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Outline

* Introduction
 What are mortar methods?
* Why do we care about flow and mechanics in porous media?

* Multiscale mortar mixed finite element methods

* Multiscale preconditioners
* Nonintrusive stochastic methods
* IMPES formulations of multiphase flow
* Fully implicit formulation of two phase flow

* Mortar methods for coupled flow and mechanics

* Other applications using mortars
* A posteriori error estimate for multlscale/multlnu

. Multllevel solvers based on ‘mortars G gew
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What Are Mortar Methods?

Mortar: a workable paste used to bind
construction blocks together and fill the

gaps between them.
-Wikipedia
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Advantages in Using Mortars

Block 1

Mortar 3

" Block 2
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Scales in the Subsurface

P e

Brine Reservair
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Continuum
Scale
(10cm-100m)

‘Core Filooding and Reactive Transport Modeling
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Typical Reservoir Models

Typical Dimensions
* 1000ft x 1000ft x 100f




Vertical Scales
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Areal Scales
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Domain Decomposition and Multiscale
Mortar Methods
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Mixed Formulation

Model for flow in porous media:

u=—KVp, (Darcy’s Law)

A, " (Conservation of Mass)

over {) with p = g on 0f2.

Weak formulation: Find u € H(div,Q) and p € L*(Q) such that

(K_lu, v) —
y g A% g Ty ?nd ™ 6 L2
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Model Domain Decomposition Problem

Domain Decomposition: P nonoverlapping subdomains,

Interfaces: Fi,j — (‘9QZ M an with ' = U1§i<j§P Fi,j-

Weak Formulation: On each subdomain,
(K_luv”)gi = (T ”)Qi T A n>agmr — SGEE n>8Qi\F
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Multiscale Mortar Mixed Finite Element Method

Define a partition of each subdomain.

Let Vi, ; C H(div, ;) and W}, ; C L*(Q;) be
mixed finite element spaces.

Define a coarse partition of each I'; ;.

Let My C L*(T") be space of
(dis)continuous polynomials. ¢

MSMMFEM: Find uj, e;\’/hz, Phyi € Wi nde

A ﬂ ‘& My such that weak formulatlonﬂatlsw ) ""? 2
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An Interface Operator

Let uy ; € V3, ; and P € Wh solve,

(K_lﬂh,%’v)gi o (Z_Qh,'w Y/ IU)QZ, = <g7 v - n>8Qi\F

(V . ﬂh’@', w)Qz == (f7 w)Q

(]

Let uy, ; € V,; and py, ; € Wy, solve,

(K_lu}';z-,v)gi — (p}"b,z-, V- ’U)Ql
(V - u}"m, w)

P

"‘Superposmon of solutions g.lve;s uh PRI .
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An Interface Operator

Use wyp, ; to define a linear form,

gu(p) = Z (Wh,i -1y — Wpj ‘nz'a,u>ri,j , Vue My
1<i<j<P

Use uj, ; to define a bilinear form,

du(Am,p) = Y (uh,(m) -mi—uh ;0m) - nep), 5 Vi€ M.
1<i<j<P :

Then A\ € My satisfies,
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Construction of a Multiscale Bas

into the mortar

Project the flux

space and store.

is function

For each mortar bas
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Given the Mortar Multiscale Basis ...

= Coarse scale equation is solved without solving further subdomain
problems.

= Action of interface operator computed using a linear combination of the
basis functions.

= Solved easily in parallel using an iterative method (CG, GMRES,...).

= For large problems, an acceleration may be required:
= Block Jacobi: Bramble, Pasciak, Schatz1986; Smith 1992; Achdou, Maday, Widlund 1999
= Balancing: Mandel 1993, Cowsar, Mandel, Wheeler 1995, Pencheva, Yotov 2003
= |nterface Multigrid: Wheeler, Yotov 2000; Yotov 2001

= Dominant cost is assembling the multiscale basis.

A
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A Multiscale Mortar Preconditioner
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Moving to More Complex Problems

= Consider a sequence of linear problems.

With each linear problem, a coarse scale interface operator:

AU ) = gt ().

The algebraic problem,

DA = gl

= Must recompute the multiscale basis for each problem for m
conservation. o -

Slgnlflcant portion of the computat|on inis, Yc
- W, Yotov 2009; : Lunati, .le’nny 2006; Efendiey, Ginting, Hou; Ewin
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A Multiscale Preconditioner

= Compute the multiscale basis for a training operator:

75H>\H — do.

= Solve the preconditioned interface problem:

DDV Ny = Dilgir

= Computing the action of Dg”} requires one solve per subdomain.
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Domain Decomposition vs. Multiscale Basis

Domain Decomposition

For each linear system:

Subdomain
solves

Apply
precond.

Multiple
subdomain
solves

Multiple
precond.

applications |

Subdomain
solves
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Compute data for
interface problem

=

Precondition
data

-

Solve the
interface problem
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Solve local problems
given interface values

.
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Multiscale Basis

For each linear system:

4

Subdomain L Fompute data for
solves interface problem

4

Multiple .
subdomain [€—> Compute multiscale
solves basis for coarse scale

Multiple linear

combinations €=—>| Solve the
of basis interface problem

Solve local problems
given interface values |

Subdomain ¢ 3
solves




A Multiscale Preconditioner

Multiple
subdomain solves

Compute the multiscale
basis for a training operator

¥

For each linear system:

Subdomain
solves

S

Apply
Multiscale  €&—>
precond.

