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Highlights
» Hyperspectral confocal Raman and fluorescence microscopy of pigments in
living photosynthetic cells

» Subcellular localization and quantification of multiple over-lapping pigments

» Global distribution and architecture of photosynthetic complexes in native
environment

Introduction

Photosynthetic organisms possess diverse light-harvesting antennas to use various colors
and qualities of light. For example, green algae are very efficient at utilizing most of the visible
light spectrum with the exception of the so-call “green gap” (500-600 nm). On the other hand,
cyanobacteria are often found in nature, living beneath green algae and have evolved unique
photosynthetic antennae called phycobilisomes, which absorbs the light that filters through the
algal layer above. Understanding the global distribution of natural photosynthetic pigments
from various organisms can provide the framework for the next-generation of energy
conversion systems.

Phycgbilisome

Hohmann-Marriott, MF and Blankenship, RE (2011)
Annu. Rev. Plant Biol, 62: 515 -548

Green Algae

Cyanobacteria

Experimental Parameters

Fluorescence Microscope

Custom built

488 nm laser excitation
2-photon excitation

60x Qil objective

Lateral res. = 250 nm

Axial res. = ~0.6 ym
Spectral range 490-800 nm
Spectral res. = 1-3 nm
Acquisition rate = 4100 spectra/s
Sinclair, MB., et al. (2006)
Appl. Opt. 45, 3283-3291.
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Image Analysis Flow Chart

Multivariate Curve Resolution (MCR)

» Discover & quantify all emitting species in a sample simultaneously with no a priori
knowledge

» Mathematical isolation of pure spectral components, independent concentration
maps

» Jones et al., (2008) J Chemom. 22:482-490 and references therein
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Cyanobacteria

Synechocystis sp. PCC 6803 is a model, genetically amenable cyanobacterium that use a
combination of carotenoid, phycobiliprotiens, and chlorophyll to harvest light. To explore the
distribution of these pigments in vivo, wild-type and a phycobilisome-lacking mutant were
compared.
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Robust MCR algorithms were applied to a composite image 250} n = 28 images,
that is the sum of spectral images for both wt and mutant 2. 0ol B Pal Mutant
cells and pure spectral component model was generated that ¢
accounted for 99.94% of the spectral variance. The pure 3 150}
spectral components were , autofluorescence, 2100
phycobilisomes (PBS), PSIl, PSI, and spectral broadening j% ol
Inarrowing. The analysis also generate concentration maps
that detail the spatial location and relative abundance of each 0

spectral component. In wt cells, PBS and PSIl are co- Car. Phyco.  PSIl - PSI
localized while PSI is often found in regions depleted of PBS and PSIl. Carotenoids are
located with PSIl and PSI but also around the cells periphery. The PBS-less mutant shows
dramatically altered pigment distribution. The intensity of PSIl was increased >200% and was
located in very concentrated regions while PSI remained unchanged.
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Green Algae

MCR Pure Spectral Components
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using carotenoids, Chl a, and Chl b. We investigated wt and
mutant lines of Chlamydomonas reinhardtii with truncated light-
harvesting antennas to probe how decreasing Chl content
influences global architecture of the chloroplast and pigment
distribution. MCR analysis of these cells lines yields two spectral
components representing LHCII and PSII.
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Decreasing Antenna size

Wild-type cells show typical chloroplast morphology. LHCII and  “‘rgmia: s
PSIl were generally co-located however the chloroplast periphery E_Fs

appeared to be enriched in LCHIIl and the interconnecting regions |

had more PSII. The Chl b-less mutant was largely devoid of LHCIl 5.,

and the chloroplast morphology had regions that were punctate.

The two intermediate-sized antenna mutants (RNAiI188 and <z oo}

RNAI133) had spectral component distributions similar to wt cells .I
however the overall chloroplast morphology was disorganized. In
all cells lines, the concentration of PSll is constant.
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» Hyperspectral confocal fluorescence microscopy and multivariate analysis
demonstrates the ability to distinguish the subcellular localization and identity
of multiple, overlapping photosynthetic pigments in vivo.

» Quantification and tracking of pigment distribution in wild-type and mutant cell
lines

» Segregation of PSIl and PSI in wt cells of cyanobacteria and compositional
reorganization of the photosynthetic complexes in thylakoids when
phycobilisomes are absent

» Amount of PSIl is constant in Chlamydomonas cells when light-harvesting
antenna complexes are diminished or depleted. Amount of carotenoid is
linearly related to the amount of LHCII in RNAiI mutants.
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