

Fast Neutron Spectroscopy using a Neutron Scatter Camera

James Brennan¹, Erik Brubaker¹, Robert Cooper², Mark Gerling¹, Peter Marleau¹,
Nicholas Mascarenhas³, and Stanley Mrowka¹

1: Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550

2: Indiana University, ISAT Hall (IUCF), 2401 N Milo B. Sampson Lane, Bloomington, IN 47408

3: IAEA, Vienna International Centre, PO Box 100, A1400 Vienna, Austria

Introduction

In addition to being a useful tool in determining source angular position, the Neutron Scatter Camera (NSC) simultaneously measures source neutron energy spectra. This faculty could play an important role in distinguishing various neutron sources, e.g. fission, (α, n) and (γ, n) reactions, cosmic ray, and D-D or D-T fusion concurrently with forming an image. We undertook this work with the specific goal of determining how the spectra measured by the NSC would compare to previously determined spectra. The $^{241}\text{Am-Be}$ radioactive source is widely used in many applications ranging from detector calibration to oil well logging. $^{241}\text{Am-Be}$ is therefore the most likely neutron source encountered in cargo, and discerning it from fission spectrum neutron sources is of importance.

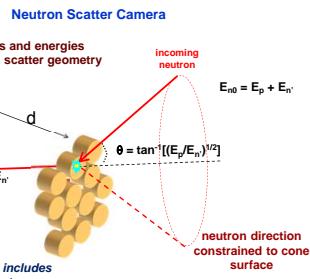
Measurement Approach

The NSC has been specifically designed to be sensitive to fission energy sources between 1 MeV and 10 MeV. It consists of 32 EJ-309 liquid scintillator cells arranged in two planar arrays of 16 cells each. Each cylindrical cell is optically coupled to a single photomultiplier tube (PMT).

The detector sizes and spacing were extensively investigated using MCNP-PoliMi to model and optimize our design. In order to

calculate the neutron energy with double scatter events, two parameters must be experimentally determined: the energy of the recoil proton, E_p , in the first scatter and the TOF between the two scatters. The recoil proton energy, E_p (in MeV), is calculated by inverting an empirically determined light yield function (LYF) of the form:

$$L = a * E_p^2 + b * E_p + c \quad (1)$$


where L is the measured light output (MeVee) and a , b and c are coefficients for the LYF. In the absence of available published data, the LYF we used for EJ-309 was obtained from preliminary results presented by Enqvist et al. The values of the parameters for equation (1) that we used in this work are:

$$a = 0.03495, b = 0.1424 \text{ and } c = -0.0362$$

Calibrations of the electron-equivalent energy scale are typically performed using a ^{22}Na source. PMT voltages are set to make the 1.275 peak coincide roughly $\frac{1}{4}$ of the full ADC range. This response is compared on a cell by cell basis to a resolution smeared MCNP simulation of the same source. The fit to this response allows for shifting in background and stretching/skewing due to non-linear ADC or scintillator response. An example output is shown below.

The Neutron Scatter Camera

Neutron Scatter Camera

Fast neutron directions and energies constrained by double scatter geometry

scintillator detectors

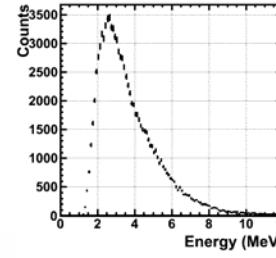
incoming neutron

$E_{n0} = E_p + E_n$

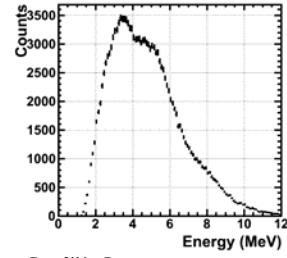
$\theta = \tan^{-1}[(E_p/E_n)^{1/2}]$

neutron direction constrained to cone surface

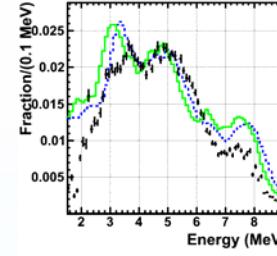
$E_n = \frac{1}{2} m (d/TOF)^2$


Multimode capability includes

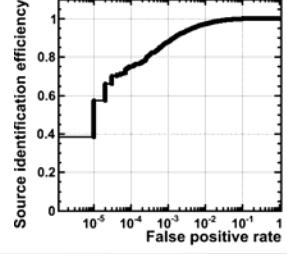
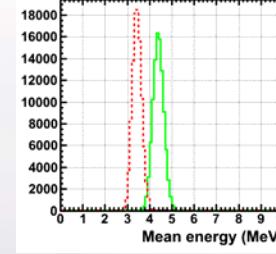
• Neutron energy spectrum.


• Compton imaging.

Experimental Results


Below we show the raw observed neutron energy spectrum from ^{252}Cf as well as the $^{241}\text{Am-Be}$ spectrum as measured by the NSC. Comparing the two, significant differences can be seen between the $^{241}\text{Am-Be}$ spectra and the ^{252}Cf spectra even before correcting for energy efficiency. The $^{241}\text{Am-Be}$ shows evidence of distinct features while the smooth ^{252}Cf spectrum does not.

Raw ^{252}Cf neutron energy spectrum as measured by the NSC.

Raw $^{241}\text{Am-Be}$ neutron energy spectrum as measured by the NSC.

Comparison of unfolded $^{241}\text{Am-Be}$ spectra (points) with the ISO 8529-1 standard (green solid line) and the measurement from Geiger (blue dashed line).

We have directly analyzed the power of discrimination between the two sources shown here. A receiver-operator characteristic (ROC) curve is an appropriate tool to evaluate this capability. We fix the sample size to 50 events, which corresponds to tens of seconds of data for a nearby bare source of significant strength. The comparison is best done using raw measured energy (Figure 1, Figure 2), since the absolute spectrum is not of interest here. We found that for 50 events, a simple mean observed energy is a sufficient test statistic for excellent discrimination between the two bare source spectra where background is negligible. For a false positive rate of 1%, for example, ^{252}Cf could be successfully identified with 97% efficiency.

Conclusions and Future Work

Neutron energy spectrum measurements are inherently limited by the NSC's energy resolution, which is dominated by the energy resolution of the liquid organic scintillator. However, they do show reasonable agreement with the expected spectra after an unfolding analysis to correct for resolution effects. These results show that the NSC can discern between source spectra, and that our MCNP-PoliMi model agrees with data reasonably well to help predict NSC energy response.

ACKNOWLEDGEMENTS

This work was supported by the NNSA Office of Nonproliferation Research and Development.

Sandia
National
Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

