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Previous approaches for mixed material 
cells are problematic for some physics: 

• Multi-material problems with significant 
vorticity/distortion: 
– Lagrangian approaches tangle. 
– Arbitrary Lagrangian Eulerian (ALE) can’t 

merge materials without topology changes. 
– Eulerian approach produces mixed-cells. 

• Current mixed-cell approaches generally 
assume materials are “well” mixed: 
– Assume “equilibrated” state 
– Single velocity/displacement field 
– Lack of intra-element interfaces 
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Lagrangian step requires closure model(s) 
for mixed-cell properties: 
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Why X-FEM: 

• Mechanism for intra-element material interfaces. 
• Retains base FEM convergence properties. 
• Large literature base for X-FEM in context of large 
deformation, explicit lagrangian mechanics. 

• Beginning to be adapted to “operator-split” multi-
material eulerian solid-mechanics [VB06; DLZRM10]: 
– explicit (central difference) lagrangian solve, 
–  followed by data transfer “remap” to “better” mesh. 
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Goal is to develop capability for (unmixed) 
intra-element material physics… 

• as a surface phenomenon 
• with merging interfaces and fixed mesh topologies 
• distinct velocity/displacement fields per material 
• while maintaining advantages of current explicit-
dynamics code-base 

• and capitalizing on existing infrastructure. 
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We follow the XFEM decomposition 
approach [HH04, SAB06] … 

Multi-material enriched element equivalent to multiple 
single-material elements: 
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Data transfer can be accomplished in a 
number of ways: 

• With the goal of preserving some key features: 
– Conserve mass, momentum and internal energy. 
– Do not create new minima and maxima (TVD). 
– Volume fractions sum to one after remap. 

• Options include: 
–  Interpolation (violates conservation) [DLZRM10] 
– Projection methods (violates conservation and TVD) 
– Geometric intersection with Van Leer limiting 

•  conservation is built in. 
•  limiting controls production of minima and maxima. 
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f x( ) = fe + x − xe( )tGe +
1
2
x − xe( )t He x − xe( )t − χ

     provides conservation: 

Geometric intersection with Van Leer 
limiting in two dimensions (1): 

• Taylor Series provides functional form on donor mesh: 
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• Gradients/hessians computed as [DK87]: 

 
Gn =

1
An

fe∫ dSn

Ge =
1
Ae

An∩en∑ Gn

 
H e =

1
Ae

Gn∫ dSe

first- 
second- third-order 

dSe

dSn



Geometric intersection with Van Leer 
limiting in two dimensions (2): 

• Scale gradient to enforce monotonicity: 
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Geometric intersection with Van Leer 
limiting in two dimensions (3): 

• Integrate function over donor-acceptor intersection 
element and accumulate to acceptor [D83]. 
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• Further restrict integral 
to filled region of donor 
mesh. 



Use interface reconstruction rather than 
level-set approach: [DVMR08] 

• Interfaces rebuilt after remap step. 
• Using VOF approach: 

– Compute material volume-fraction 
gradients. 

– Reposition interface along normal 
to match volume. 

– Remove material from cell.  
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Explicit Central Difference discretization 
requires care for stability … 

• and constraint enforcement between XFEM interfaces: 
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•  lumped mass matrix with uniform partitioning of 
element mass to nodes [MRMCB08] 

• matched with gradient operator mean quadrature
[SAB06] B = B
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We understand the issues but use “node-
segment-like” lagrange multipliers… 

… in an attempt to: 
– minimize interpenetration of XFEM interfaces, 
– and retain a finite stable time-step. 

• Other options for explicit XFEM: 
– Merge (small time step) [VB06] 
– Mortar lagrange multiplier (not LBB for XFEM) 
– Penalty (overlap, mass modifications) [DLZRM10] 
– Nitsche’s (overlap, mass modifications) [AHD11] 
– Vital Vertices LM (quad robustness) [BMW09, HAD11] 

… so we use it anyway for it’s practicality and 
economy. 
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Forward Increment Lagrange Multiplier 
approach [CTK91] … 
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Algorithm: 

No additional limitations to stable 
time step [DLZRM10,VMR10] 
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Provides enhanced results for simple one-
dimensional problem [CTK91]… 

15 



… and simple two-dimensional problems … 
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… and accuracy comparable to Lagrangian 
for more complex problems … 

17 

h
2
h
4

Taylor anvil 
[VB06] 



… as well as comparable rates of 
convergence … 
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Standard eulerian 
converges to a 
different solution. 



Convergence in height for first- 
and second-order remap. 

For this problem remap order has little effect 
on accuracy/rate-of-convergence … 
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Density reconstructions 
at early time. 
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More complicated problems demonstrate the 
utility/advantages of the approach … 
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Whipple Shield used in 
satellite protection. 

Low-velocity impact 
preditions compare well. 



More complicated problems demonstrate the 
utility/advantages of the approach … 
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High-velocity impact difficult for lagrangian and 
unrealistic for eulerian are possible with XFEM. 

Whipple Shield used in 
satellite protection. 



Conclusions: 
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• Developing capability to more accurately treat multi-
material cells in an “operator-split” ALE context. 

• Capability builds on existing ALE infrastructure. 
• Uses XFEM ideas to provide provide unique 
kinematics for each material in a cell. 

• Uses interface reconstruction rather than level-set 
ideas to address conservation and complex 
interface intersections. 

• Employs higher-order, conservative remapping 
algorithms. Advantages are unclear at this point. 

• Demonstrates good convergence/accuracy for 
problems investigated here. 
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