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What Are Mortar Methods?

Mortar: a workable paste used to bind 
construction blocks together and fill the 
gaps between them.

-Wikipedia

Mortar methods: discretization methods for partial differential 
equations, which use interface variables to connect finite element 
discretizations on nonoverlapping subdomains.



Advantages in Using Mortars

Courtesy of M. Balhoff (UT)



Scales in the Subsurface 
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Typical Dimensions

• 1000ft x 1000ft x 100ft

• Approx. 1 million elements

• Degrees of freedom 1-40 million

Typical Reservoir Models 



Vertical Scales

100ft

2500-10000ft

Reservoir or saline
aquifer

Caprock



Areal Scales

Courtesy of Midwest Geological Consortium

Large Reservoir Model



Domain Decomposition and Multiscale
Mortar Methods
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Mixed Formulation 
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Model Domain Decomposition Problem 
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Multiscale Mortar Mixed Finite Element Method 
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An Interface Operator
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An Interface Operator
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Construction of a Multiscale Basis
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For each mortar basis function

Solve fine scale problem

Project the flux into the mortar
space and store.



Given the Mortar Multiscale Basis …

 Coarse scale equation is solved without solving further subdomain
problems.

 Action of interface operator computed using a linear combination of the 
basis functions. 

 Solved easily in parallel using an iterative method (CG, GMRES,…).

 For large problems, an acceleration may be required:
 Block Jacobi:  Bramble, Pasciak, Schatz1986; Smith 1992;  Achdou, Maday, Widlund 1999
 Balancing:  Mandel 1993;  Cowsar, Mandel, Wheeler 1995;  Pencheva, Yotov 2003
 Interface Multigrid:  Wheeler, Yotov 2000;   Yotov 2001

 Dominant cost is assembling the multiscale basis.
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A Multiscale Mortar Preconditioner
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Moving to More Complex Problems

 Consider a sequence of linear problems.

 With each linear problem, a coarse scale interface operator:

 The algebraic problem,

 Must recompute the multiscale basis for each problem for mass 
conservation.

 Significant portion of the computational effort [Ganis, Yotov 2009;  Wheeler, 

W., Yotov 2009; : Lunati, Jenny 2006; Efendiev, Ginting, Hou, Ewing 2006]
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A Multiscale Preconditioner

 Compute the multiscale basis for a training operator:

 Solve the preconditioned interface problem:

 Computing the action of               requires one solve per subdomain.

 Computing the action of           requires one coarse scale solve using 
multiscale basis. 
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Domain Decomposition vs. Multiscale Basis

Domain Decomposition

For each linear system:

Compute data for
interface problem

Subdomain
solves

Precondition
data

Solve the
interface problem

Solve local problems
given interface values

Apply
precond.

Multiple
subdomain

solves

Multiple
precond.

applications

Subdomain
solves

Multiscale Basis 

For each linear system:

Compute data for
interface problem

Subdomain
solves

Compute multiscale
basis for coarse scale

Solve the
interface problem

Solve local problems
given interface values

Multiple
subdomain

solves

Multiple linear
combinations

of basis 

Subdomain
solves
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A Multiscale Preconditioner

For each linear system:

Compute data for
interface problem

Subdomain
solves

Precondition
data

Solve the
interface problem

Solve local problems
given interface values

Apply
Multiscale
precond.

Fixed number
of subdomain solves

Fixed number of
multiscale precond.

applications

Subdomain
solves

Compute the multiscale
basis for a training operator

Multiple 
subdomain solves
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Uniform Spectral Equivalence  

Theorem



Example 1: Influence of the Discretization  



 True permeability,

 Training permeability,

 We vary the mesh size, the number of subdomains, and the mortar 
approximation. 
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Example 1: Decreasing the Mesh Size

• 16 equal-sized subdomains

• Matching grids

• Continuous linear mortars

• Vary the subdomain mesh size
• h = 1/64, 1/128, 1/256, 1/512

• GMRES for the outer iterations

• CG for the preconditioner
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Example 1: Increasing the Number of 
Subdomains

25

• Matching grids

• Continuous linear mortars

• h = 1/128

• Vary the number of subdomains

• P = 4, 16, 64

• GMRES for the outer iterations

• CG for the preconditioner



Example 1: Changing the Mortar Degree
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• Matching grids