Fixed number

of subdomain solves \
Fixed number of /

" % | multiscale precond.
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Uniform Spectral Equivalence

Theorem

The coarse scale interface operators Dy and D}{m} are
uniformly spectrally equivalent for 1 < m < M. Moreover,

cond (ﬁI}lDEm}> < ot

where each constant is independent of the discretization, but
does depend mildly on the choice of training permeability.
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Example 1: Influence of the Discretization

* Define Q2 = [0, 1] x [0, 1], and consider,

—V(K(f,y)vp) :f(xay)a (IE,y) EQ’
p =0, (z,y) € 09,
with f(z,y) = 87*sin(27z) sin(27y)
= True permeability,

K(z,y) =1—0.5sin(37x) sin(37y)

" Training permeability,

K(%,y) =1

v
Y

~ . " Wevary the mesh size, the number of subdomains, and the mortar
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Example 1: Decreasing the Mesh Size

* 16 equal-sized subdomains
e Matching grids
e Continuous linear mortars

* Vary the subdomain mesh size
h=1/64,1/128, 1/256, 1/512

* GMRES for the outer iterations
* CG for the preconditioner

~
1
.

log 10 of Residual

——h=1/32: MS pre

= ==-h=1/32: No pre

= h = 1/64: MS pre

= ==h=1/64: No pre

——h =1/128: MS pre ||

= ==h=1/128: No pre

——h =1/256: MS pre |
=.1/258: No pre




Example 1: Increasing the Number of
Subdomains

* Matching grids

* Continuous linear mortars

 h=1/128
e Vary the number of subdomains
P=4,16, 64

*  GMRES for the outer iterations
 CG for the preconditioner

r.. F »
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/

{ &
) Vo) e )
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Iog10 of Residual

——4 Subdomains: MS pre

—— 16 Subdomains: MS pre

—— 64 Subdomains: MS pre

= = =4 Subdomains: No pre ||
- = =16 Subdomains: No pre ||

= = =64 Subdomains: No pre

20

25 30 35 40

Number of Iteratlons
T . X 2
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Example 1: Changing the Mortar Degree

* Matching grids

 h=1/128

e Continuous mortars

e Vary the degree of the mortars
p=12,3

* GMRES for the outer iterations

* CG for the preconditioner

log 10 of Residual

——Linear Mortars: MS pre
= = =Linear Mortars: No pre
—Quad Mortars: MS pre _
= = =Quad Mortars: No pre
—— Cubic Mortars: MS pre
= = =Cubic Mortars: No pre [
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Example 1: Changing the Mortar Degree

Matching grids

h=1/128

Discontinuous mortars

Vary the degree of the mortars
p=12,3

GMRES for the outer iterations

CG for the preconditioner
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Example 2: Changing the Training Permeability

* 4 equal-sized subdomains «  GMRES for outer iterations
- Nonmatching grids « CG to apply the preconditioner
- Continuous linear mortars * Vary the quality of the

training permeability

K=1 K =22 +sin(xv) ) e O o A S = i i i i i O

gat--{ |11 1| HHHHHTT

K =10240 + cos(xy) K=472 04 S N S S S S v o A




Example 2: Changing the Training Permeability
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Example 2: Changing the Training Permeability

K=100

K=100

Icng:;“:l of Residual
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Example 2: Changing the Training Permeability

4
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Applications to Stochastic Flow in
Porous Media
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A Multiscale Preconditioner

Select a training
permeability

Compute multiscale basis
from the training permeability

Use the multiscale basis to
construct a preconditioner for each
realization.
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Example: Uncertainty Quantification

> 360x360 grid

> 25 (5x5) subdomains of equal size

> 129,600 degrees of freedom on
fine scale

> Continuous quadratic mortars

> Matching grids on the interfaces

> 380 degrees of freedom on the coarse
scale

0 a0 100 180 200 250 300 380

y 4 / I’;'/ ’ )‘; f f /
V4 / 4 F 4 ,/ : . vl-‘.
,{ e gt &g/ / s 5 o4

7

»‘. o ! - y
b

:‘

» GMRES for the outer iterations
> PCG to apply the preconditioner

> Vary the number of terms in the KL
expansion

> Vary the experimental covariance

» Second order stochastic collocation or
Monte Carlo sampling

1

p
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Computational Results

Standard deviation | 0.25
Terms in KL expansion | 4
Number of realizations | 16

Method Total Average Minimum Maximum
Standard DD 2825 176.6 165 186
Recomputing the 1088 68 68 68
multiscale basis
Multiscale basis 64 4
preconditioner
“ b/’)} / /. . 4 \ ./ '
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Computational Results

Standard deviation | 1.0
Terms in KL expansion | 4
Number of realizations | 16

Method Total Average Minimum Maximum
Standard DD 2960 185.0 169 195

Recomputing the 1088 68 68 68

multiscale basis

Multiscale basis 84 5.25

preconditioner

W KA i y

“ b/’)} / /. . 4 \ ./ '
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Computational Results

Standard deviation | 10.0
Terms in KL expansion | 4
Number of realizations | 16

Method Total Average Minimum Maximum
Standard DD 3827 239.2 195 285
Recomputing the 1088 68 68 68
multiscale basis
Multiscale basis 216 13.3
preconditioner
x .b/’/ & 7 SRR 4 '
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Computational Results

