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The knowledge gained will enable computational models to optimize algae growth in 
real‐world conditions with varying temperature, light, and salinity over the course of a 
day or year. 

Through a validated constitutive growth model, algae performance and production 
efficiency can be predicted for various growth conditions, including different weather 
climates and reactor designs.  The model will enable improved design and algae strain 
selections.

Why Algae?
•Algae‐based biofuels are a promising component to a long‐term renewable energy solution
•Algae can be engineered or stressed to produce large quantities of oil with favorable 
characteristics for biodiesel

•Algae can be grown in waste/brackish/sea water, reducing the impact on fresh water supplies
•Algae mitigate atmospheric CO2

•Algae can be grown on non‐arable land, decreasing the impact on the food supply
•Algae growth and harvesting still require much optimization to reduce the cost of oil 
production and improve efficiency

•How can we easily optimize algae growth and lipid 
production for different environmental conditions?

•What types of algae works best a different 
times of years or different locations?

•What bioreactor designs yield 
the best growth efficiencies?

We need a realistic model
•We need to be able to optimize algae growth and lipid production in large commercial 
scale systems

• It is too time consuming and expensive to test various solutions on a commercial scale
•A computational model facilitates faster and cheaper optimization
•The necessary data are lacking to create the needed constitutive relations for algae growth 
and lipid production.

•Multi‐factorial Measurements
– Measure effect of light intensity, temperature and 
salinity on growth multiple key marine algal species

– Use in‐situ measurement methods and parallel 
growth to reduce time needed

•Constitutive Relations
– Determine relationships between environmental 
variables and growth

– Apply to algae growth model

•Photobioreactor Models
– Develop model for closed photobioreactor systems

– Expand model to use of marine algal species

– Add lipid production to model
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Measurement Techniques
•Algae Selection:

• Marine, triacylglycerol (TAG) producing, readily 
available

• Dunaliella salina, Chlorella sorokiniana, 
Nannochloropsis oculata, Nitzschia frustulum

• Factors:
• Sample 4 salinities, 3 light intensities, 3 
temperatures

•Growth:
• Measure chlorophyll a fluorescence
• Excite at ~440 nm, emit at ~670 nm
• Calibrate chlorophyll fluorescence with known 
standards of chlorophyll concentration

• Calibrate chlorophyll concentration with cell 
counter for each algae species

• Lipids:
• Use Nile‐red‐stained lipid fluorescence
• Excite at ~530 nm, emit at ~600 nm
• Calibrate for cell penetration time period for each 
algae species

• Calibrate intensity with extraction analysis for each 
algae species
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Growth Measurements
•Measured growth at 28, 31, and 33 oC
for 3 light intensities and 4 salinities in 
parallel

•Bubble air into samples
•Light/dark cycle = 16:8
•Measured in triplicate and averaged
•Calculate specific growth rate, µ, by 
fitting data to exponential growth 
curve:

Constitutive Relation Determination
Salinity:
•Bell curve, above and below optimum decay coefficients, non‐zero asymptote

ksal1 = 0.0001 (ppt NaCl)
‐2

ksal2 = 0.0003 (ppt NaCl)
‐2

Sopt = 59 ppt NaCl (1.01 M)
ƒsal = 0.6

Light Intensity:
•Use Steele’s equation for light intensity constitutive relation

Iopt = 150 µmol/m2/s

FD = ⅔ (from 16:8 light/dark cycle)

Temperature:
•Gaussian curve, above and below optimum decay coefficients

kT1 = 0.03 (
oC)‐2

kT2 = 0.025 (
oC)‐2

Topt,1 = 28 
oC

Topt,2 = 30 
oC
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EFDC and Water Quality Model
• Modified version of the Environmental Protection Agency’s Environmental Fluid 
Dynamics code and U. S. Army Corp of Engineer’s water‐quality model.

• Models algae growth based on constitutive relations

B – biomass concentration (gC/m3)
P – production rate (1/d)
BM – metabolism rate (1/d)
PR – predation rate (1/d)
f – growth limiting constitutive relations

• Tracks nutrients, salinity, temperature, light, CO2 and O2 concentrations
• Allows for sources and sinks of parameters
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•Predicted D. salina growth in test tube 
based on constitutive relations 
(measurement (S,I,T) and literature (N))

•Relations chosen work relatively well, 
more improvements could be made

Lab‐scale Model and Data Comparison

µ

adphill
Typewritten Text
SAND2011-5622C

adphill
Typewritten Text