• h = 1/128

• Continuous mortars

• Vary the degree of the mortars

• p = 1, 2, 3

• GMRES for the outer iterations

• CG for the preconditioner



Example 1: Changing the Mortar Degree
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 Matching grids

 h = 1/128

 Discontinuous mortars

 Vary the degree of the mortars

 p = 1, 2, 3

 GMRES for the outer iterations

 CG for the preconditioner



Example 2: Changing the Training Permeability

• 4 equal-sized subdomains 
• Nonmatching grids
• Continuous linear mortars
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• GMRES for outer iterations
• CG to apply the preconditioner
• Vary the quality of the 

training permeability



29

Example 2: Changing the Training Permeability
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Example 2: Changing the Training Permeability
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Example 2: Changing the Training Permeability



Applications to Stochastic Flow in 
Porous Media 
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A Multiscale Preconditioner

Compute multiscale basis
from the training permeability

Select a training 
permeability

Use the multiscale basis to
construct a preconditioner for each 
realization.

Generate stochastic realizations
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Example: Uncertainty Quantification

 360x360 grid

 25 (5x5) subdomains of equal size

 129,600 degrees of freedom on 

fine scale

 Continuous quadratic mortars

 Matching grids on the interfaces

 380 degrees of freedom on the coarse 
scale
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 GMRES for the outer iterations

 PCG to apply the preconditioner

 Vary the number of terms in the KL 
expansion

 Vary the experimental covariance

 Second order stochastic collocation or 
Monte Carlo sampling



Method Total Average Minimum Maximum

Standard DD 2825 176.6 165 186

Recomputing the 
multiscale basis

1088 68 68 68

Multiscale basis 
preconditioner

64 4 4 4
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Computational Results



Method Total Average Minimum Maximum

Standard DD 2960 185.0 169 195

Recomputing the 
multiscale basis

1088 68 68 68

Multiscale basis 
preconditioner

84 5.25 4 6
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Computational Results



Method Total Average Minimum Maximum

Standard DD 3827 239.2 195 285

Recomputing the 
multiscale basis

1088 68 68 68

Multiscale basis 
preconditioner

216 13.3 7 19
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Computational Results



Method Total Average Minimum Maximum

Standard DD 98544 192.5 160 225

Recomputing the 
multiscale basis

34816 68 68 68

Multiscale basis 
preconditioner

3463 6.8 5 10
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Computational Results



Method Total Average Minimum Maximum

Standard DD 203587 203.6 144 283

Recomputing the 
multiscale basis

68000 68 68 68

Multiscale basis 
preconditioner

11262 11.3 6 33
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Computational Results
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Computational Results



Application to an IMPES Formulation for 
Two Phase Flow 
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Equations Two Phase Flow

• Mass balance equation for wetting and non-wetting phase: 

• Darcy law for each phase:

• Saturation constraint:

• Capillary pressure:



IMPES Formulation

• Define mobilities:

• Primary velocity and capillary velocity:

• Implicit equation for primary velocity:

• Explicit method for saturation:
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Example: Water Flood
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• Compare multiscale mortar solution with fine scale solution.
• Fine scale: 180x180  32,400 fine scale degrees of freedom
• Coarse scale: 4x4 quadratic mortars  456 degrees of freedom on coarse scale
• Channelized permeability.
• Inject at one end, produce at the other.
• Neglect gravity.
• Improved IMPES:100 saturation time steps per pressure time step

Fine scale permeability



Fine Scale and Multiscale Velocities
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x-velocity from fine scale solution:

x-velocity from multiscale solution: 



Fine Scale and Multiscale Velocities
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y-velocity from fine scale solution:

y-velocity from multiscale solution:



Fine Scale and Multiscale Saturations
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Water saturation from fine scale solution:

Water saturation from multiscale solution:



Efficiency of the Multiscale Preconditioner
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Figure: Number of interface iterations without preconditioner and
with multiscale preconditioner based on initial conditions.



A Nonlinear Interface Operator

• Consider the nonlinear interface equation:

• Computing                        requires nonlinear subdomain solves.

• Inexact Newton-GMRES algorithm for interface problem.

• Each Newton correction is computed by solving

• Finite difference approximation of Jacobian

49



A Nonlinear Interface Operator

• May be implemented in a matrix-free algorithm.

• Each action of the Jacobian requires subdomain solves.

• Computing the Jacobian is similar to computing a multiscale 
mortar basis.

• Compute the Jacobian based on a particular state.

• Used as a preconditioner for subsequent Jacobians.

