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"‘ " Outline

e Energy minimization AMG

— Motivation: arbitrary coarsening, flexible coarse basis function support,

accurate interpolation of arbitrary important modes,
flexible choice of norm for minimization & search space

— A = A & Krylov Methods

e Leveraging flexibility of energy minimization AMG
— weakly constrained & over-constrained
— anisotropic elasticity
» Flexible sparsity pattern & accurate rigid body mode interpolation
— extended finite elements & fracture

« Flexible pattern, flexible norm choice @ Notina
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 Construct Graph & Coarsen

 Determine P; & R; sparsity pattern

» Determine P; & R;’s coefs

 Project: A, = R; Ai,; P;
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Algorithm

minZHgHj where p. gives the i"" column of a prolongator

Idea: construct the grid transfer operator P by minimizing the energy of
each column , while enforcing constraints (sparsity pattern and specified
modes).

Input / output of energy-minimization algorithm:

sparsity " Energy-Minimization

pattern Algorithm P.'S
. - * minimize energy - coefficients
constraints _ *satisfy constraints
Advantages:

— Flexibility (input):
* arbitrary coarsening
* accept any sparsity pattern (arbitrary basis function support)
* enforce constraints: important modes requiring accurate interpolation

* choice of norm for minimization and search space Sandia

National
— Robustness ; labunrgtamies



Find P=[p, p,---p,,] that

'
}' Energy-Minimization

(P,
minimizes 2.[Pi[.in some space subject to X| i [=g
K N (T \PnJ
T A Tl p Constraints enforce exact
Te=A = A X IO: _lo interpolation of null space,
/\ A 0, e.g. AB =0 => B €Range(P)
~ X A g
A/ K
»PK
/ (11 77 \ -
Solve” AP=0 A (Py-4P) =0 with X »Py« =g

1) with minimization algorithm
\2) In space satisfying constraints

/

X»AP« =0
Q AMP,K, (Q A2ZPPK, ...

Q=(I-XT(XX"-1X)



# CG minimization

/Lemma: Let A be SPD and apply CG to \
QAQ »AP« = Q A Q »Py«

with O initial guess, then CG computes

»AP, & =argmin [»P,«||, where P;=P,- AP,

MAP, KeXk,
S i /

Proof. MAP, < =argmin [»P.« - »AP «H
M AP. «qul

=argmin ot H»AP «H <>>AP &K, WP «>
M AP, Kek;

= arg min [»P, «HQ +H»AP «H <>>AP «,MP «>
WAP, KeK;

= argmin [P, « = »AP. «HA
AP, KeK;

Sandia
Corollary: CG solution is unigue @ Laboravis
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# GMRES minimization

/Lemma: Let A be nonsingular and apply GMRES to \
Q A »AP« = Q A »Py« (*)
with O initial guess, then GMRES computes
MAP, « = arg min [»P, | where P; =Py- AP,

\_which is unique. o\ /
Proof.
| || »AP;« ||,
Define Sand S, such that
T T T T
QS=0, S,5,=0Q, SS,=1, $S =1, $S, =I

Use properties of GMRES applied to nonsingular system

T ~ T ~

SJ_ ASJ_y = SJ_A»PO« ()

Pre-multiplication of (**) & associated Kyrlov space by S,
reveal equivalence with (*).



} A = AT (weakly constrained)

» Use GMRES to “solve” AP =0 with only constraint P = [P; I.]"
e Use GMRES to “solve” RA =0 with only constraint R = [R; 1.]

[Aff Ar ](Uf j . [bf j A
A A 7
o O A Al p YY) (B ¢ points
R A, A.)\O Y. Rb
e ~ —
[Aff E fcj
ch AH

Decouples if EfC:(Aff AfC)P & ECf:R[ﬁ:fj are 0.

f

= Q »APK = »RAKQ

. c-point
Consider

Then




#‘ Exploiting Flexibility

Coarsening, sparsity pattern, p; choice are often tied together within
many AMG methods

Example: smoothed aggregation
1) Aggregate: 4, U A4 ={1, ..., |V}, 4, N A4, =@, diam(4;)~3

2) P, =BlkDiag( R,; B) = 3 _ Graph of A

3)P=P,+ oD AP,

e ColDim(B) = ColDim( B;)
« sparsity pattern is |A| P,
« Should have A P, B, = 0 where B, is coarse representation of B (modes

requiring accurate interpolation)
= AB=0(asP,B,=B)

Sandia
We will also exploit ability to change norm. @ s
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P ‘ Motivation: Importance of Ice Fracture

jective: Employ parallel computers to study the fracture of land ice
to better understand how it affects global climate change. In particular
the collapse mechanism of ice shelves,

the calving of large icebergs, and
the role of fracture in the delivery of water to the bed of ice sheets.

