miroanal	
  2003;9:1.	
  
–  Keenan	
  MR.	
  Surf	
  Interface	
  Anal	
  2009;41:79.	
  

§  Reconstruct	
  the	
  denoised	
  data	
  matrix	
  D	
  
§  Quickly	
  iden+fy	
  Rh	
  uniformity	
  

§  EDS	
  spectrum	
  imaging	
  
§  Spectrum	
  at	
  every	
  pixel	
  
§  Overlap	
  of	
  PdL	
  and	
  RhL	
  

§  Mul+variate	
  Sta+s+cal	
  Analysis	
  
§  Decomposi+on	
  of	
  data	
  matrix	
  

§  D=C*ST	
  
–  C	
  is	
  a	
  matrix	
  of	
  spectral	
  weight	
  at	
  each	
  

pixel	
  
–  S	
  are	
  “pure”	
  component	
  spectra	
  

§  Weighted	
  for	
  Poisson	
  Sta+s+cs	
  
§  Rotated	
  for	
  spectral	
  simplicity	
  

–  Kotula	
  PG,	
  et	
  al.	
  Microsc	
  Miroanal	
  2003;9:1.	
  
–  Keenan	
  MR.	
  Surf	
  Interface	
  Anal	
  2009;41:79.	
  

§  Reconstruct	
  the	
  denoised	
  data	
  matrix	
  D	
  
§  Quickly	
  iden+fy	
  Rh	
  uniformity	
  

§  Mul+ple	
  Least	
  Squares	
  Fit-­‐MLSQ	
  
§  Cliff-­‐Lorimer	
  Ra+o	
  

§  Cliff	
  G,	
  Lorimer	
  GW.	
  J	
  Microsc-­‐Oxford	
  
1975;103:203.	
  

§  From	
  pure	
  references	
  and	
  calibrated	
  known	
  
standard	
  (8	
  at.%	
  Rh-­‐Pd	
  foil)	
  

	
  

STEM-­‐EDS	
  Quan+fica+on	
  

kJEOL2010F−200kV = 0.99
kTitan-200kV = 0.96
kTitan-80kV=1.11

CPd

CRh

= kPd−Rh
IPd
IRh

CPd +CRh =1
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EDS	
  Quant:	
  Background	
  Subtrac+on	
  

10 

Lifshin, E. (1974).  In Proc. 9th Ann. Conf. Microbeam Analysis Soc., 
Ottawa, Canada, p. 53.  

§  EDS	
  Background	
  Empirical	
  Formula	
  
	
  
§  	
  	
  

	
  
§  Computa+onally	
  not	
  straight	
  forward	
  
§  Difficult	
  for	
  1000s	
  of	
  spectra	
  

§  Top-­‐Hat	
  Filtering	
  

	
  

§  Linear	
  Interpola+on	
  

N(E)= fEPEZ a E0 −E
E

"

#
$

%

&
'+b

E0 −E( )2

E

(

)
*
*

+

,
-
-

fE = absorption
PE = detector efficiency
Z = average atomic number

∗
Brim 

Hat 

Method	
  1:	
  Dendrimer-­‐Encapsulated	
  
Nanopar+cle	
  Consolida+on	
  

11 

§  Pd/Rh	
  Alloy	
  par+cles:	
  Pd0.9Rh0.1	
  
§  Metal	
  salts	
  mixed	
  with	
  dendrimer	
  
and	
  reduced	
  together	
  

§  Pd/Rh	
  Core/Shell	
  par+cles:	
  
Pd0.9@Rh0.1	
  

§  Pd	
  salt	
  reduced	
  in	
  first	
  step	
  
§  Rh	
  salt	
  reduced	
  in	
  second	
  step	
  

§  Agglomerates	
  of	
  par+cles	
  ~5	
  nm	
  
in	
  diameter	
  with	
  pores	
  between	
  
par+cles	
  range	
  in	
  size	
  (1	
  nm	
  –	
  100	
  
nm)	
  

P.J. Cappillino, et al., Journal of Materials Chemistry 22 (2012)  

Alloy 

Core/Shell 
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Large	
  Solid	
  Angle	
  Detector	
  Finds	
  Rh	
  
Shell	
  
§  FEI	
  Probe-­‐Corrected	
  Titan	
  G2	
  80-­‐200	
  with	
  0.7	
  sr	
  SDD	
  detector	
  
array	
  at	
  200	
  kV	
  

Pd0.9@Rh0.1 Core/Shell Pd0.9Rh0.1 Alloy 

P.J. Cappillino, et al., Journal of Materials Chemistry 22 (2012)  

