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• Energy minimization AMG

– Motivation:  arbitrary coarsening,  flexible coarse basis function support,    

. accurate interpolation of  arbitrary important modes, 

. flexible choice of norm for minimization & search space

– A  A & Krylov Methods

• Leveraging flexibility of energy minimization AMG

– weakly constrained & over-constrained

– anisotropic elasticity

• Flexible sparsity pattern & accurate rigid body mode interpolation

– extended finite elements & fracture

• Flexible pattern, flexible norm choice

Outline



What is   Multigrid ?

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai+1 Pi

• Construct Graph & Coarsen

Solve A3u3=f3

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2. 

Set u3 = u3 + P2u2.  Smooth A3u3=f3. 

P2 R2

P1 R1

• Determine Pi & Ri sparsity pattern 
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Find                              that

minimizes            in some space
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“Solve”  AP = 0
1) with minimization algorithm
2) in space satisfying constraints 

if  e = A Constraints enforce exact 
interpolation of null space, 
e.g. A B = 0  B    Range(P)

Q Â »P0«, (Q Â)2 »P0«, …

A (P0 - P) = 0  with  X »P0« = g

Q = ( I – XT(X XT) -1 X )  

X »P« = 0  



CG minimization

Lemma:  Let A be SPD and apply CG to 
Q Â Q  »P«  = Q Â Q »P0«

with 0 initial guess, then CG computes
where  Pi = P0 -  Pi

Proof.

Corollary: CG solution is unique
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GMRES minimization

Lemma:  Let A be nonsingular and apply GMRES to 
Q Â   »P«  = Q Â  »P0« (*)

with 0 initial guess, then GMRES computes
where Pi = P0 -  Pi

which is unique. 

Proof.
Define such that 

Use properties of GMRES applied to nonsingular system 

(**)
Pre-multiplication of (**) & associated Kyrlov space by
reveal equivalence with (*).

AQA
T

i

ˆˆi
P

i «»«» P
«»
minargP
i K



ISISISQSQS
TTTT

  S,S,S,S,0
S andS

«» 0
ˆSˆ PASyAS

TT

 
S

|| »APi« ||Q



A  AT    (weakly constrained)

Consider

Then

Decouples  if                                                                     are 0.
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• Use GMRES to “solve” AP = 0 with only constraint P = [Pf Ic ]T

• Use GMRES to “solve” RA = 0 with only constraint R = [Rf Ic ]

= Q »AP« = »RA«Q



Exploiting Flexibility

Coarsening, sparsity pattern, pij choice are often tied together within 
many AMG methods

Example: smoothed aggregation
1) Aggregate: Ai U Aj = {1, … , |V|}, Ai ∩ Aj = Ø , diam(Ai ) 3

2) P0 = BlkDiag( R i B ) =

3) P = P0 + D-1 A P0

• ColDim(B) = ColDim( B i )
• sparsity pattern is  |A| P0 
• Should have A P0 Bc = 0 where Bc is coarse representation of B (modes 

requiring accurate interpolation)
 A B = 0 (as P0 Bc = B)
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Coarsening, sparsity pattern, pij choice are often tied together within 
many AMG methods

Example: smoothed aggregation
1) Aggregate: Ai U Aj = {1, … , |V|}, Ai ∩ Aj = Ø , diam(Ai ) 3

2) P0 = BlkDiag( R i B ) =

3) P = P0 + D-1 Ã P0

• ColDim(B) = ColDim( B i )
• sparsity pattern is  |Ã| P0 
• Should have Ã P0 Bc = 0 where Bc is coarse representation of B (modes 

requiring accurate interpolation)
 Ã B = 0 (as P0 Bc = B)

We will also exploit ability to change norm.

Graph of Ã



Objective: Employ parallel computers to study the fracture of land ice 
to better understand how it affects global climate change. In particular
• the collapse mechanism of ice shelves,
• the calving of large icebergs, and 
• the role of fracture in the delivery of water to the bed of ice sheets. 

ice shelves in Antarctica

Larsen B diminishing shelf
1998-2002

Wilkins ice shelf
Recent 2008 collapse

Motivation: Importance of Ice Fracture 

Macro scale ‐ rifts will be 
represented by cracks (XFEM)

Amery ice shelf

Micro & Meso scales ‐ ice material law 
given by viscoelastic damage model



Amery ice shelf



Computational Modeling of Fracture

Classical FEM approach to fracture mechanics
• Mesh conforms to crack boundaries
• Crack propagation  remeshing at each step

• Requires double-nodes for crack opening 
and fine mesh for tip singularities

eXtended Finite Element Method (XFEM)*
• Base mesh independent of crack geometry
• Crack propagation  adding “enriched” DOF 

with special basis functions to existing nodes
• Crack geometry defined through levelsets
• Discontinuities and singularities captured 

through special basis functions (enrichments)
• Enrichments have local support

* Belytschko & Black (1999), Moes et al. (1999)