Macro scale - rifts will be
represented by cracks (XFEM)

ice shelves in Antarctica
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lassical FEM approach to fracture mechanics
Mesh conforms to crack boundaries

Crack propagation - remeshing at each step

* Requires double-nodes for crack opening
and fine mesh for tip singularities

eXtended Finite Element Method (XFEM)*
* Base mesh independent of crack geometry

Crack propagation - adding “enriched” DOF
with special basis functions to existing nodes
* Crack geometry defined through levelsets

Discontinuities and singularities captured
through special basis functions (enrichments)

Enrichments have local support

* Belytschko & Black (1999), Moes et al. (1999)

Computational Modeling of Fracture

XFEM mesh

Stresses in y direction when bottom
edge fixed and uniform traction
applied on top edge in y direction
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. ‘ ) &2 COLUMBIA UNIVERSITY
— XFEM FormUIatlon IN THE CITY OF NEW YORK

Displacement trial function (shifted basis form.):
" 5 o
ul(x) = ZN; (x)ug
=1
L
=+ Np(x)(H(x) - H(x1,)) a,
i=1
nf g
=+ > N, Y (Fa0 = Fi (x4,) ) br
i—=1 J=1
¥ Jump enrichment:
1 above I'..
H(x) =
—1 below I'._
s Tip enrichments:
( J=1 J=2 J 4 )

’l'—""‘.\"—'lx',i'_";\‘—'b,‘I .,

3 J
‘ . (8
EFy(r,0) =1 \,./?_'5111(2) \/FCO&( ) i"blﬂ( )bln{ﬂ PCD‘a( )bll‘l ) 2
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A

XFEM Linear system

. i . XFEM mesh
Strain-displacement relations:

Bt = TG'symD\TE

enr emnr

» Symmetric gradient operator applied to
enriched basis-function matrix

IWeak form

Stiffness matrix:

A.= [, (B:,,) DB, dQ,

enr enr

* Numerical quadrature for stiffness matrix

Assembly
Sparsity pattern of A Sparsity pattern of A,
XFEM Linear System:

Jd'l]""il" AT‘I‘ u?" f]"‘

» Enriched DOF grouped together at the end in u,

* A,, small compared to A, for relatively small
number of cracks
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» Dense blocks in A, correspond to tip functions
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Schur Complement

Zoom on
A A | 1row
A A, //
o flrmflggggflrr
—

AMG Appliedto S

« S: small entries dropped from S

» Aggregation & SparsityPattern( A, .* S)

» Standard AMG (energy min.)

Mesh Scalar AMG | Variable Block AMG | AMG on Schur Complement
3030 180 &9 10
60 x 60 - 103 11
90x 90 - 114 11
120120 - 126 12

)

Sandia
National
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@ COLUMBIA UNIVERSITY

_ ..
i ; ImpIICIt Schur Complement IN THE CITY OF NEW YORK

Lemma: Schur complement/projection commutativity. Let P be interpolation associated with a 2-
level AMG method applied to S. Define a 2-level AMG method for the full 2x2 system by

P 0

0 I

@en, projected Schur complement & Schur complenent of projected full system are equivalent. /

Schur Complement of Coarse-level 2x2 matrix

Coarsening of Schur Complement [ P 0
-1 P =
S = Ar:l‘ - A?":I!Arsc A?I’T" 0 I
. T g _ T _ —1 : :T
B P .SJ.D — P (A'r']" JL'!“J.I!‘I!‘;x::;z: AI?) P _ _ P 0 Arr Ar‘:r P D
— PTAP =

PTA..P PTA,

AP Ay
—— g = -PTA?"I‘P_ PTATTA;;ATT"P

. . : . Sandia
Can be generalized for multilevel via recursion. @ National
Laboratories



@ COLUMBIA UNIVERSITY

; ' Implicit Schur complement

Le mma: Let relaxation on Schur complement & on full 2x2 system be defined by

reduced system: full system:
Uy — up + M1, i, <+~ AZMf.-— Agi,)
—1
. ~ . N M, 0 r,
f":'.r f":.r ’1:{:r ’1:1::1: 'F‘I'
Tkhen, iterates are equivalent if initial guesses and rhs chosen consistently. /

s

Thm: Recursively define interpolation & relaxation as in 2 previous Lemma to construct two
AMG methods: one applied to S and one applied to the full 2x2 system.

Then, AMG iterates are equivalent if fine level initial guess and rhs chosen consistently.

. )

—> Multigrid solver can use implicit Schur complement, and never form S explicitly.