Standard deviation | 1.0
Terms in KL expansion | 9
Number of realizations | 512

Method Total Average Minimum Maximum
Standard DD 98544 192.5 160 225
Recomputing the 34816 68 68 68
multiscale basis
Multiscale basis 3463 6.8
preconditioner
S i y
“ b/’)} / /. . 4 \ ./ '
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Computational Results

Standard deviation | 1.0
Terms in KL expansion | 100
Number of realizations | 1000

Method Total Average Minimum Maximum
Standard DD 203587 203.6 144 283
Recomputing the 68000 68 68 68
multiscale basis
Multiscale basis 11262 11.3
preconditioner
o b/’)} / 7’ 4 \/ t
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Computational Results
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Application to an IMPES Formulation for
Two Phase Flow
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Equations Two Phase Flow

* Mass balance equation for wetting and non-wetting phase:

0
5 (0paSa) + V- (pathe) = Ga, a@=w,n

* Darcy law for each phase:

ua — _KkT,(X(SU))
[ha

(VP, —gpoVD), «a=w,n

* Saturation constraint: > "5, =1,

| * Capillary pressure: P,(S,) = P, — P,

; & 7 o T i 5 G Nationa
; - y 8 Ay 4 , ? S "2 % = Laboratories




IMPES Formulation

e Define mobilities:

* Primary velocity and capillary velocity:

u, = MK (VP, — p,gVD),
u. = -\, K (VP. — (p, — pu)gV D),

* Implicit equation for primary velocity:
v' (ua+uc> ZQa+QC;

* Explicit method for saturation:

9, w
a(ngw)—l-V~ (

|
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Example: Water Flood

Compare multiscale mortar solution with fine scale solution.

Fine scale: 180x180 = 32,400 fine scale degrees of freedom

Coarse scale: 4x4 quadratic mortars = 456 degrees of freedom on coarse scale
Channelized permeability.

Inject at one end, produce at the other.

Neglect gravity.

Improved IMPES:100 saturation time steps per pressure time step




Fine Scale and Multiscale Velocities

-‘h——

/4 w /x-velocity from multiscale soldtion:

. #F % » .
o § > X 2 73
p P N 9 y
y & - ‘ *v,
£ ’ . . » . ] 4



Fine Scale and Multiscale Velocities

@l = - - 2
e i . B

r- - " - 0
- - .ﬂ - - .
e ' .-."hﬂ

- -2

y-velocity from fine scale solution:

““\.‘ ]

-veloc',,ty fr(/)/m mult{scale sovutlon
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Fine Scale and Multiscale Saturations

—

Water saturation from fine scale solution:

1
F 5 .H -

Water saturatlon from multiscale solutlo




Efficiency of the Multiscale Preconditioner
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A Nonlinear Interface Operator

* Consider the nonlinear interface equation: B(/\) — 0

(B(A), 1) = (A, 1) = Z (un(A) - nil, ),

* Computing [uy(A) - ] requires nonlinear subdomain solves.
* |nexact Newton-GMRES algorithm for interface problem.
* Each Newton correction is computed by solving

DsB(\)s = —B(\)

* Finite difference approximation of Jacobian

)
0, p=70,

2 ¥ DsB(\, 1) = < ||p|| 2 /\‘|‘5||/\||IL|L|/||||M||) BN £ 0,0 £ 0,

& \ HM” 5u/||u||) B(A )’ w#0,\=0,

/ V f‘ g " ); ,/ I 4 '; ‘\:" ¥ _. r
»//7 ’ // i f ’/ 4 ‘I}" "‘; i" -
£ A fCt £y // L 7 F = A

B e A RN,
e R AL
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A Nonlinear Interface Operator

* May be implemented in a matrix-free algorithm.
e Each action of the Jacobian requires subdomain solves.

¢ Computing the Jacobian is similar to computing a multiscale
mortar basis.

* Compute the Jacobian based on a particular state.

M = DsB(\)
* Used as a preconditioner for subsequent Jacobians.

M™'D;B(\)s = =M~ 'B()\)

£ L et Beco’;npute*,‘ necessary '
o ' R

*/,
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Application to Slightly Compressible
Single Phase Flow with Reactive
Transport
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Split Solution Algorithm for Transport

Advect,T;

?gi_:nita_,r %tep ! Conc. step

= m—1 _ _.m
th — =1 L A¢n t =1

m __ .m—1 m
React,f’; th =t + At

A

Diffuse, T/

.bf )
R
»if fp( J / Yes \tmzl'n/? No

Sandia
; Tvational
Laboratories



Numerical Results:

Flow Around a Barrier

24 ft x 400ft x 400ft
Grid sizes
. 2ft x 12.5ft x 12.5ft (12x16x16)
«  3ft x 16.6ft x 16.6ft (8x12x12)
«  3ft x 16.6ft x 16.6ft (8x12x12)
. 4ft x 25ft x 25ft (6x8x8)
Injection pressure: increase linearly
. 505 [psi] (initially)
. 1000 [psi] (50 days)
Production pressure: decrease linearly
. 480 [psi] (initially)
. 350 [psi] (30 days)
Initial concentrations:
. 100 [M/cu-ft] in first grid cell
. 0 everywhere else
Continuous linear mortars
High order Godunov for advection
Van Leer slope limiting with parameter 0.85
Molecular diffusivity: 1.0 [sq ft / day]
Physical (Diffusion)-Dispersion:
. Longitudinal: 1.0 [ft]
. Transverse: 0.2 [ft]

