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Motivation is application driven

Top-down nano-manufacturing: fluid distribution, printing, mold filling in Iarge aspect
ratio regions

Thin-liquid film coating: film flow, metering flows,
thin metering structures

Tensioned web Slot

Sliding Contacts: Lubricated bearings,

' electrical brush
P=0 = l
M
p <

‘ \
Capillary surface microstructure, surface rheology: emulsions, surface rheometry, oil

o ’ .

Miscellaneous: surface microprobes (Moore et al., “Hydrophilicity and the Viscosity of
Interfacial Water”, Langmuir (2011) ASAP).




Presentation outline

e Model components
e Governing equations and implementation

— Free film flow
— Confined lubrication flow
— Balanced-force multiphase lubrication

* Demonstrations
— Film flow over patterned substrate
— Deformable slider bearing
— Multi-drop spreading

e Summary
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Model geometry

Continuum elements
(2D/39 mesh)
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Shell elements
(1D/2D mesh)

5 Laboratories



Model components

4 )

Continuum FEM elements (3D)

Solid mechanics
(Nonlinear

S pseudo-solid) )

: Fluid-structural Boundary
Material models : . w
interactions (FSI) conditions

/ Fluid mechanics \

(Lubrication /
Thin-film flow)

Multiphase Auxillary models
mechanics (Porous shells,
(Level-set) particle flows)

K Shell FEM elements (2.5D) /
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Model equations: Shell elements

e Traditionally rooted in solid-mechanics community:

— Structural shells developed to provide more accurate response to

thin-structure mechanics (membranes, cylindrical shells, plates,
bars, etc.)

— Shells given a finite-thickness assumed much less than the inverse
radius of curvature

 The concepts however extend to fluid-thermal problems
and even species transport.

3

* |nshell elements, gradients taken
only along the in-plane direction.

V,f=(-nn)-Vf
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Model equations: Free film

* Film profile evolution

3
%T =-V, .L—v,, P—vzh} E
U
| , s

Height change Convection inflow Evaporation

e Pressure coupling definition

n m o (n—-1)(m-1)
2 h, h, B=— cos(d) -1
PZ—O'V“h-I-B (Fj —(Fj h. n—n ( ( ) )
\_Y_’ 3 | o Y /- \
Capillary Disjoining Conjoining Precursor Contact
pressure pressure  pressure film thickness angle
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Model equations: Confined film flow

e Reynolds’ lubrication equation:

Squeezing Couette +
flow Poiseuillle flow
| \

LN \% V.-V V,-V,h
—+ =L =-V,-q+V;-V, h-V,-V,h,
dt

\_'_} \ y J

Porous Sliding “bearing”
boundary flux flow

12 Re < 2000
2Re)””  Re> 2000

° LIC]UId ﬂUXI Pres§ure Capillary
gradient force Ky = 0:3(

h® | | ! . h
q:k (Vllp_pg+FCSF)+E(V1+V2)

turb ‘ | ‘ ' |

Turbulent Gravity/body Couette flow

mixing param. force *'
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Model equations: Level set method

e Level-set advection equation
governs location of liquid-air
interface:

of

—=Vv:|[V, f| V=
dt

g
h

e Balanced-force approach utilizes node-based heaviside

0 f<-a
FCSF :GKV”H H :Z¢IHI HI{;(1+;+WJ —a< f <a
! 1 f,>a

e Curvature includes in-plane and “height” directions

K= %[cos(n—é’l —arctan(n,, -V, h)) +cos (7 -6, —arctan(n,,, -V, h,)) [+ V, -n,,
| J \ ] L
| I

Top contact angle Bottom contact angle In-plane
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Model equations: Fluid-structural interactions

e Compressible Hooke’s Law
models solid deformation

V-6=0

e Neo-Hookean constitutive model

E = (vd)+(vd)" +(vd) (vd) gzs(det((u ~va))” _1)

e Continuum and shell elements coupled through the
lubrication pressure

n-¢=nP+(l —nn)-(%VP+%vj
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Model equations: Auxiliary capabilities

12

Pattern-to-mesh tool:

— Spatially and time-varying material parameters and external fields
without meshing in separate regions

Porous shells:

— Liquid uptake from lubrication layer with in-plane transport
Particle transport:

— Convection/diffusion of particles in thin films, with evaporation
Energy transport:

— Shell model for convection/diffusion of heat in liquid layers

Phase-change models:

— Heat/friction can melt adjoining solids, transferring mass into and out of
the liquid phase

Interfacial / surface rheology:
Many others ....
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Presentation outline

e Model components
 Governing equations and implementation

— Free film flow
— Confined lubrication flow
— Balanced-force multiphase lubrication

* Demonstrations
— Film flow over patterned substrate
— Deformable slider bearing
— Multi-drop spreading

e Summary
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Film flow over patterned substrate

e Substrate chemically patterned with areas of varying wetability

e Patterns are not meshed in, but an external field variable

Single-feature pattern

0. = 160°

- 80pm

100 o |

< 100 um
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Multiple-feature pattern
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Film flow over patterned substrate

Single-feature pattern initialized with a single 2 pL drop
(ink-jet deposited)

Droplet quickly spreads to cover the entire pattern




Film flow over patterned substrate

Single-feature pattern initialized with FOUR 2 pL drops

THETA

Resulting droplet does not conform to the pattern due to
excess liquid deposited




Film flow over patterned substrate

Complicated multiple-feature patterns can also be studied
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Droplets spread to cover patterned areas
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Deformable slider bearing

0.1mm ¢ 11'1 mm

Z-Def. [cm]
5.00e-02
3.75e-02
2.50e-02
1.25e-02
0.00e+00

Slider deforms under the strong lubrication forces
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Deformable slider bearing

Slider deformation

0.05 . .
—With deformation|| 0.1 mm ¢ 11'1 mm
----- No deformation <
0.04 V=1m/s
E
2’0 03
s Lubrication Pressure
= 10000 . . : :
£ 0.02 AN —With deformation
e N No deformation
o 8000 {
0.01
T
M 6000
0 A . . ) o
0 2 4 6 8 10 Z
Distance [cm] 3 40007
o
2000
. . . 0
Lubrication pressure is greatly decreased when 0
the slider is allowed to deform.
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Multi-drop squeezing

e S ing liquid d
petweentwopates ¥ ¥ ¥ ¥ ¥ b ¥

— Top plate deformable
— Lubrication with level-set
representation of liquid 0.1cm

e [|nitial distribution:

1 Cm. .
' . 7cm
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Multi-drop squeezing

Lubrication pressure Relative deformation Fluid/gas velocity

Rel. Def. [cm]

 Drops spread and merge under the significant squeezing
force

e Mesh deforms under the buildup of lubrication pressure
 Gas must move quickly to get out from under plates
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Summary

 Many industrial applications have regions with thin fluid
flows involving free boundaries.

e Reduced-order models / shell models can greatly simplify
computational analysis of these processes.

Pressure

5.0e+06

THETA
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