_ P 0
Recall P = { }

0 I

Sandia
. .. National
Caveat: P & M, must be computable without an explicit form of S !! @ laboatres



i ' @C_OLU_MBIA UNIVERSITY
w Approximation & Implicit Schur Complements

Avoid explict S when building P

* using levelsets & 0 if crack crossing
coordinates define A (i, j) =
A.(,]) otherwise
= run standard energy minimization, but
Use A, for aggregation & sparsity pattern
Use A, for energy definition

Less expensive smoother
— Approximate ( [k])‘l via Gauss-Seidel
— Approximate (M[k])—lwa Gauss-Seidel

eOne GSsweepon Au =f —A U
eOne GSsweep on Au =f —Au,
eOne GSsweep on Au =f —A U @ S,

Laboratories
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| ' Approximating AMG on S

P(C G) — Prolongator generated via
! energy minimization

L . G : G with crack crossings removed
Definition Sparsity
of energy Pattern M Relaxation smoother for Schur complement
R, : Smoother for regular dof
R, : Smoother for enriched dof
Schur Hybrid
P(5,5) | P(A.S) | P(Ar,Ay) | P(Ar,AL) | P(A, A
Mesh Mepr=GS on 8 Ry =GSon 5§ Ry =GS on Apr Ry =GS on Apr
Ry =Direct Solve | Hy =Direct Solve | Ry =G5S on Azr
30 x 30 10 11 14 18 15
60 x 60 11 11 13 17 17
90 x 90 11 11 13 17 17
120 x 120 12 11 13 17 17
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| ' Numerical Results...
est Cases:

» Both edge cracks and interior cracks considered
CG preconditioned with AMG

e VBIKAMG: block form of standard AMG with 1 pre + 1 post block sym(GS)
. Hybrid Standard AMG: P(A,, , A, ) with 1 pre + 1 post sym(GS) on 2x2 system
. Quasi-AMG: P(A, , A, ) with 1 pre + 1 post sym(GS) on 2x2 system
Single Propagating Crack Two Cracks
(a) Case la (b) Case 1b (c) Case lc (d) Case 2a (e) Case 2b
Six Cracks Inclined Cracks

(f) Case 3a (g) Case 3b (h) Case 4 (i) Case 5a (j) Case 5b



d_ﬂ COLUMBIA UNIVERSITY

; ' Numerical ReSUItS_ . IN THE CITY OF NEW YORK

VBIk Hybrid Quasi Mesh Case | VBIlk Hybrid Cluasi
AMG Standard | AMG AMG Standard | AMG :
# of full complexity (1,1)
28 13 / 11 302 154 - / 16 2 1673 1.607
. 20 15 10 602 3 127 - 14 3 1.815 1.716
a 27 T ' 12 g2 @ - - a5 3 1.65 1.583
37 19 12 12072 - - 21 4 1.699 1.621
24 22 11 302 - - 18
24 20 12 602 - - 21
1b 3b
36 35 14 902 . . 28
35 41 13 12072 - . 22
31 31 13 302 116 107 15
. 32 43 14 02 . 102 154 21
¢ AT 53 16 902 142 190 23
45 61 15 1202 151 . 22
64 57 15 302 80 76 12
) 52 80 14 602 - 01 107 13
. 87 08 20 00?2 “ 124 131 15
02 113 18 1202 140 151 15
73 50 16 302 80 81 16
on 72 81 \ 17 602 o 103 116 15 _
o7 104 21 002 134 143 7 @ S,
95 122 19 1202 151 165 16 Laboratories




#‘ Exploiting Flexibility

Coarsening, sparsity pattern, p; choice are often tied together within
many AMG methods

Example: smoothed aggregation

1) Aggregate: 4, U A4 ={1, ..., |VI}, 4, N A, =@, diam(4;)~3

2) Po=BlkDiag(R.i B) = - ColDim(P)=3Ny | Grann of &
= smaller search space
3)P=P,+ oD1AP, = lower nnz(A.)

|
- sparsity pattern is |A| P,
« Should have A P, B, = 0 where B, is coarse representation of B (modes
requiring accurate interpolation)
= AB=0(asP,B,=B)

Sandia
We will also exploit ability to change norm. @ s
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Weakly Constrained Case

— For 1D Laplace problems, constraining only at root points corresponds to

linear interpolation:

1
CEF-
TE-
14
[ o
L]

|
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2 basis functions

A

C-points

I 1
| |
15 18

— For 2D Laplace problems, constant vector is not accurately interpolated:

basis function

O I
(A
g e O

(1703 R

interpolation of constant vector ) Sandia
(plotting of P.1) National
‘e Laboratories
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Fully constrained

