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Motivation is application driven
Top‐down nano‐manufacturing: fluid distribution, printing, mold filling in large‐aspect 

ratio regions

Thin‐liquid film coating: film flow, metering flows, 
thin metering structures

Sliding Contacts: Lubricated bearings, 
electrical brush

Capillary surface microstructure, surface rheology: emulsions, surface rheometry, oil 
recovery

Miscellaneous: surface microprobes (Moore et al., “Hydrophilicity and the Viscosity of 
Interfacial Water”, Langmuir (2011) ASAP).
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Presentation outline
• Model components
• Governing equations and implementation

– Free film flow
– Confined lubrication flow
– Balanced‐force multiphase lubrication

• Demonstrations
– Film flow over patterned substrate
– Deformable slider bearing
– Multi‐drop spreading

• Summary
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Model geometry
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Model geometry
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Shell FEM elements (2.5D)

Continuum FEM elements (3D)

Model components
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Model equations:  Shell elements
• Traditionally rooted in solid‐mechanics community: 

– Structural shells developed to provide more accurate response to 
thin‐structure mechanics (membranes, cylindrical shells, plates, 
bars, etc.)

– Shells given a finite‐thickness assumed much less than the inverse 
radius of curvature

• The concepts however extend to fluid‐thermal problems 
and even species transport.

• In shell elements, gradients taken
only along the in‐plane direction.
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Model equations:  Free film
• Film profile evolution

• Pressure coupling definition
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Model equations:  Confined film flow
• Reynolds’ lubrication equation:

• Liquid flux:
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Model equations:  Level set method
• Level‐set advection equation 

governs location of liquid‐air
interface:

• Balanced‐force approach utilizes node‐based heaviside

• Curvature includes in‐plane and “height” directions
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Model equations:  Fluid-structural interactions
• Compressible Hooke’s Law

models solid deformation

• Neo‐Hookean constitutive model

• Continuum and shell elements coupled through the 
lubrication pressure
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Model equations:  Auxiliary capabilities
• Pattern‐to‐mesh tool:

– Spatially and time‐varying material parameters and external fields 
without meshing in separate regions

• Porous shells:
– Liquid uptake from lubrication layer with in‐plane transport

• Particle transport:
– Convection/diffusion of particles in thin films, with evaporation

• Energy transport:
– Shell model for convection/diffusion of heat in liquid layers

• Phase‐change models:
– Heat/friction can melt adjoining solids, transferring mass into and out of 

the liquid phase
• Interfacial / surface rheology:
• Many others ….
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Film flow over patterned substrate
• Substrate chemically patterned with areas of varying wetability
• Patterns are not meshed in, but an external field variable
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Film flow over patterned substrate
Single‐feature pattern initialized with a single 2 pL drop 

(ink‐jet deposited)

Droplet quickly spreads to cover the entire pattern
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Film flow over patterned substrate
Single‐feature pattern initialized with FOUR 2 pL drops

Resulting droplet does not conform to the pattern due to 
excess liquid deposited
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Film flow over patterned substrate
Complicated multiple‐feature patterns can also be studied

Droplets spread to cover patterned areas
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Deformable slider bearing
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Slider deforms under the strong lubrication forces



Deformable slider bearing
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Lubrication pressure is greatly decreased when
the slider is allowed to deform. 



Multi-drop squeezing
• Squeezing liquid drops

between two plates
– Top plate deformable
– Lubrication with level‐set

representation of liquid

• Initial distribution:
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Multi-drop squeezing

• Drops spread and merge under the significant squeezing 
force

• Mesh deforms under the buildup of lubrication pressure
• Gas must move quickly to get out from under plates
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Summary
• Many industrial applications have regions with thin fluid 

flows involving free boundaries.
• Reduced‐order models / shell models can greatly simplify 
computational analysis of these processes.
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