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Introduction:

Grain Boundaries
and
Grain Boundary Properties



What is a grain boundary?

A grain boundary is the atomic-scale interface between crystals of unlike
orientations. LY
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« Because atomic bonds are unfulfilled at the interface, grain boundaries have
positive free energy.

Atomic rearrangements at the interface can permit grain boundary motion in
response to a driving force; thus, grain boundaries have finite mobility.
Sandia

vaonal ¢ Both energy and mobility can vary with grain boundary structure.

Lahoratories



Why study grain boundary properties?
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To understand how grain boundaries behave in a microstructure, we need to
know their atomic-scale properties.

Goal: Efficiently measure the energy and mobility of a large set of grain
boundaries.

Tools: Because energy and mobility are atomic-scale properties, use
atomistic simulation techniques: molecular dynamics.



Determining atomic scale properties:
Step 1: Build grain boundaries

Method: Build a catalog of 388 minimum-
energy grain boundary structures

- Includes all boundaries that can fit inside a
periodic box of size 15a,/2.

- For each boundary, we minimize hundreds

or thousands of configurations to find the
lowest energy structure.

Results: Publicly-available survey of grain
boundary structures and energies

- We can observe trends in energy as a
function of boundary structure.

- Calculated energies have been validated
against experimental data for Ni and Al.

[Olmsted, Foiles, Holm, Acta Mater. 57 3694 (2009),

N Sandi: Holm, Olmsted, Foiles, Scripta Mater. 63 905 (2010),
Nat Rohrer et al., Acta Mater. 58 5063 (2010),

Holm et al., Acta Mater. 59 5250 (2011)]
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Determining atomic scale properties:
Step 2: Calculate grain boundary mobility

* Method: Use synthetic driving force molecular
dynamics to calculate the mobility of each grain
boundary in our catalog.

— 5 temperatures: 600, 800, 1000, 1200 and 1400K

— Up to 4 driving forces: 0.005, 0.010, 0.025 and
0.050 eV/atom

— 10,718 total mobility measurements 10000
1400K
©
: : : & 1000
* Results: Publicly-available survey of grain =
boundary mobilities = 100 %
- Largest survey of boundary mobilities ever :*;r o ®
performed. = o Sgmaa
o) 10 < S‘!gmas
- We are just beginning to mine this deep and rich = sl
—MD zero
data set. 1 Mo 406 48 O o0 sme
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Disorientation angle (degrees)

[Janssens et al., Nature Materials 5[2] 124 (2006),
Nationa Olmsted, Foiles, Holm, Scripta Mater. 57 1161 (2007),
) 1aboratories  Olmsted, Holm, Foiles, Acta Mater: 57 3704 (2009)]




Mythbusting, Part 1:

Grain Boundary Mobility
Mechanisms and Phenomenology
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What is the grain boundary mobility?

* Grain boundary mobility is the material constant that scales the velocity of a grain
boundary with the driving pressure applied to the boundary: v =M P

For a given initial grain
structure...

Uniform boundary
mobility results in
normal grain growth.

Widely varying grain
boundary mobilities
can cause abnormal
grain growth.
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Conventional wisdom:
Grain boundary motion is thermally activated

« Textbooks agree that grain boundary motion
is a thermally activated process.

M =M, exp(_QJ

kT

- May be a single atom or multiatom
process

- For low angle grain boundaries,
thermally activated dislocation climb is
assumed to be the relevant process

K'T (cm’ K/sec)

Fig. 54. Variation of boundary mobility parameter K* with temperature and

1 1
sroup of boundaries are also shown, (after Viswanathan & Bauer 1973).

“...the important process...appears to be the thermally activated
transport of atoms across boundaries and the migration would seem
to be controlled by the activation energy for this process.”

-F. J. Humphreys and M. Hatherly,
Recrystallization and Related Annealing Phenomena

on for 99.999% copper. The activation energies (Q in kJ/mol) for each



Observations of low temperature grain boundary
motion contradict thermal activation

boundary velocity v = Mp 10 nm grains

.
driving pressure ~ p < 60 MPa

boundary mobility M = M|, exp(-Q/kT)
4 N
10 m/s MPa 1 eV

(D. Follstaedt, SNL)

T = 0.7 T, (annealing temperature) > v~ 12 um/s
T=0.3 T, (room temperature) > v~2x 107 nm/s
T=0.1T,, (cryogenic temperature) > v~ 6x 10% nm/s

A Rt *How did these grains grow?
S
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Mining the boundary mobility data set

» Used synthetic driving force molecular dynamics
to calculate the mobility of 388 boundaries

— 5 temperatures: 600, 800, 1000, 1200 and
1400K

— Up to 4 driving forces: 0.005, 0.010, 0.025
and 0.050 eV/atom

— 10,718 total mobility measurements
[Olmsted, Holm, Foiles, Acta Mater. 57 3704 (2009)]

* Plotted data in a variety of ways to probe for
trends in mobility versus

— Temperature
— Shear coupling

— Crystallography (symmetry, sigma,
misorientation, etc.)
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Results:
Thermally activated grain boundary motion