Problematic if constraints do not capture physics exact
Example: (g(x) uy)y = f with two constraints. IfB ,=1,B ,=x, interpolation
then constants and linears are exactly interpolated Vectors

nnz(P,)<2= fully constrained = linear interpolation independent of g( x)

g=1 3 g=1

0s

g~

04 -

Problem: fully constraining ignores energy:
— Jumps are not captured in P
— Left and right regions connected within coarse level due to

g : E ; ] 1 Sandia
mterpolatlon acCross epsnon region National
Laboratories



T;,.'Smoothed Aggregation & General Energy

Minimization
moothed Aggregation General Energy Minimization
— 1 step minimization — multi-step minimization
— No need to apply Q ... — No restriction on AP, .
... but A P, B, must equal 0. — Any sparsity pattern
— almost fixed sparsity pattern — Arbitrary # DOFs per node

governed by [ A || Py |
— # DOFs per node = dim{N}

* Anisotropic problems require anisotropic coarsening and sparsity pattern to
mimic semi-coarsening -

e -‘_1_1-“" ¥ ) ) : "“'-%;ém I
This is normally accomplished by defined A where small (weak entries) are
dropped during prolongator construction @ ki

Laboratories
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}'Smoothed Aggregation & General Energy

Minimization
moothed Aggregation General Energy Minimization
— 1 step minimization — multi-step minimization
— No need to apply Q ... — No restriction on-‘.ﬁ_ PO
.. but A P, B, must equal 0. — Any sparsity pattern
— almost fixed sparsity pattern — Arbitrary # DOFs per node

governed by [A | | P, |
— # DOFs per node = dim{N}

For elasticity:

— Proper A such that A P, B_=0 with weak connections dropped is non-
obvious

— Anisotropic coarsening gives small aggregates = high operator
complexities

— 3 DOFs/node on finest level ...
... but dim{N} = 6 for 3D elasticity = 6 DOFs/node= even higher

complexities
@ Sandia
National
Laboratories



F 2 iataaien « St
Energy-minimization - Elasticity

Lots of choices. We focus on:

Does smaller search space limit

3 DOFs/nodes on the coarse grid - quality of interpolation?

— N: 6 rigid body modes (3 translations & 3 rotations)
— CG to solve A P = 0 (effectively defines energy)
— P, & sparsity pattern are smoothed aggregation inspired
» Coarse nullspace defined by injection of fine nullspace @ root nodes
* Initial Guess: PsaD+XT(XXT)_1(B_XPSGU)
where p__ is smoothed aggregation P, for just
translations

* Sparsity Pattern: | A | |Pswo | except @ root points which are
constrained to have only 1 nnz/row associated with injection

N > Avoids linear dependency issues
— A defined using distance Laplacian + dropping for sparsity pattern
— No need for AB=0 )
— A is still used to define energy (as opposed to A)

() e
National
Laboratories
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Experiments

* 3D Linear Elasticity, plan stress
« AMG accelerate by CG, stopping criterion ||r

<101

relatiw.,re| |

* Influence of the number of energy-minimization steps to the
convergence.

Problem size: 303. Stretch factor: €

# iter. £=1 £=10 g =100
0 17 19 21
1 12 12 14
2 11 12 13
5 11 12 13
20 11 12 13

* laboratories
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Experiments

« Comparison with Smoothed-Aggregation:

— SA: 6 DOFs/node
— Energy-Minimization: 3 DOFs/node, 6 nullspace vectors

Riesh =] e = 10 e = 100

SA Emin SA Emin SA Emin
103 6 1.30 | 7 1.07| 8 281 | 8 12210 9 421 | 8 1.24
155 8 1.19 | 9 1.05 || 10 2.32 | 10 1.15 || 12 254 | 12 1.16
207 8 1.2/ 19 1.06 |10 259 | 9 1.18 || 13 3.05 | 10 1.20
253 9 1.26 | 8 1.07 || 11 276 | 9 1.20 || 14 3.04 | 10 1.20
30° 10 7.22 |11 1.05 || 12 252 |12 1.17 || 15 3.06 | 13 1.19
35° 10 1.24 |10 1.06 || 12 266 | 12 1.18 || 16 3.03 | 13 1.19
402 10 .26 | 9 1.06 || 12 277 | 12 1.19 || 16 3.21 | 11 1.21

Tab. : Iteration count and complexity (lower complexity = faster run time) for SA
and energy minimization for various mesh sizes and stretch factors.

Z,- nnz (A;)

complexity:

nnz(A)

Laboratories
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}j Conclusions

» Krylov minimization can be used to generate “energy” minimizing
prolongators/restrictors for symmetric & non-symmetric systems

— CG, GMRES

 Some linear algebra issues ...

« Flexibility
— Coarsening, e.g. F/C aggregation, irregular
— Grid transfer sparsity patterns
— Norms defining energy

* gparsity pattern & energy norm flexibility used to XFEM
ice fracture problem
* gparsity pattern and dimension of P flexibility used for anisotropic elasticity

@ Sandia
National
Laboratories