Production

V

TCOFY

5000.00
1000.00
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Numerical Results: Flow Around a Barrier

CBhC_
7.3nE-07
T.IME-D7
1,77E-07
1-1E-07
1,10E-07
T.B3E-03
470E-03

1.67E-03

Avg. number of interface iterations
* No preconditioner: 27.5
* Multiscale preconditioner: 4.0

Total solve time
* No preconditioner: 7 hr
e Multiscale preconditioner: 3 hr

-




Numerical Results: Heterogeneous
Permeability

. 24 ft x 400ft x 400ft
. Grid sizes
. 2ft x 12.5ft x 12.5ft (12x16x16)
«  3ft x 16.6ft x 16.6ft (8x12x12)
< 3ft x 16.6ft x 16.6ft (8x12x12)
. 4ft x 25ft x 25ft (6x8x8)
. Injection pressure: increase linearly
. 505 [psi] (initially)
. 1000 [psi] (50 days)
. Production pressure: decrease linearly
. 480 [psi] (initially)
. 350 [psi] (30 days)
. One species, initial concentrations:
. 100 [M/cu-ft] in first grid cell
. 0 everywhere else
. Continuous linear mortars
. High order Godunov for advection
. Van Leer slope limiting with parameter 0.85
. Molecular diffusivity: 1.0 [sq ft / day]
. Physical (Diffusion)-Dispersion:
. Longitudinal: 1.0 [ft]
. Transverse: 0.2 [ft]

/’/ v 4 S 7 o y- =G
PAIIF V.7 AN

TCOFX

1013.89
78183
549.765
3177
85635

- ~



Numerical Results: Heterogeneous
Permeability

Avg. number of interface iterations
* No preconditioner: 56.4
e Multiscale preconditioner: 3.5

Total solve time
* No preconditioner: 66 min
e Multiscale preconditioner: 21 min

Time solving subdomain problems
* No preconditioner: 50 min
e Multiscale preconditioner: 6 min

S i *}./” 7 E}ﬂ[ :
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Application to Fully Implicit
Formulations for Multiphase Flow
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Equations for Two Phase Flow

* Mass balance equation and Darcy Law:

kna
o
* Solve for a pressure and a concentration on subdomains

0
o7 (#905a) + YV (patte) = o, wy = —K="% (VP = gp.V D),

* Choice of interface variables
* Both phase pressures: A1 = P, Ao =F,
* One phase pressure and one concentration: A\ = P,,, Ay = N, = p,S,

e Match fluxes: [w.] =0, [u,] = 0.
* The interface Jacobian has 2x2 block structure.

0B 0B
_ o\ O\

DsB(\) = <8Bl2 az%)
O\ ONo

i

:{ L,/ , oF / J # (r v i -
4 / ” y F 4 4 TN '.; ,2 .
” "/ P y o - > v 2
'{ P - 75 B / / . )

4




Numerical Results: Two Phase Flow

20 [ft] x 100 [ft] x 200 [ft]
First grid (coarser)

. 2 [ft] x 10 [ft] x 10 [ft] (10x10x10)

. 2 [ft] x 10 [ft] x 10 [ft] (10x10x10)
Second grid (finer)

. 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)

. 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)
Layered permeability
Initial pressure: 500 [psi]
Initial water saturation: 0.22
Injection pressure: 505 [psi]
Production pressure: 495 [psi]
Includes gravity and capillary pressure
Discontinuous constant mortars
Construct preconditioner from initial
Jacobian.

POIL
508.19

l503.30
498.41
§493.52

488.63



Numerical Results: Two Phase Flow

Coarser Grid

No Precond.

Avg. Interface
Iterations

Time Per Newton

Step (min)

SWAT
0.78146

0.64160

0.50173

0.36187

0.22201

Multiscale Precond.
Assembly Time (min)

Total Time
(min)

Multlscale Precond. 0.0037 0.42
r( \; - .:}: ’ 3
= | 4 v 4

£ T 2Ll
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Numerical Results: Two Phase Flow

SWAT
0.78146

0.64160
0.50173
0.36187

0.22201

Finer Grid Avg. Interface Time Per Newton Multiscale Precond. Total Time
Iterations Step (min) Assembly Time (min) (min)
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Mortar Coupling for Elasticity and
Poroelasticity

Laboratorias




Relevant Work

Poromechanics

Biot | General theory of three-dimensional consolidation | 1941
Showalter | Diffusion in poro-elastic media 2000
von Terzaghi | Theoretical Soil Mechanics 1943

Coupled Geomechanical Models

Chin et al | Fully coupled geomechanics and fluid flow ... | 1998

Chin et al | Iteratively coupled analysis of ... 2002
Phillips, Wheeler | A coupling of mixed and continuous ... 2007-08

Settari, Mourits | Coupling of geomechanics and reservoir ... 1994

Domain Decomposition with Mortars

Girault et al | Coupling d1§CO{1t1n1J_OU_S G

Glr«ault et al Domam, decomposmon

>
> !f 4 ! /

"~ ’
, 53/ > 4 [ #
l n'i Fos! $ ’
e .
J / 4 /

7 g -
/ e o s . ¢

1

r ’
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Domain Decomposition

- P &

1
1
]
1
1
1
1
1
1
ng e
Ly
U4 .
/ Reservoir
U4
U4
U4
'/

Reservoir (pay-zone) :

