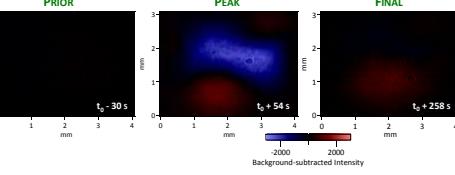
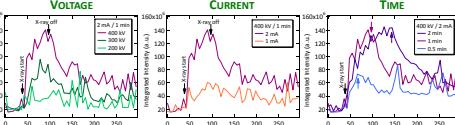

Direct Imaging of Ionizing Radiation via the Pockels' Effect in Electro-Optic Crystals

A. A. Hoops, S. E. Bisson, L. E. Sadler, D. A. H. Shimizu, J. T. Steele, K. E. Strecker
 Sandia National Laboratories, Livermore, CA 94551, USA

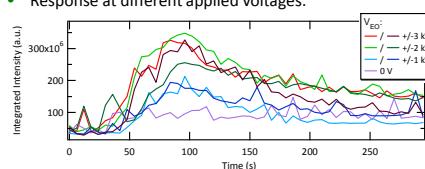
ABSTRACT


Progress towards a real-time, spatially-resolved solid-state radiation detector that utilizes the Pockels' effect in an electro-optic (EO) crystal is described. This new approach to radiation detection relies on optical detection of a localized index of refraction change generated by the interaction of ionizing radiation with the crystal. As an ionizing particle traverses the electro-optic crystal, a track of electron-hole (e-h) pairs is created. Application of an external electric field to the crystal facilitates migration of the charges, resulting in a locally varying electric field along the track. Due to the Pockels' effect, the crystal's refractive index changes in that region relative to the bulk material. We image this perturbation using a polarimetric method in which the crystal is probed with a laser and changes in the crystal's birefringence are manifested as amplitude modulations in the light. Proof-of-principle imaging results demonstrating the response of a LiTaO_3 electro-optic crystal to x-rays are presented.

EXPERIMENTAL SETUP



RESPONSE OF LiTaO_3 TO X-RAYS


- Magnification: $1.6 \times$
- X-rays: 400 kV / 2 mA / 1 min
- $V_{\text{EO}} = -3.0 \text{ kV}$
- Max slope configuration
- Background-subtracted images:

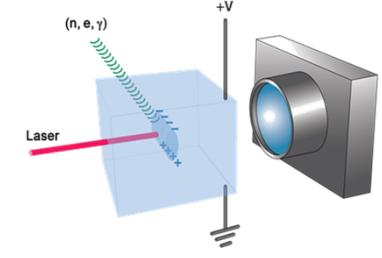
Variation of X-ray parameters:

Response at different applied voltages:

CONCLUSIONS

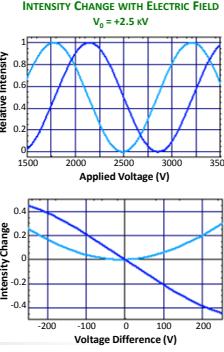
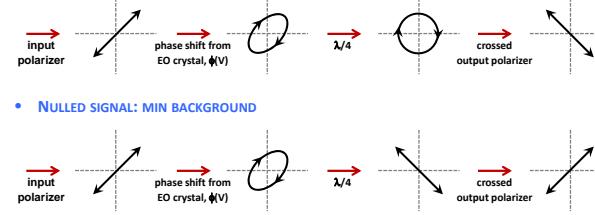
- Exposure of LiTaO_3 to X-rays induces a birefringence change that can be monitored optically
- Observed response is transitory; no annealing is required to reset the detector
- Individual radiation-induced tracks were not observed

APPROACH

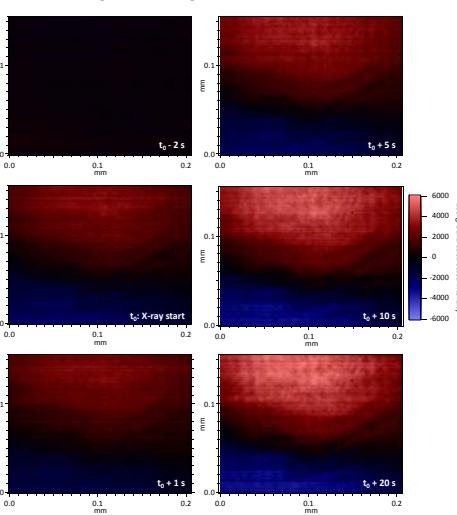

- Ionizing radiation enters the EO crystal, slows, and deposits its energy creating a track of e-h pairs
- An externally applied electric field promotes diffusion of the e-h pairs
- Resultant locally varying electric field along the track causes a change in the refractive index relative to the bulk material
- Laser-based optical methods image the radiation-induced change in refractive index

BENEFITS

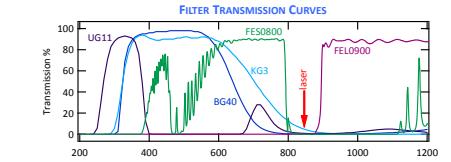
- Imaging tracks provides spatial and directional information of incident radiation particles in real time
- Observed signal does not rely on scintillation light created in the crystal or the ability to collect charge on electrodes
- Recombination of electrons and holes resets the detector



CHALLENGES

- Fast recombination rate of e-h pairs
- Trade-off between imaged volume and track detection/resolution


DETECTION METHODS

- Phase retardation of laser light in EO crystal determined by electric field
- Polarization evolution illustrates conversion of phase changes to intensity modulations:
 - 50% TRANSMISSION: MAX SLOPE**
 - NULLED SIGNAL: MIN BACKGROUND**


THE HUNT FOR INDIVIDUAL TRACKS

- Magnification: $30 \times$
- Added shielding between source and region of EO crystal out of the image plane
- X-rays: 400 kV / 1 mA / 1 min
- $V_{\text{EO}} = +2.5 \text{ kV}$
- Min background configuration

ADDITIONAL EXPERIMENTS CONDUCTED

- Confirm direction of intensity change: no $\lambda/4$, $V_{\text{EO}} = +2.5 \text{ kV}$
- Calculated response vs. observed change (peak) for output polarizer maximized and minimized.
- Verify EO crystal response not thermal: $V_{\text{EO}} = -2.5 \text{ kV}$
- X-ray exposure vs. heating

This work is funded by the DOE/NNSA Office of Nonproliferation Research & Development, Special Nuclear Material Movement / Radiation Sensing Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.