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Image Analysis Flow Chart
Multivariate Curve Resolution (MCR)
 Discover & quantify all emitting species in a sample simultaneously with no a priori

knowledge
 Mathematical isolation of pure spectral components, independent concentration  
maps
 Jones et al., (2008) J Chemom. 22:482-490 and references therein

 Custom built
 488 nm laser excitation
 2-photon excitation
 60x Oil objective
 Lateral res. = 250 nm
 Axial res. = ~0.6 μm
 Spectral range 490-800 nm
 Spectral res. = 1-3 nm
 Acquisition rate = 4100 spectra/s
 Sinclair, MB., et al. (2006) 

Appl. Opt. 45, 3283-3291.

Fluorescence Microscope 
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42,432 spectra
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WT 2137 Chl b -less WT 424RNAi 118RNAi 133MCR

Raw Spectral Data

Synechocystis sp. PCC 6803 is a model, genetically amenable cyanobacterium that use a
combination of carotenoid, phycobiliprotiens, and chlorophyll to harvest light. To explore the
distribution of these pigments in vivo, wild-type and a phycobilisome-lacking mutant were
compared.

Robust MCR algorithms were applied to a composite image
that is the sum of spectral images for both wt and mutant
cells and pure spectral component model was generated that
accounted for 99.94% of the spectral variance. The pure
spectral components were carotenoid, autofluorescence,
phycobilisomes (PBS), PSII, PSI, and spectral broadening
/narrowing. The analysis also generate concentration maps
that detail the spatial location and relative abundance of each
spectral component. In wt cells, PBS and PSII are co-
localized while PSI is often found in regions depleted of PBS and PSII. Carotenoids are
located with PSII and PSI but also around the cells periphery. The PBS-less mutant shows
dramatically altered pigment distribution. The intensity of PSII was increased >200% and was
located in very concentrated regions while PSI remained unchanged.

n = 28 images
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Unicellular green algae lack PBS and harness solar energy
using carotenoids, Chl a, and Chl b. We investigated wt and
mutant lines of Chlamydomonas reinhardtii with truncated light-
harvesting antennas to probe how decreasing Chl content
influences global architecture of the chloroplast and pigment
distribution. MCR analysis of these cells lines yields two spectral
components representing LHCII and PSII.

Decreasing Antenna size

MCR Pure Spectral Components

Wild-type cells show typical chloroplast morphology. LHCII and
PSII were generally co-located however the chloroplast periphery
appeared to be enriched in LCHII and the interconnecting regions
had more PSII. The Chl b-less mutant was largely devoid of LHCII
and the chloroplast morphology had regions that were punctate.
The two intermediate-sized antenna mutants (RNAi188 and
RNAi133) had spectral component distributions similar to wt cells
however the overall chloroplast morphology was disorganized. In
all cells lines, the concentration of PSII is constant.

Repeating the above analysis with a
filter that down weights the Chl emission
allows for information about the
carotenoids to become more obvious. A
linear relationship is evident between
carotenoid and LHCII in the RNAi lines
but not for the Chl b-less mutant.

Conclusions
Hyperspectral confocal fluorescence microscopy and multivariate analysis

demonstrates the ability to distinguish the subcellular localization and identity
of multiple, overlapping photosynthetic pigments in vivo.

Quantification and tracking of pigment distribution in wild-type and mutant cell
lines

Segregation of PSII and PSI in wt cells of cyanobacteria and compositional
reorganization of the photosynthetic complexes in thylakoids when
phycobilisomes are absent

Amount of PSII is constant in Chlamydomonas cells when light-harvesting
antenna complexes are diminished or depleted. Amount of carotenoid is
linearly related to the amount of LHCII in RNAi mutants.

n = 12

Introduction
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Photosynthetic organisms possess diverse light-harvesting antennas to use various colors
and qualities of light. For example, green algae are very efficient at utilizing most of the visible
light spectrum with the exception of the so-call “green gap” (500-600 nm). On the other hand,
cyanobacteria are often found in nature, living beneath green algae and have evolved unique
photosynthetic antennae called phycobilisomes, which absorbs the light that filters through the
algal layer above. Understanding the global distribution of natural photosynthetic pigments

from various organisms can provide the framework for the next-generation of energy

conversion systems.

10 μm
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Highlights
 Hyperspectral confocal Raman and fluorescence microscopy of pigments in

living photosynthetic cells

 Subcellular localization and quantification of multiple over-lapping pigments

 Global distribution and architecture of photosynthetic complexes in native
environment
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Hohmann-Marriott, MF and Blankenship, RE (2011)
Annu. Rev. Plant Biol, 62: 515 -548 
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