Nonpay-zone o ¥

Interface between 2; and
(g &

, ;

I
\
" )‘ ¥ o
s » { ¥
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\

\

Pay-zone Model: Poroelasticity

* Equation for Cauchy stress tensor: 0 = o — apl

displacement
fluid pressure
o(u) = )\(dlv w)l + 2pe(u) | effective stress tensor
e(u) = 5 (Vu+ Vu)T) strain tensor
identity tensor
A>0, p> 0 Lame coeflicients
a > 0, | Biot-Willis constant

¥

K
e Darcy’s Law: Vf = ——= (Vp = ;Ofg)
| Hf -
5 vy iﬁuld flux. ¥
f 7 Wi “”' K | permeability 1 (

2 [f / )Qu P~ O pf > O 1 fluid Vlsc0(31ty and density
s 7
; - g'| gravitational force

[/ 4 v R i
// / o AP : .
,.;f)f“' T 4

Q‘,\
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Pay-zone Model: Poroelasticity

* Equation for mass conservation: Al —div vr+q

ot

fluid content of medium
g | volumetric fluid source term

* Fluid content is related to pressure and material volume

n=cop+ adivu

Co | constrained specific storage coeflicient

* Balance of linear momentum under guasi-static assumptlon 7

| Ll ¥ -iLdIV a. =
> I 2 o 7 ".'}_'.{:;’
s 0D [/’ vw% ) j f]r J body force i n Qﬁ
4, I~ 7’ ’ -
2 7 4 - o P
/évf’/ & y/ // 4 f "ri/ ',/
/. _ B £ "”; ‘. i

o
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Pay-zone Model: Poroelasticity

» Combining gives the system in €2y x (0, 7] :

1, K
— (cop+ adivu) — — (Vp—prg) = q
= (co )= (V2= s

— A+ p)V(divu) — pAu+aVp = fi
* Requires initial condition on pressure: p(O) = Do

* |nitial condition for displacement must be compatible

()\ —|—M)V(d1VUO) pAwy + onpo ; f’_(.Q Ry

- PIus a,dequate bOL}pdary or mter?Face condltlo,ns- i

r : e
s ( o pr A
7 4 /’/ 5 / P R A N |
/ 5/ SN % & @ National
/ {. / / / r o R X v Laboratories



Nonpay-zone Model: Elasticity

* Linear elastic model in nonpay-zone

* Equations are steady but depend on transmission conditions
e In {25 X (O,T] :
—(A+ p)V(divu) — pAu = fo

fo | body force in €25
u = 0 | Displacement on I'p
o(u)ng =ty | Traction on I'y

* Need to define interface conditions

Ty 4

« )

‘ i /‘ i %

' Vs / et
( @& 7
I/ r/ ’\» > ! ¥ -
7 » y 5 Sandia
7 & 4 Y 7 @ National
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A Coupled Model

* Define the jump and average along interface

[U] i (U|91 - 'U|§22) |F12

1
{U} — 5 (U|Q1 + Ulﬂz) |F12

* Prescribe the following transmission conditions:

lu] = 0 | continuity of the medium
[o(u)] 12 = apmnis | continuity of normal stresses
—% (Vp—prg) -m12 =0 | no flow on the interface

@ National _
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Variational Formulation

Define the space: Hip(R2) = {v e HY(Q) : v|p, =0}

Find w € L* (0, T; Hyp()?) and p € L™= (0, T; L?(21)) N
L?(0,T; H' (1)) such that

/Qo'(u) : €(v) d:z:—a/ﬂlpdivvdacz
/Qf-vd:c—FfFNtN(s)-'v(s) ds

/ 8(cop+ad1vu)9dw—|—/ —Vp - Vo dx =
Q4

ot Q; Mf

o
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Existence and Uniqueness

Theorem

Let p, € HY(Q), f € HY(0,T; L?(Q)%), g € L*(Qy x (0,7)),
and ty € H'(0,T; L*(T'y)?). Then there exists a unique
solution to the variational formulation.

1 ks
L L
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Discontinuous Galerkin on Interface

* For simplicity, define
a, inf

O, in Qg

e

« Transmission condition becomes: [o(u) — apI|n;3 =0
* Allow test function to be discontinuous along interface.
* Interface term becomes
— | {o(u) —apI}ni-[v] ds
I'io

* Since displacements are continuous, we can add

. & 7 Fs
> #5 | Y s IND S
" "’ ’ vt A L . 1,
? W i | 5 i .
¢ g s o { )
4. B ¢ b/} r 4 Vf’ > y
f‘f' f > f ‘gy/ i v H ’l
& / / & 4 4 ¢ ¢
2 : AW A
£ £ 7 4 oy g Y 30 L
- - o i b /
e ity T D o L 4

i
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Discontinuous Galerkin on Interface

* Let Ty, ; be a conforming triangulation of I'12 with elements of size h;
 Add the stabilization terms