• Recomputed if necessary.
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Application to Slightly Compressible 
Single Phase Flow with Reactive 

Transport
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Split Solution Algorithm for Transport
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Numerical Results: Flow Around a Barrier 
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• 24 ft x 400ft x 400ft
• Grid sizes

• 2ft x 12.5ft x 12.5ft (12x16x16)
• 3ft x 16.6ft x 16.6ft (8x12x12)
• 3ft x 16.6ft x 16.6ft (8x12x12)
• 4ft x 25ft x 25ft (6x8x8)

• Injection pressure: increase linearly
• 505 [psi] (initially)
• 1000 [psi] (50 days)

• Production pressure: decrease linearly
• 480 [psi] (initially) 
• 350 [psi] (30 days)

• Initial concentrations: 
• 100 [M/cu-ft] in first grid cell
• 0 everywhere else

• Continuous linear mortars
• High order Godunov for advection
• Van Leer slope limiting with parameter 0.85
• Molecular diffusivity: 1.0 [sq ft / day]
• Physical (Diffusion)-Dispersion:

• Longitudinal: 1.0 [ft]
• Transverse: 0.2 [ft]

Production

Injection



Numerical Results: Flow Around a Barrier 
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Avg. number of interface iterations
• No preconditioner: 27.5
• Multiscale preconditioner: 4.0

Total solve time
• No preconditioner: 7 hr
• Multiscale preconditioner: 3 hr 



Numerical Results: Heterogeneous 
Permeability 
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• 24 ft x 400ft x 400ft
• Grid sizes

• 2ft x 12.5ft x 12.5ft (12x16x16)
• 3ft x 16.6ft x 16.6ft (8x12x12)
• 3ft x 16.6ft x 16.6ft (8x12x12)
• 4ft x 25ft x 25ft (6x8x8)

• Injection pressure: increase linearly
• 505 [psi] (initially)
• 1000 [psi] (50 days)

• Production pressure: decrease linearly
• 480 [psi] (initially) 
• 350 [psi] (30 days)

• One species, initial concentrations: 
• 100 [M/cu-ft] in first grid cell
• 0 everywhere else

• Continuous linear mortars
• High order Godunov for advection
• Van Leer slope limiting with parameter 0.85
• Molecular diffusivity: 1.0 [sq ft / day]
• Physical (Diffusion)-Dispersion:

• Longitudinal: 1.0 [ft]
• Transverse: 0.2 [ft]

Production

Injection



Numerical Results: Heterogeneous 
Permeability 
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Avg. number of interface iterations
• No preconditioner: 56.4
• Multiscale preconditioner: 3.5

Total solve time
• No preconditioner: 66 min
• Multiscale preconditioner: 21 min 

Time solving subdomain problems
• No preconditioner: 50 min
• Multiscale preconditioner: 6 min



Application to Fully Implicit 
Formulations for Multiphase Flow
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Equations for Two Phase Flow

• Mass balance equation and Darcy Law:

• Solve for a pressure and a concentration on subdomains

• Choice of interface variables
• Both phase pressures: 
• One phase pressure and one concentration: 

• Match fluxes:

• The interface Jacobian has 2x2 block structure.
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Numerical Results: Two Phase Flow 

59

• 20 [ft] x 100 [ft] x 200 [ft]
• First grid (coarser)

• 2 [ft] x 10 [ft] x 10 [ft] (10x10x10)
• 2 [ft] x 10 [ft] x 10 [ft] (10x10x10)

• Second grid (finer)
• 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)
• 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)

• Layered permeability
• Initial pressure: 500 [psi]
• Initial water saturation: 0.22
• Injection pressure:  505 [psi] 
• Production pressure: 495 [psi] 
• Includes gravity and capillary pressure
• Discontinuous constant mortars
• Construct preconditioner from initial 

Jacobian.



Numerical Results: Two Phase Flow 
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Coarser Grid Avg. Interface 
Iterations

Time Per Newton 
Step (min)

Multiscale Precond. 
Assembly Time (min)

Total Time 
(min)

No Precond. 81.5 0.45 - 147.0

Multiscale Precond. 8.6 0.0037 0.42 12.2



Numerical Results: Two Phase Flow 
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Finer Grid Avg. Interface 
Iterations

Time Per Newton 
Step (min)

Multiscale Precond.
Assembly Time (min)

Total Time 
(min)

No Precond. 157.7 7.86 - 1730.3

Multiscale Precond. 7.2 0.41 15.7 105.7



Mortar Coupling for Elasticity and 
Poroelasticity
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Relevant Work

Poromechanics

Coupled Geomechanical Models

Domain Decomposition with Mortars



Domain Decomposition

Reservoir



Pay-zone Model: Poroelasticity

• Equation for Cauchy stress tensor:

• Darcy’s Law:



Pay-zone Model: Poroelasticity

• Equation for mass conservation:

• Fluid content is related to pressure and material volume

• Balance of linear momentum under quasi-static assumption



Pay-zone Model: Poroelasticity

• Combining gives the system in 

• Requires initial condition on pressure:

• Initial condition for displacement must be compatible

• Plus adequate boundary or interface conditions



Nonpay-zone Model: Elasticity

• Linear elastic model in nonpay-zone

• Equations are steady but depend on transmission conditions

• In 

• Need to define interface conditions



A Coupled Model

• Define the jump and average along interface

• Prescribe the following transmission conditions:



Variational Formulation



Existence and Uniqueness

Theorem



Discontinuous Galerkin on Interface

• For simplicity, define

• Transmission condition becomes:

• Allow test function to be discontinuous along interface.