Method	
  1:	
  Surfactant	
  Template	
  
Fabrica+on	
  
§  Organic	
  molecule,	
  Brij	
  56,	
  
forms	
  cylindrical	
  micelle	
  in	
  
water	
  
§  Hydrophobic	
  center	
  
§  Solu+on	
  of	
  metal	
  salts	
  

Robinson, D. et al., IJHE, 35 (2010). 
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Method	
  1:	
  Surfactant	
  Template	
  
Fabrica+on	
  
§  Organic	
  molecule,	
  Brij	
  56,	
  
forms	
  cylindrical	
  micelle	
  in	
  
water	
  
§  Hydrophobic	
  center	
  
§  Solu+on	
  of	
  metal	
  salts	
  

§  Reduce	
  the	
  metal	
  salts	
  in	
  
flowing	
  gas	
  
§  	
  	
  
§  	
  	
  

§  Rinse	
  off	
  organic	
  residue	
  
§  Nanoporous	
  material	
  
§  Did	
  it	
  work?	
  

(NH4 )PdCl4+H2 → Pd+NH4Cl+2HCl
2Na3RhCl6+3H 2→ 2Rh+6NaCl+6HCl

Core/Shell	
  Composi+onal	
  Distribu+on	
  

175 nm 
M.D. Ong, et al., Chemistry of Materials 24 (2012)  
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§  Rh-­‐rich	
  shell	
  
§  Smaller	
  (~100	
  nm	
  diameter)	
  
par+cles	
  have	
  Rh	
  
concentra+on	
  that	
  is	
  higher	
  
than	
  the	
  nominal	
  
concentra+on	
  during	
  
synthesis	
  

§  Higher	
  Rh	
  content	
  produces	
  
more	
  uniform	
  pore	
  sizes	
  

§  Par+cle	
  sec+ons	
  (ionmilling)	
  
show	
  nonuniform	
  pore-­‐size	
  
distribu+on	
  in	
  larger	
  par+cles	
  

Core/Shell	
  Composi+onal	
  Distribu+on	
  

175 nm 

Kine+cs	
  Dictate	
  Rh	
  Distribu+on	
  

§  Pd	
  reduc+on	
  faster	
  than	
  Rh	
  
§  Nuclea+on	
  occurs	
  throughout	
  the	
  

reac+on	
  dura+on	
  
§  Large	
  par+cles	
  nucleate	
  early	
  in	
  a	
  Pd-­‐

rich	
  environment	
  
§  Creates	
  a	
  Pd-­‐depleted	
  zone	
  

§  All	
  the	
  Pd	
  is	
  consumed	
  and	
  reacted	
  
§  Rh-­‐rich	
  shell	
  on	
  large	
  par+cles	
  then	
  forms	
  

§  Can	
  we	
  get	
  the	
  Rh	
  more	
  uniformly	
  
distributed?	
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Atomic	
  Layer	
  Electroless	
  Deposi+on	
  
§  Precise	
  control	
  of	
  thickness	
  based	
  on	
  
number	
  of	
  electrochemical	
  cycles	
  

§  Deposi+on	
  on	
  high-­‐aspect	
  ra+o	
  
structure	
  

§  Microtomed	
  thin	
  sec+ons	
  
Wednesday Afternoon Poster: Mark Homer, 
Preparation of Electron and X-Ray Transparent 
Inorganic Particles for Analytical Electron 
Microscopy 

Cappillino, P. J., et al. (2014). "Atomic-Layer Electroless Deposition: A 
Scalable Approach to Surface-Modified Metal Powders." Langmuir 30(16): 
4820-4829. 

8	
  Electrochemical	
  cycles	
  Pd/Rh	
  	
  

20-30 nm of Rh enrichment at particle surface 

1 nm of Rh enrichment at particle surface 

1	
  Electrochemical	
  cycle	
  Pd/Rh	
  	
  



7/31/15	
  

10	
  

Pt	
  Quan+fica+on	
  Too	
  

•  Normalization Window for reference 
shapes is same energy width 

•  Cliff-Lorimer k-factor=0.96 
•  Electrochemically deposited Pt 

approximately 10 nm thick 

Surrounding	
  Epoxy	
  Causes	
  Mixing	
  in	
  
PCA	
  
§  Elements	
  in	
  surrounding	
  epoxy	
  
resin	
  mix	
  with	
  elements	
  in	
  
coa+ng	
  layer	
  

§  Analysis	
  using	
  only	
  MLLS	
  yields	
  
the	
  expected	
  results	
  

§  Can	
  we	
  measure	
  this	
  material	
  
using	
  FIB	
  where	
  no	
  epoxy	
  is	
  
required?	
  