O+ 3 2 () fol ds

v EL ks el

» To prove stability, we need the additional stabilization term

Otz 3 7 [ (ol ds

€Dy 1F YV

¥ .
v R
. J A
/1 & & *I‘ > s LM
[ AR5 o S g oy &, 3
o NG ; o—
.t‘ 3 ] \ ," ’
T &
b % Yk { B ;
S W S AT
y P ¥
o ///'"/ e s ¥ X v
PR D e L 4

o
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DG with Lagrange Multipliers

Introduce the Lagrange multiplier XA on I'¢5.
Elasticity and poroelasticity equations become:

2
Z/ o(u;) : e(v;) da:—oz[ p div vy dz +__|
i=1 S S

In teé}ﬁﬁﬁﬁ%@%ﬁ?@}ﬁ

P N2 - v; ds

Flg P12

Penalty terms

[(A +2u) Z (Z'“ / u; - v; ds + Z% / u, - v; ds)] <~ on interface
Yi i

=1 vi€lp ¢ i

o(va)ng - us ds + Z (A + 2u)Zi / Uy - Vo ds
YEl'n, D Lol
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DG with Lagrange Multipliers

Interface equation:

—(A+2M)Z Y ("% /Wl(u,,;—)\)-uds—kzzi [/.(ug—)\’)-uds)]

i=1 v;€lh; '

(2

+/F P —

Pressure equation is unchanged:

/m

(cop—l— a div u)6 da:—l—/ —Vp Vo dx = ”
‘..‘-;’v.» *?‘ B o
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Discretizations

V4 AV V4 LY 7 y

AVAAAVAVAVAVLY

i Fi i iy T Fas i i

Th.i»t = 1,2 | two independent regular triangulations of size h;
['y | triangulation of I'15 of size H

i flis)
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Simplified Notation: (Poro)Elasticity
Z/ o(uy.) : ) dx — « /leﬁdiv'vldas-{-

—/ o(uy )n; - v ds+/ o(v;)n; - / Py Mo - v; ds
Flg F12 P12
2 - i
Z[()\—l—Q,u) Z (h—:‘/u -v; ds + h—"’ / u v@ds
=1 Vi€l h,i N
—/ o(uy,)ng - vy ds —/ o(vz)ng -up, ds+ Z (A + 2u)—'Y f uy, - v ds
e I'p YElh,D fry Jy

R 1

22:[/1“ o(vi)n; - Ay ds — (A +2u) Z (Z—:‘[ Al - 'vzds—l—h AtAH v; ds)]

32 Vi€l i

i=1
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Simplified Notation: Interface
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Simplified Notation: Flow

1

< divuhlé’dsc—l—— phOdm—l—— Kvp;’;-vedm

Atele -

7 Kg.VHda:—l—/ " 9da3—|—— div up~ 10da:—|—— pPl 0 da

K f Q4 Q Q2
T(U’f}f,@) +A ph,@;) S e T

sl ._;\‘..l“_'\.v-
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(Poro)Elasticity

Interface

Flow

Simplified Notation

B(up,v) + D(A%,v) + C(pf,v) = I"(v)

G(up, ) + M(Ng, p) + H(pp, p) = 5" (1)
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Time Stepping Algorithm

Forn =0 mm | Set p) = mupo, uj, = In, v, Ay = paAo = pHUOIr,,

Forn=71mmp | 9

Given pn 1, u";__Q [ I\ e
A

e Compute p; by solving the reaction-diffusion equation:

AP, 0) = q"(0) + T(u,~*,0) — T(u;, ", 0)
Forn>1 mp
e Compute uy and A% by solving the elasticity equation:
B(up,v) + D(Af, v) = 1"(v) — C(p, v),
Y 3 G(“Za“‘) +M( H:u’) n(l‘l’) H(p 7”’)5

PA ="
e




Forn=1 =

Time Stepping Algorithm

Given pg, u(f)w Y

e Compute 'u,,lh and A}, by solving the elasticity equation:

B(u%m'v) -+ D(A}Jav) — ll(v) - C(p?“’v),
G(uy, p) + M(Xp, p) = j' (1) — H(pj, 1),

e Compute p,ll by solving the reaction-diffusion equation:

A(pn,0) = q'(0) + T(up, 0) — T(uy, 0)

@ National _
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The Interface Equation

* For each time step we solve the elasticity equation:
Bu" + D\" =[" — Cp",
Gu" + MA\" = 3" — Hp",

* Relatively few degrees of freedom for Lagrange multipliers
» Define the Schur complement (Steklov-Poincare operator):

e — Ol
* Solve the interface equation:

S\ — | B
}f
*Sis po,5|t|ve deflnlte but not syrvfmetrlc

,-,/' S istime mvarl‘ant |f elasticity | parameters are s ﬁﬁ g_ - g

5_ {f’f g g

/ //‘ l G ) 7 e
/ J : P / :
/£ ,' ol 28 42

4



Error Estimates

Let ¢ denote the discrete difference in time operator, e.g.,

T . Astag .. mi— .
5uhi_uhi uh

Define the semi-norm,

2

v|%, = Z ()\lldiV 'Ui”%?(ﬂi) o 2“”6(1’)”%2(%))
)

Assume the exact solution has the following regularity:
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Error Estimates

Assumption

There exists a constant C' independent of hq, ho, and H
such that for any 7 € I'g and any v; € I';,; that intersects 7,