• Interface term becomes

• Since displacements are continuous, we can add



Discontinuous Galerkin on Interface

• Let          be a conforming triangulation of         with elements of size 

• Add the stabilization terms

• To prove stability,  we need the additional stabilization term

• Similar terms are added to enforce the Dirichlet boundary condition.



DG with Lagrange Multipliers

Usual interior terms
Interface terms from

integration by parts

Interface term based
on DG method (NIPG)

Penalty terms
on interface

Analogous terms
on Dirichlet boundary

Usual source
terms

Lagrange
multiplier
terms



DG with Lagrange Multipliers



Discretizations



Simplified Notation: (Poro)Elasticity



Simplified Notation: Interface



Simplified Notation: Flow



Simplified Notation



Time Stepping Algorithm

For n = 0

For n > 1

For n = 1 ?



Time Stepping Algorithm

For n = 1



The Interface Equation

• For each time step we solve the elasticity equation:

• Relatively few degrees of freedom for Lagrange multipliers

• Define the Schur complement (Steklov-Poincare operator):

• Solve the interface equation:

• S is positive definite, but not symmetric.

• S is time invariant if elasticity parameters are static and constant time steps.



Error Estimates



Error Estimates

Assumption 



Error Estimates

Theorem 



 Infinite domain subjected to a loading of 2F from above and below

 Symmetry allows domain to be reduced to 2D upper right quadrant

 Analytical solution for pressure and displacements1

 Solution demonstrates the Mandel-Creyer effect.

Mandel’s Problem

1 Mandel 1953, Abouslieman et al 1996 



 Extend Mandel’s problem to include an elastic domain

 Piecewise linear finite elements and continuous linear mortars with H = h

 Small time step to isolate spatial discretization error

Extension of Mandel’s Problem



Total Degrees of 
Freedom

Error in Energy 
Norm

Predicted Rate Observed Rate

1,197 1.07E-2

4,387 4.91E-3 1 1.09

16,767 2.34E-3 1 1.05

65,527 1.14E-3 1 1.03

259,047 5.65E-4 1 1.01

Table: Numerical error after 100 time steps 

Extension of Mandel’s Problem



A Posteriori Error Bounds for Multiscale and 
Multinumerics and Mortar Coupling
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What is/should be an a posteriori error estimate?



 Can be used to determine mesh elements with large error.
 We can then refine these elements: mesh adaptivity.

Usual form

Reliability



Guaranteed upper bound (evaluation of the constants)



Local efficiency



Asymptotic exactness



Robustness

 Independence of the data variation or mesh properties

Negligible evaluation cost

 Estimators which can be evaluated locally



Adaptive Meshes

Adaptive mortar meshAdaptive subdomain mesh



Flux and Potential Errors and Effectivity Indices

Effectivity indicesEstimated and actual flux error
and potential error



Flux and Potential Errors

Potential errorEstimated and actual flux error



Multilevel Solvers for Hybridized 
Formulations
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Laplace Equation – Multinumerics



Laplace Equation – Multinumerics

Levels DOF V-cycles MG Factor

3 224 8 0.19

4 960 8 0.19

5 3968 8 0.20

6 16128 8 0.20



Poisson Equation – Unstructured Mesh



Single Phase Flow with Heterogeneities



Conclusions



Conclusions

• Mortars provide flexibility using weak coupling.

• Ideal for multiscale/multiphysics/multinerics coupling.

• Construction of a multiscale mortar basis is sometimes useful.

• Construction of a multiscale mortar preconditioner is much more efficient.

• Applications include stochastic operators, IMPES formulations, and 
nonlinear interface operators.

• Coupled elastic/poroelastic model has been formulated and analyzed.

• Theoretical convergence has been established.

• Verification using a modified analytical solution.

• Robust a posteriori bounds for the energy error may be obtained.

• Optimal linear solvers can be developed based on mortars.
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Thank you for your attention!
Questions?