Energy (keV)
1 2 3 4 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Na K

Mg K

Si K

Pt M Ca K

Cl K

Pd L



7/31/15	
  

11	
  

Are	
  Thin	
  Layers	
  Observable	
  at	
  30	
  kV	
  
§  Higher	
  ioniza+on	
  cross-­‐sec+on	
  at	
  30	
  kV	
  

Q∝
ln E0 Ec( )
E0 Ec

Q = ionization cross section
E0 =Accelerating Voltage
Ec = Ionization Energy for the shell in keV

§  Small	
  interac+on	
  volume	
  for	
  
thin	
  samples	
  

§  FIB-­‐thinned	
  specimens	
  

Expresslo 

30	
  kV	
  STEM	
  on	
  FEI	
  Helios	
  660	
  with	
  Oxford	
  XmaX	
  80	
  
SDD	
  EDS	
  Detector	
  (assumed	
  k-­‐factor	
  1)	
  

200	
  kV	
  STEM	
  on	
  FEI	
  Probe-­‐corrected	
  G2	
  Titan	
  with	
  
Chemistem	
  SDD	
  large	
  angle	
  detector	
  (20	
  nm	
  coa+ng)	
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Thin	
  (~1-­‐2	
  nm)	
  Layers	
  at	
  30	
  kV	
  

Thin	
  (~1-­‐2	
  nm)	
  Layers	
  at	
  200	
  kV	
  

Summary	
  

§  EDS	
  Quan+fica+on	
  of	
  
Nanoporous	
  Structures	
  
§  MSA	
  –	
  denoising	
  &	
  quick	
  inspect	
  
§  MLSQ	
  –	
  linear	
  background	
  
§  Cliff-­‐Lorimer	
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Summary	
  

§  EDS	
  Quan+fica+on	
  of	
  
Nanoporous	
  Structures	
  
§  MSA	
  –	
  denoising	
  &	
  quick	
  inspect	
  
§  MLSQ	
  –	
  linear	
  background	
  
§  Cliff-­‐Lorimer	
  

§  Mul+ple	
  Sample	
  processing	
  
routes	
  with	
  different	
  character	
  
composi+ons	
  and	
  length	
  scales	
  
§  Surfactant	
  Template	
  
§  Dendrimer	
  
§  ELAD	
  

Summary	
  

§  EDS	
  Quan+fica+on	
  of	
  
Nanoporous	
  Structures	
  
§  MSA	
  –	
  denoising	
  &	
  quick	
  inspect	
  
§  MLSQ	
  –	
  linear	
  background	
  
§  Cliff-­‐Lorimer	
  

§  Mul+ple	
  Sample	
  processing	
  
routes	
  with	
  different	
  character	
  
composi+ons	
  and	
  length	
  scales	
  
§  Surfactant	
  Template	
  
§  Dendrimer	
  
§  ELAD	
  

§  EDS	
  at	
  30	
  kV	
  is	
  capable	
  of	
  
observing	
  layers	
  with	
  
nanometer	
  thickness	
  



7/31/15	
  

14	
  

Conclusions	
  

§  Powerful	
  tools	
  available	
  to	
  quan+fy	
  composi+on	
  and	
  
morphology	
  of	
  nanostructures	
  	
  
§  Large	
  area,	
  large	
  solid-­‐angle	
  detectors	
  
§  Computa+onal	
  tools:	
  MSA	
  and	
  MLSQ	
  
§  Aberra+on-­‐corrected	
  microscopes	
  with	
  stable	
  opera+on	
  at	
  a	
  range	
  of	
  
accelera+ng	
  kV	
  

§  Dualbeam	
  plavorms	
  with	
  STEM	
  and	
  EDS	
  for	
  prepara+on	
  of	
  thin	
  
samples	
  and	
  analysis	
  of	
  materials	
  at	
  30	
  kV	
  

§  The	
  available	
  technologies	
  for	
  quan+ta+ve	
  composi+onal	
  
analysis	
  in	
  complicated	
  nano	
  and	
  sub-­‐nanostructures	
  is	
  
exci+ng	
  because	
  we	
  can	
  use	
  our	
  measurements	
  to	
  improve	
  
synthesis	
  and	
  processing	
  parameters	
  

Rh	
  Quan+fica+on	
  in	
  Small	
  Par+cles	
  
5  at. % Rh-Pd 10  at. % Rh-Pd 50 at. % Rh-Pd 
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Kine+cs	
  Dictate	
  Rh	
  Distribu+on	
  

§  Pd	
  reduc+on	
  faster	
  than	
  Rh	
  
§  Nuclea+on	
  occurs	
  throughout	
  the	
  

reac+on	
  dura+on	
  
§  Large	
  par+cles	
  nucleate	
  early	
  in	
  a	
  Pd-­‐

rich	
  environment	
  
§  Creates	
  a	
  Pd-­‐depleted	
  zone	
  

	
  

EDS	
  Quant:	
  Background	
  Subtrac+on	
  
§  EDS	
  Background	
  Empirical	
  Formula	
  

	
  
§  	
  	
  

	
  
§  Computa+onally	
  not	
  straight	
  forward	
  
§  Difficult	
  for	
  1000s	
  of	
  spectra	
  

§  Top-­‐Hat	
  Filtering	
  

§  Linear	
  Interpola+on	
  

Lifshin, E. (1974).  In Proc. 9th Ann. Conf. Microbeam Analysis Soc., Ottawa, Canada, p. 53.  