H, H

< (C—
h’% — hy

This assumption is needed to prove the interpolation result,

T

D A - puAE

y ¥ :,;/t
ot y
70

o
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Error Estimates

Theorem

Assume the triangulations are regular in the sense of Ciarlet
and satisfy Assumption 1. Then there exist constants C; and
C5 independent of hq, ho, H, At and n such that for n > 2,

Eu+E} + Ef,, + Bf,, < Ciexp(Cot™) (A

T — To — Tp— H H —
+ AT gD pD (= g =) HE )
Py o

where 7, = min(k + 1, s, ), 7, = min(m + 1, s,),
ra = min(l 4+ 1, s, — 1/2).
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Mandel’s Problem

=

X

» Infinite domain subjected to a loading of 2F from above and below
» Symmetry allows domain to be reduced to 2D upper right quadrant
» Analytical solution for pressure and displacements1

,/ » Solution demonstrates the Mandel-Creyer effect.

£ T v
?K/la% 1 %’ /f\ﬁQU:SIIeI})an ?tHM :996 4 A X ¥ o
. . > - " 4 e F ona
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Extension of Mandel’s Problem

1

1 x 104

0.2

100

1 xliEe

0.1

th:—F/CL

E

vV

F | 2000

0

c
At

AR o 5 LAl
poar PR YRR [
AT

- a ]
= ]

» Extend Mandel’s problem to include an elastic domain

2H(y—b)p

Q
A+

pay
Uy,

nonpay __

U,

pay
u.’B

nonpay __

Uy
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1

I
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Extension of Mandel’s Problem

Total Degrees of Error in Energy Predicted Rate Observed Rate

Freedom Norm

1,197 1.07E-2

4,387 4.91E-3 1 1.09
16,767 2.34E-3 1 1.05
65,527 1.14E-3 1 1.03
259,047 5.65E-4 1 1.01

i »Table Numerical error after 100 time sf

o .
y I f ’ ¥ « 5 L]
v P JPR LN
» ¢ ARV . .
y.. Ton s £ ol
T {4 e AL
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A Posteriori Error Bounds for Multiscale and
Multinumerics and Mortar Coupling




What is/should be an a posteriori error estimate?

Usual form
> 2 —orll* S D oper, nr(pn)?
» Can be used to determine mesh elements with large error.
> We can then refine these elements: mesh adaptivity.
Reliability
> |lp = prll® < CXrer, nr(pn)?
Guaranteed upper bound (evaluation of the constants)
> lp = prll® <D per, nr(pn)?
Local efficiency
> nr(pr)* < CgffT D] o ATl prll%
Asymptotic exactness
> 2orer, 1(Pn)*/llp = pall* — 1
Robustness y

Independence of ‘thejdata vanat %er i
fNegllglbIe evaluatlop cost T S

.. lf’r A :;gstjmators whlch c‘én be. evaluated |oca||y

’! .d
v
, : v
/ P4 §
. £ <
/}‘ 8¢ R : a
4
4 g
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Adaptive Meshes

Adaptlve subdomam megh Adapti /e Mortar mes

v, Y - *-
e ol s j /‘r ,i’.
a gl i
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Flux and Potential Errors and Effectivity Indices

Flux and potential errors

I
T m -exact flux error
—A— estimated flux error
- A -exact potential error

—A— estimated potential error

Est|

Number of degrees of freedom

-i,‘ ’

Flux and potential effectivity indices

mated and ctual flux e'rror

1.9—

—— flux
—A— potential

10°* 10
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Flux error

Flux and Potential Errors

0 I I T T 171 I | | | [T T 17
107 — —=— exact adaptive rate=1.04 m
—8—exact uniform rate=0.55
—4—estimated adaptive rate=1.03
—i— gstimated uniform rate=0.54
-0.2
10 " — —
1 0—0.4 | ]
10°% =
1078 —
10° 10°

Number of degrees of freedom

o7

®

3

‘ t
§ &
7.4

rs t._‘f/

- ” v
b

Potential error

Est gmategf; o’daﬁual f’lux'erFyor R
Y J

N A A A B | I I T 17
—=—exact adaptive rate=0.94
—e—exact uniform rate=0.55
———estimated adaptive rate=1.10
—A— estimated uniform rate=0.55

.J.‘
) i
% ¢ v
e Ry o AP ; N i
' o -' ! . ’ ) " >
2 g : S e,
: r g =
.

10" 10
Number of degrees of freedom
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Multilevel Solvers for Hybridized
Formulations
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Laplace Equation —

Model | Laplace equation
Domain | (0,1) x (0,1)
Method | DG-NIPG; (Yellow)
Method | Mixed-RT; (Pink)
Mesh | Triangles
True solution | p = :1:3;635”293
Tolerance | 1 x 107°
BEassaassania SEEBEN,
ERSR2SED] ?(L SEEAED
S
ey .
mansunnanniaas ¢ RBEREEERES y
e T
SR

Multinumerics

A AV VAN AV AV AV AV AV VAV
A ATV AV AVAVAVAVATAVAVA
RN A AT AN YAV AV AVAVAY
ATV VAV AVAVATA
AT AR ANV ATAVAVAY
T AAVAVITTE NG
WAV ATV AVAVIVAVANG.

