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• Thin PETN samples 
made by physical vapor 
deposition – different 
deposition conditions 
explored

• Detonation velocity 
measured for different 
deposition conditions 
by optical fiber probe 
technique

• Scanning electron 
microscopy used to 
analyze PETN cross-
sections

Approach

PETN

Photograph of optical 
fiber probe on PETN film.

Raw optical fiber probe data 
and analyzed x-t data – used to 
determine detonation velocity.
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• Physical vapor deposition is used to sublime/evaporate 
PETN from a hot source onto a cool substrate

• Substrates are 0.5 × 10.0 × 30.0 mm fused silica
• Shadow masks are used to pattern lines of PETN

• 1.00 mm width used in this study
• Deposition time and amount of PETN in source controls 

thicknesses (0.112–0.202 µm)

Physical Vapor Deposition is Used to Make 
Small-Scale PETN Samples

Photograph of bare substrate next to substrate with 
deposited PETN films.
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Previous Work

• Microstructure in vapor-deposited PETN is 
dependent on deposition conditions
• Substrate material, substrate temperature, 

deposition rate
• Critical thickness for detonation is dependent on 

deposited film geometry
• Deposited film width affects side losses during 

detonation propagation

Knepper, R., Tappan, A.S., Wixom, R.R., and Rodriguez, M.A., "Controlling the microstructure of vapor-
deposited pentaerythritol tetranitrate films," Journal of Materials Research, in press, 2011
Tappan, A.S., Knepper, R., Wixom, R.R., Marquez, M.P., Miller, J.C., and Ball, J.P., "Critical Thickness 
Measurements in Vapor-Deposited Pentaerythritol Tetranitrate (PETN) Films," 14th International Detonation 
Symposium, Coeur d’Alene, ID, April 11-16, 2010.
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Deposition Conditions

• Four deposition 
conditions explored 
through differences in 
substrate cooling

• Previous work 
(International 
Detonation 
Symposium, 2010) 
involved lower cooling 
capacity and 0.80 mm 
wide lines

Substrate 
Cooling 
Capacity

Substrate 
Contact

Substrate 
Holder 

Temperature

deg. C

Poor N/A N/A

Good Poor 10

Good Good 10

Good Good 22
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Detonation Velocity Measured as a Function 
of Deposition Thickness

Surface profiler 
data superimposed on 

cartoon of deposited PETN .

Top cage 
assembly 
with 
deposited 
PETN 
lines

Bottom 
cage 
assembly 
with line 
wave 
generator

Critical  thickness  experiment.

• Film thickness 
measured using 
stylus surface profiler

• Critical thickness for 
detonation determined
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Data Analysis Is Conducted Using the 
Standard Critical Diameter Form

Campbell, A.W. and Engelke, R., "The Diameter Effect in High-Density Heterogeneous Explosives," 
6th Symposium (International) on Detonation, Coronado, CA, August 24–27, 1976.

R
th t

Critical diameter 
configuration.

Critical thickness 
configuration.

D(∞)

Rc, thc
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Critical Thickness Comparison –
Substrate Cooling Capacity

Detonation 
Velocity at 

Infinite 
Thickness, D(∞)

Critical 
Thickness, tc

Length 
Parameter, A

mm/µs mm mm

7.82 ± 0.05 0.131 ± 0.003 0.0002 ± 0.0001

7.72 ± 0.10 0.107 ± 0.014 0.0006 ± 0.0005

• Higher substrate cooling 
capacity:

• Smaller critical thickness
• Lower infinite velocity –

less dense
• Larger length param. – less 

homogeneous
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Critical Thickness Comparison –
Substrate Temperature

Detonation 
Velocity at 

Infinite 
Thickness, D(∞)

Critical 
Thickness, tc

Length 
Parameter, A

mm/µs mm mm

7.64 ± 0.28 0.133 ± 0.000
0.00004 ±
0.00004

7.66 ± 0.28 0.142 ± 0.000
0.0001 ±
0.00004

• Lower substrate temperature:
• Smaller critical thickness
• Similar infinite velocity
• Smaller length param. –

more homogeneous
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Critical Thickness Comparison –
Substrate Contact

Detonation 
Velocity at 

Infinite 
Thickness, D(∞)

Critical 
Thickness, tc

Length 
Parameter, A

mm/µs mm mm

7.64 ± 0.28 0.133 ± 0.000
0.00004 ±
0.00004

7.72 ± 0.10 0.107 ± 0.014 0.0006 ± 0.0005

• Better substrate contact with 
cooling block:

• Larger critical thickness
• Similar infinite velocity
• Smaller length param. –

more homogeneous
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PETN Films Are Snapped for 
SEM Analysis of Cross-Section

• Fused silica 
substrates are 
broken across 
scribe line 

Scanning electron micrograph of cross-sectioned 
PETN film on fused silica substrate.
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Microstructure does not show obvious 
differences with deposition conditions

SEM of PETN, Poor substrate 
cooling capacity.

SEM of PETN, Good substrate 
cooling capacity, 22°C.

SEM of PETN, Good substrate 
cooling capacity, 10°C.
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• Deposition conditions affect critical thickness behavior of vapor 
deposited PETN

• Higher cooling capacity of substrate holder:
• Smaller critical thickness and smaller infinite velocity

• Lower substrate temperature:
• Smaller critical thickness
• Similar infinite velocity

• Better substrate contact with cooling block:
• Larger critical thickness
• Similar infinite velocity
• Smaller length parameter – more homogeneous

• Funding: Joint Department of Defense/Department of Energy 
Munitions Technology Development Program 

• Thanks to: M. Barry Ritchey, Marc Basiliere, Rosa Montoya,   
Adrian Casias, David Saiz, Thomas Gutierrez, Tim Turner

Conclusions
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