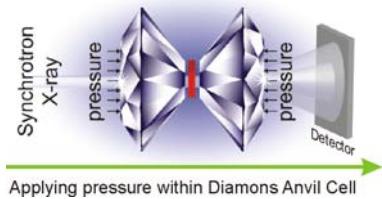


Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays

Huimeng Wu¹, Wenbin Li², Ju Li², and Hongyou Fan^{1,3}

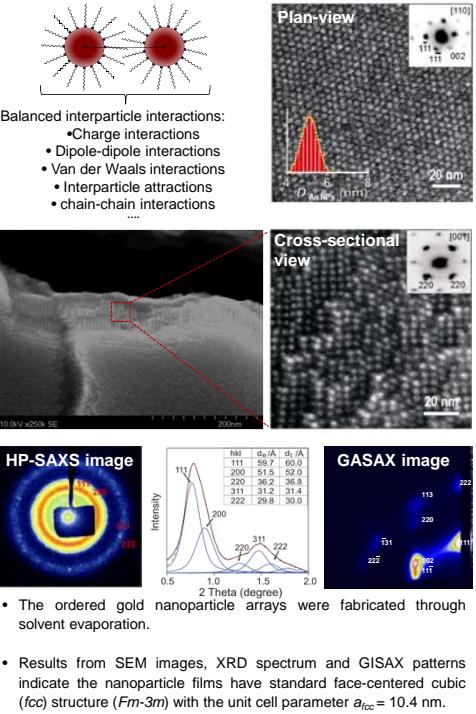
¹Sandia National Laboratories, Albuquerque, NM; ²Massachusetts Institute of Technology, Cambridge, MA; ³University of New Mexico, Albuquerque, NM

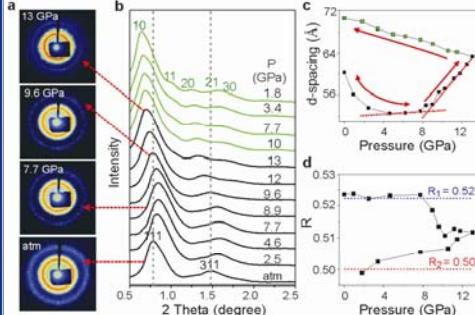

Introduction

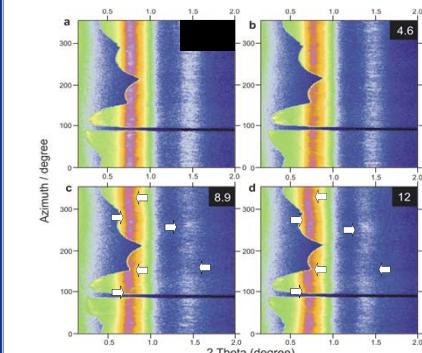
Due to the size- and shape-dependent properties, nanoparticles have been successfully used as functional building blocks to fabricate multi-dimensional (D) ordered assemblies for the development of 'artificial solids' with potential applications in nanoelectronic and optic devices.

Nanoparticle assemblies have been limited to entropy (and/or enthalpy) driven processes in which specific interparticle chemical or physical interactions such as van der Waals interaction, dipole-dipole interaction, chemical reactions, and DNA-templating are required.

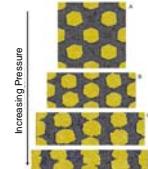
We developed the Pressure-Directed Assembly (PDA) method, as an artificial tool, to emulate natural folding and unfolding processes in self-assembled DNA systems to explore energy landscaping that govern local interactions (hydrogen bonding, particle-particle interaction, etc), to design new classes of active materials with structure and function that are not attainable for current materials, and to investigate new property resulted from the folding and unfolding processes.

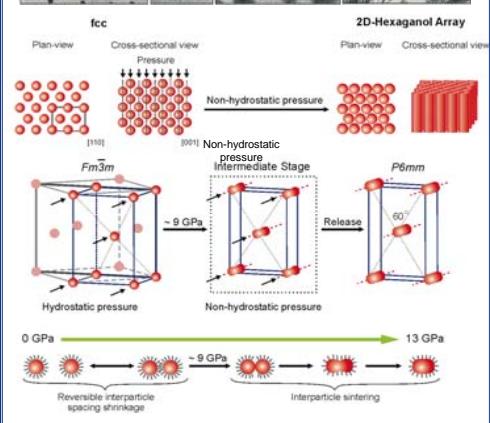
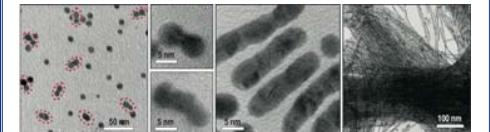

Nanoparticle Assembly under Pressure


Pressure-driven formation of gold nanowire arrays


Nanoparticle Assembly at Ambient Pressure

Pressure-driven nanoparticle assembly


Structural evolution of gold nanoparticle assemblies during compression and release. (a) Representative HP-SAXS patterns of gold nanoparticle assemblies collected at ambient pressure, 7.7 GPa, 9.6 GPa, and 13 GPa. (b) The integrated spectra from the HP-SAXS patterns at varied pressures during compression and release. For convenient comparison, the SAXS pattern at ambient pressure is shown again. (c) The d-spacing changes along with the pressure during compression and release. The d-spacing of the first Bragg reflection in each HP-SAXS spectrum is used. (d) d-spacing ratios (R) at different pressures.



- After the pressure is released from 13 GPa to ambient pressure at room temperature, the ordered fcc spherical nanoparticle arrays \Rightarrow ordered 2D nanowire arrays. The gold nanowire array consists of individual gold nanowires with hexagonal close packing with a unit cell with lattice parameter $a_{hex} = 81.4$ Å.
- Single nanowires can be obtained by dispersion of the nanowire arrays in organic solvents. These nanowires are uniform in diameter and length. The length depends on the initial nanoparticle film thickness, ranging from 400 nm to 1.5 μ m.
- The High-resolution TEM image reveals that the gold nanowires are polycrystalline. Along the c-axis, each nanowire consists of crystalline nanodomains whose size is close to that of original spherical gold nanoparticles. This indicates that the formation of gold nanowires occurs through sintering of spherical gold nanoparticles to form nanowire c-axis.

Proposed Mechanism

Initial simulations indicate that the existence of a high pressure gradient, combined with uniaxial elastic deformation, makes the folding/unfolding processes both thermodynamically and kinetically possible.

Proposed Mechanism

Conclusions

We demonstrate that the mechanical compression process under pressure provides a new route to engineer nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interaction². The fundamental understanding of nanoparticle assembly under pressure provides useful insight for material integration through pressure-driven nanofabrication processes, such as the embossing process - a key process for fabrication of micro/nano-optical and electronic devices.

Acknowledgement