Y A AV AT
EAVEVATR A VARV ATAVAVAVANAT N
RV EVAVAVAVEVAVAYA A AN ANV AV
PPV VAN AV VATV AVATATAN N
VAV ATAVAVATAVAVAVAVA WATATAVAVAY
T A ANV AV A VAVATAVAVAN
A A YA YAV AV AN AV AV LY. b A
Y Y AN AN AN VAT
N AT AV AV AT VAV ATAVAVAVEVAVATA

A AV VAN AVAN AT
A A AN AN AN VAN ANV
VANV ANAV ATV AVAVAY.
ATV ANAVANATATA
VAT AVAVAVATAT AT
WA AT AN AT AN ATV AT AT.
WATAVATAVAVAYAN AV,
VATATAVATAVAVATAY.
ATV AT TN ATATAY.

EAPEVITANAVA

ENAVAVAVAVA.,
VAV AV EVVAVE
EVAVATAVAVATAVA.
FATAVAV AV VAV
T ANANATAVATAVAY.

ATAVATANATAVINAY
S
FAVATATAVAVAVANG
ATV ATAV R LAY
FAVAVAVAVAVAVAVA




Laplace Equation — Multinumerics

VAT AN A AN VAV AV AT AV AVANAVAN AV
A A KAV A AV AV AN AW AV

ANV AV T ATV AV VAV ATAY

: VAVAVAT AN VAT AViVAVAVAVATA
Model Laplace equatlon VANATATARANATAVATAYAVAVAY.
A A A
D ' 0.1 0.1 R CODOO000C
omain | (0,1) x (0,1) R S
M DA.NIPC. (V. e o
- A% ST VATATATARATATA ViNAYAVAVAY,
ethod IP : ( ello ) SR TA AT TAT TNy OO0
1 1 PP AY P A AVAATAN AW AYAN VAT
Method Mixed-RT 1 ( Pi 1’11{) AN VATATAVAYAVAVAYAVAVAVAVAVAVAVAYA
¥ VAVAVAVAVAVAVAVAVANAVAVAVAVA
e el S
€S riangles VAFANFAVLVAVATANANTA
vt VAVANRTANLTAVAVATANA
i _ ryety S
rue sofution | p TYye TUTATAYLTAVIVAVAY
6 VAViVAVAVAVAYAVAY
Tolerance | 1 x 10 ATV NiTs

ENAVAVAVAVA., ATAVATANATAVINAY

VAV AV EVVAVE ATV ANV
EVAVATAVAVATAVA. FAVAVATAVAVAVAVE
FATAVAV AV VAV AVATAVAVANAVATLY
T ANANATAVATAVAY. VAVATANAVATAVAYA

MG Factor

224 3 0.19

3
4 960 8 0.19
J ) 5 3968 8 0.20
)/ 2
" 6 16128 8 0.20

’ { ’ »
y ¥ b7
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Poisson Equation — Unstructured Mesh

Model

Permeability
Method
Tolerance

Degrees of freedom
Levels

V-cycles
Convergence rate

PCG Iters

Poisson equation
5.5esin(27rw)
Mixed RTl

1 x107°

11492

5!

29

0.51

11 52
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Single Phase Flow with Heterog
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Conclusions
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Conclusions

* Mortars provide flexibility using weak coupling.
* Ideal for multiscale/multiphysics/multinerics coupling.

* Construction of a multiscale mortar basis is sometimes useful.
* Construction of a multiscale mortar preconditioner is much more efficient.

* Applications include stochastic operators, IMPES formulations, and
nonlinear interface operators.

* Coupled elastic/poroelastic model has been formulated and analyzed.
* Theoretical convergence has been established.
* Verification using a modified analytical solution.

F

_/

’v' : . . 2 ;
’ // ¢ ‘8 . -




Bibliography

1l1ulvidLalT 11lvliuval pLoLuULIuLILIVLICL 1UL 11VULHIICal 111LCL1IaLT UpTllLauvuld. Duuliliiuvuou vvu vulll=

putational Geosciences, 2011.

B. Ganis and I. Yotov. Implementation of a mortar mixed finite element method using
a multiscale flux basis. Comput. Methods Appl. Mech. Engrg., 198:3989-3998, 2009.

V. Girault, G. V. Pencheva, M. F. Wheeler, and T. M. Wildey. Domain decomposition
for linear elasticity with DG jumps and mortars. Computer Methods in Applied Me-
chanics and Engineering, 198(21-26):1751 — 1765, 2009. Advances in Simulation-Based
Engineering Sciences - Honoring J. Tinsley Oden.

V. Girault, G. V. Pencheva, M. F. Wheeler, and T. M. Wildey. Domain decomposition
for poroelasticity and elasticity with DG jumps and mortars. Mathematical Models and
Methods in Applied Sciences (M3AS), 21:169 — 213, 2011.

G. Pencheva, M. Vohralik, M. F. Wheeler, and T. Wildey. A posteriori error control and
adaptivity for multiscale, multinumerics, and mortar couphng Techmca
ICES, The University of Texas at Ausgm 2010. e

M. F. Wheeler and T leldey A Dlrlchlet to- Neuﬁﬂ mu e . 1
ratlon 2011 " ¢ f ) ; ; e : |
Lf ,f“‘ V 4 7 A3 . y
MgF. V\L’heel D*’T ‘Wildey, and G, Xue. Efﬁment algorithms for multiscale modelifig-
A’DU% fa., Numemcal Linear Algebra with Applications, 17(5):771-785, 20i



Thank you for your attention!
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