XFEM mesh

Stresses in y direction when bottom 
edge fixed and uniform traction 

applied on top edge in y direction  



XFEM Formulation

Displacement trial function (shifted basis form.):



XFEM Linear system

• Enriched DOF grouped together at the end in ux

• Axx small compared to Arr for relatively small 
number of cracks
• Dense blocks in Axx correspond to tip functions

Sparsity pattern of A Sparsity pattern of Axx

XFEM mesh

• Numerical quadrature for stiffness matrix

• Symmetric gradient operator applied to 
enriched basis-function matrix

Weak form

Assembly



Schur Complement
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• Ŝ: small entries dropped from S
• Aggregation & SparsityPattern( Arr .* Ŝ )
• Standard AMG (energy min.)

AMG Applied to S

Zoom on 
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Implicit Schur complement

Coarsening of Schur Complement

Schur Complement of Coarse-level  2x2 matrix 

Can be generalized for multilevel via recursion. 

Lemma:  Schur complement/projection commutativity. Let P be interpolation associated with a 2-
……level AMG method applied to S. Define a 2-level AMG method for the full 2x2 system by

Then,  projected Schur complement & Schur complenent of projected full system are equivalent. 



Lemma:  Let relaxation on Schur complement & on full 2x2 system be defined by 

Then,  iterates are equivalent if initial guesses and rhs chosen consistently.

Implicit Schur complement

reduced system: full system:

 Multigrid solver can use implicit Schur complement, and never form S explicitly.

Recall

Thm:  Recursively define interpolation & relaxation as in 2 previous Lemma to construct two 
AMG methods: one applied to S and one applied to the full 2x2 system.

Then, AMG iterates are equivalent if fine level initial guess and rhs chosen consistently. 

Caveat:  P & Mrr must be computable without an explicit form of S !!



Approximation & Implicit Schur Complements

Avoid explict S when building P
• using levelsets & 
• coordinates define  

 run standard energy minimization, but 
Use Ârr for aggregation & sparsity pattern
Use Arr for energy definition

Less expensive smoother
– Approximate             via Gauss-Seidel
– Approximate             via Gauss-Seidel
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Approximating AMG on S

P(C,G) = Prolongator generated via 
energy minimization

Definition
of energy

Sparsity 
Pattern



Numerical Results…

Single Propagating Crack Two Cracks

Six Cracks Inclined Cracks

Test Cases:
• Both edge cracks and interior cracks considered
• CG preconditioned with AMG
• VBlk AMG:                    block form of standard AMG with 1 pre + 1 post block sym(GS)
• Hybrid Standard AMG: P(Arr , Arr ) with 1 pre + 1 post sym(GS) on 2x2 system
• Quasi-AMG:                  P(Arr , Ârr ) with 1 pre + 1 post sym(GS) on 2x2 system



Numerical Results…

# of 
levels

full complexity (1,1) 
complexity

2 1.673 1.607

3 1.815 1.716

3 1.65 1.583

4 1.699 1.621



Exploiting Flexibility

Coarsening, sparsity pattern, pij choice are often tied together within 
many AMG methods

Example: smoothed aggregation
1) Aggregate: Ai U Aj = {1, … , |V|}, Ai ∩ Aj = Ø , diam(Ai ) 3

2) P0 = BlkDiag( R i B ) =

3) P = P0 + D-1 A P0

• ColDim(B) = ColDim( B i )
• sparsity pattern is  |A| P0 
• Should have A P0 Bc = 0 where Bc is coarse representation of B (modes 

requiring accurate interpolation)
 A B = 0 (as P0 Bc = B)
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Coarsening, sparsity pattern, pij choice are often tied together within 
many AMG methods

Example: smoothed aggregation
1) Aggregate: Ai U Aj = {1, … , |V|}, Ai ∩ Aj = Ø , diam(Ai ) 3

2) P0 = BlkDiag( R i B ) =

3) P = P0 + D-1 Ã P0

• ColDim(B) = ColDim( B i )  ColDim(P) = ColDim(B) * NA = 6 * NA
• sparsity pattern is  |Ã| P0 
• Should have Ã P0 Bc = 0 where Bc is coarse representation of B (modes 

requiring accurate interpolation)
 Ã B = 0 (as P0 Bc = B)

We will also exploit ability to change norm.

Graph of ÃColDim(P) = 3 NA
 smaller search space
 lower nnz(AH)





exact 
interpolation 
vectors













Conclusions

• Krylov minimization can be used to generate “energy” minimizing 
prolongators/restrictors for symmetric & non-symmetric systems
– CG, GMRES

• Some linear algebra issues …

• Flexibility
– Coarsening, e.g. F/C aggregation, irregular
– Grid transfer sparsity patterns
– Norms defining energy

* sparsity pattern & energy norm flexibility used to XFEM 
ice fracture problem

* sparsity pattern and dimension of P flexibility used for anisotropic elasticity




