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evious approaches for mixed material
cells are problematic for some physics:

« Multi-material problems with significant
vorticity/distortion:
— Lagrangian approaches tangle.

— Arbitrary Lagrangian Eulerian (ALE) can’t
merge materials without topology changes.

— Eulerian approach produces mixed-cells.
 Current mixed-cell approaches generally

assume materials are “well” mixed:

— Assume “equilibrated” state

— Single velocity/displacement field

— Lack of intra-element interfaces
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A
%grangian step requires closure model(s)

for mixed-cell properties:

n _ -1 n no__ t n
a"=M"| £, +1, - [ B'o"|

mat 2

Vn+1/2 — Vn—1/2 +Atan Xn+1 — Xn +Al_vn+1/2

Dn+1/2 — %(Lt + L

)n+1/2

D, = F(D,etc...)

m m

o' =M, (08Dl etc..) =" +Ktm_lj ol DI
Q

o= Q(Gm,etc...)

Problem Expected Predicted

v v v




>
| Why X-FEM:

 Mechanism for intra-element material interfaces.
* Retains base FEM convergence properties.

« Large literature base for X-FEM in context of large
deformation, explicit lagrangian mechanics.

« Beginning to be adapted to “operator-split” multi-
material eulerian solid-mechanics [VB06; DLZRM10]:
— explicit (central difference) lagrangian solve,

— followed by data transfer “remap” to “better” mesh.



V‘s '
#al is to develop capability for (unmixed)

intra-element material physics...

* as a surface phenomenon
 with merging interfaces and fixed mesh topologies
« distinct velocity/displacement fields per material

« while maintaining advantages of current explicit-
dynamics code-base

 and capitalizing on existing infrastructure.
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}' We follow the XFEM decomposition

approach [HHO04, SABOG6] ...

Multi-material enriched element equivalent to multiple
single-material elements:
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4 ata transfer can be accomplished in a
number of ways:

« With the goal of preserving some key features:
— Conserve mass, momentum and internal energy.
— Do not create new minima and maxima (TVD).

— Volume fractions sum to one after remap.

» Options include:
— Interpolation (violates conservation) [DLZRM10]
— Projection methods (violates conservation and TVD)

— Geometric intersection with Van Leer limiting
* conservation is built in.
* limiting controls production of minima and maxima.



*‘ Geometric intersection with Van Leer

limiting in two dimensions (1):

 Taylor Series provides functional form on donor mesh:
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x provides conservation: third-order
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eometric intersection with Van Leer
limiting in two dimensions (2):

=2

« Scale gradient to enforce monotonicity:
x)=f,+8g(x-x,) G,
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Geometric intersection with Van Leer

limiting in two dimensions (3):

* Integrate function over donor-acceptor intersection
element and accumulate to acceptor [D83]
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level-set approach: [DVMRO08]

A
%se interface reconstruction rather than

* Interfaces rebuilt after remap step.

« Using VOF approach:

— Compute material volume-fraction
gradients.

— Reposition interface along normal
|—: to match volume.

— Remove material from cell. n,
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#xplicit Central Difference discretization

requires care for stability ...

Ma" =1 +1

int

* lumped mass matrix with uniform partitioning of
element mass to nodes [MRMCBO08]

M° =(p AV /41,
* matched with gradient operator mean quadrature
[SABOG] B[ Baa/a
Q, ¢

e and constraint enforcement between XFEM interfaces:
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ﬁe understand the issues but use “node-

segment-like” lagrange multipliers...

... In an attempt to:
— minimize interpenetration of XFEM interfaces,
— and retain a finite stable time-step.
» Other options for explicit XFEM:
— Merge (small time step) [VBOG6]
— Mortar lagrange multiplier (not LBB for XFEM)
— Penalty (overlap, mass modifications) [DLZRM10]
— Nitsche’s (overlap, mass modifications) [AHD11]
— Vital Vertices LM (quad robustness) [BMW09, HAD11]

... SO we use it anyway for it's practicality and
economy.
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A
}Forward Increment Lagrange Multiplier

approach [CTK91] ...
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No additional limitations to stable
time step [DLZRM10,VMR10]
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vides enhanced results for simple one-
dimensional problem [CTK91]...
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... and simple two-dimensional problems ...

“Rigid” block sliding
frictionlessly between

3 material

€ " . 7
rigid” platens. cells
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meSh-aIigned VEL_X
e+l p—r—r—r———7——+—+— 77—
_ p -
1e-01 ‘I - P; E

Excellent agreement for
momentum compared
to analytical solution.
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A
%nd accuracy comparable to Lagrangian
for more complex problems ...

Taylor anvil
[VBOOG]
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... as well as comparable rates of

convergence ...

O Lagrangian
+ Eulerian X-FEM

Standard eulerian

converges to a
different solution.
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A 4
%this problem remap order has little effect

on accuracy/rate-of-convergence ...

Convergence in height for first- on <
and second-order remap. o
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L e e at early time.
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e complicated problems demonstrate the
utility/advantages of the approach ...

Whipple Shield used in
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Low-velocity impact
preditions compare well.
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We complicated problems demonstrate the

utility/advantages of the approach ...

Whipple Shield used in
satellite protection.

1.0e-02

1.0e-04

High-velocity impact difficult for lagrangian and
unrealistic for eulerian are possible with XFEM.
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Conclusions:

» Developing capability to more accurately treat multi-
material cells in an “operator-split” ALE context.

 Capability builds on existing ALE infrastructure.

* Uses XFEM ideas to provide provide unique
kinematics for each material in a cell.

 Uses interface reconstruction rather than level-set
Ideas to address conservation and complex
interface intersections.

* Employs higher-order, conservative remapping
algorithms. Advantages are unclear at this point.

« Demonstrates good convergence/accuracy for
problems investigated here.
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