N(E)= fEPEZ a E0 −E
E

"

#
$

%

&
'+b

E0 −E( )2

E

(

)
*
*

+

,
-
-

fE = absorption
PE = detector efficiency
Z = average atomic number
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EDS	
  Quant:	
  Background	
  Subtrac+on	
  
§  EDS	
  Background	
  Empirical	
  Formula	
  

	
  
§  	
  	
  

	
  
§  Computa+onally	
  not	
  straight	
  forward	
  
§  Difficult	
  for	
  1000s	
  of	
  spectra	
  

§  Top-­‐Hat	
  Filtering	
  

	
  

§  Linear	
  Interpola+on	
  

N(E)= fEPEZ a E0 −E
E

"

#
$

%

&
'+b

E0 −E( )2

E

(

)
*
*

+

,
-
-

fE = absorption
PE = detector efficiency
Z = average atomic number

=∗
Brim 

Hat 

Lifshin, E. (1974).  In Proc. 9th Ann. Conf. Microbeam Analysis Soc., Ottawa, Canada, p. 53.  

Tophat	
  Filtering	
  Unstable	
  for	
  Low-­‐
Count	
  Rate	
  Data	
  
§  Tophat	
  Filtering	
  

§  Fast	
  and	
  easy	
  for	
  large	
  numbers	
  of	
  
spectra	
  

§  Separates	
  peaks	
  that	
  overlap	
  
§  Removes	
  slowly	
  varying	
  
background	
  

§  Surfactant	
  Templated	
  
Nanoporous	
  Materials	
  
§  Input	
  Count	
  Rates	
  ~1000	
  cps	
  

33 
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Tophat	
  Filtering	
  Unstable	
  for	
  Low-­‐
Count	
  Rate	
  Data	
  
§  Tophat	
  Filtering	
  

§  Fast	
  and	
  easy	
  for	
  large	
  numbers	
  of	
  
spectra	
  

§  Separates	
  peaks	
  that	
  overlap	
  
§  Removes	
  slowly	
  varying	
  
background	
  

§  Surfactant	
  Templated	
  
Nanoporous	
  Materials	
  
§  Input	
  Count	
  Rates	
  ~1000	
  cps	
  

§  Agglomerated	
  Dendrimer	
  
Encapsulated	
  Par+cles	
  
§  Input	
  Count	
  Rates	
  ~100	
  cps	
  
§  Op+mizing	
  tophat	
  dimensions	
  for	
  
every	
  pixel	
  is	
  not	
  feasible	
   34 

Stable? 

Core/Shell	
  and	
  Alloy	
  Par+cles	
  S+ll	
  
Indis+nguishable	
  
§  JEOL	
  2010F	
  &	
  Oxford	
  0.1	
  sr	
  SiLi	
  Detector	
  at	
  200	
  kV	
  

§  MSA-­‐denoise	
  
§  MLSQ-­‐linear	
  background	
  subtrac+on	
  
§  Cliff-­‐Lorimer	
  

§  Need	
  More	
  Counts!!!	
  

Pd0.9@Rh0.1 
Core/Shell 

Pd0.9Rh0.1 
Alloy 
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Operate	
  at	
  80	
  kV	
  to	
  Reduce	
  Damage	
  

§  Evidence	
  of	
  damage	
  before	
  and	
  axer	
  

Before SI acquisition After SI acquisition 

EDS	
  Quant	
  at	
  80	
  kV	
  
§  MSA-­‐Denoise	
  
§  MLSQ-­‐linear	
  background	
  subtrac+on	
  
§  Cliff-­‐Lorimer	
  
§  Is	
  it	
  beyer?	
  

Pd0.9@Rh0.1 Core/Shell Pd0.9Rh0.1 Alloy 
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EDS	
  Quant	
  at	
  80	
  kV	
  

§  MSA-­‐Denoise	
  
§  MLLSQ	
  
§  Cliff-­‐Lorimer	
  
§  Is	
  it	
  beyer?	
  

Before SI Acquistion After SI Acquistion 