K] Driving Force
1400 1000 600 [eV/atom]
2 215(1251)(125 1) 0.005
T8 ! 0.010
& ¢ 0025
S 6 A .
E M
> 4 ST ’ >
g 2/ 3%
3 o 3
(@)
2 0
= 0
g 0.6 1 1.4 1.8

1000/T [K™']

 Constant activation energy over the range of temperature
» No driving force dependence

* Moderate mobilities: 50-150 m/GPa_s

* 11 of 388 boundaries exhibit this behavior




Results:
Two thermally activated motion regimes

K] Driving Force
5 1400 1000 600 [eV/atom]
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T _ 0.010
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» Thermally activated motion over the range of temperature, with a change in activation
energy, presumably due to a change in motion mechanism

 Activation energy at high T > activation energy at low T

» Has been observed experimentally [Maksimova, Shvindlerman, Straumel, Acta Metall. 36 1573 (1998)]

N Sandic * 10 of 388 boundaries exhibit this behavior




Results:
Thermally activated with boundary roughening

K] Driving Force
o 1400 1000 600 [eV/atom]
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» Thermally activated with moderate mobilities at high temperatures

* Sudden drop in M at a characteristic 7, corresponds to a transformation from atomically
rough to atomically smooth [Olmsted, Foiles, Holm, Scripta Mater. 57 1161 (2007)]

 Often, the roughening transformation is driving force dependent, i.e. kinetic roughening

=) Sandi * 200 of 388 boundaries exhibit this behavior




Activation energy trends
in thermally activated grain boundary motion
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» We observe an essentially normal distribution of activation energies, QO

- There is no single, characteristic Q

- O’ s are lower than experimentally measured, consistent with other MD studies
* Mean activation energy <Q> increases with the roughening temperature 7,

- Reasonable to correlate tendency toward smooth boundary structure with high O
ﬁ% l - Suggests that most or all boundaries can kinetically roughen




@ r M boundaries move?

Summary:
Thermally activated grain boundary motion
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» Thermally activated grain boundary motion occurs in 57% of our grain boundaries
» The vast majority of these undergo thermal roughening at a characteristic temperature

» Roughening temperature and activation energy are strongly correlated

How do the remaining 43 % of grain




Results:
Thermally damped grain boundary motion

[K] Driving Force
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» M decreases as 7 increases, such that M oc 1/T —boundaries move faster as 7 decreases!
» Suggests a phonon-damped motion, similar to dislocation glide
« All thermally damped boundaries we have observed are 23 boundaries

* M is exceptionally high (800-4000 m/GPa_s) and not driving force dependent

_ r”' * 25 of 388 boundaries (25 of 41 X3 boundaries) exhibit this behavior



Results:
Anti-thermal grain boundary motion

K] K] Driving Force
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» M decreases as T increases, but M is not proportional to //7. Instead, M is concave in T,
with or without a local maximum.

* None of these boundaries are X3 boundaries.

» M is moderate (150-700 m/GPa_s), lower than 23 thermally damped boundaries, and
comparable to thermally activated boundaries at high T.

r”' « 33 of 388 boundaries exhibit this behavior




Results:
Athermal, constant grain boundary motion

[K] Driving Force
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* Moderate M, constant over the range of 7, with no driving force dependence
* Indicates an athermal, undamped motion; potentially a velocity saturation effect
A high fraction of these boundaries exhibit shear coupled motion

» Athermal M has been observed in faceting boundaries and attributed to a speed of sound
__ limitation [Kopetskii, Sursaeva, Shvindlerman, Scripta Metall. 12 953 (1978)]
/ } oadldk

* 210f 388 boundaries exhibit this behavior




Summary:

Non-activated grain boundary motion
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» Non-activated grain boundary motion occurs in 20% of our grain boundaries.

 The mechanisms of non-activated motion are unknown.

« Non-activated motion offers the possibility that a substantial fraction of grain
boundaries could be mobile at very low temperatures.




Temperature dependence of mobility
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» Ata given 7, the <M> varies with mobility mechanism
» At high 7, all mechanisms (excluding thermally damped motion) converge

« At low 7, thermally damped and thermally activated mobilities differ by 2 orders of
magnitude

* As T decreases, the importance of non-activated boundaries increases

Y Sandia




The final 23%:

Miscellaneous motion mechanisms
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* 14% move by a combination

of mechanisms

* The observed combinations
are reasonable

» Roughening appears possible

for all boundary types

* 6% are immobile at all
temperatures

* We can force motion using
extremely high driving forces

* Possibly includes boundaries
that roughen at temperatures
above 1400K
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* 3% move in ways that are

simply unclassifiable




Grain Boundary Mobility Myths: IBUS TEI

 Myth: Grain boundary motion is thermally activated.

— Fact: Thermally activated motion occurs in just over half of boundaries —
and most of those undergo a thermal roughening transition.

 Myth: Grain boundaries are slow at low temperatures.

— Fact: Non-activated motion can yield high mobility at low temperatures in
almost a quarter of boundaries.

Myth: Grain boundary motion is relatively simple.

— Fact: About a quarter of boundaries are mixed mode, immobile, or
otherwise unclassifiable.

Sandia
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Mythbusting, Part 2:

How complex grain boundary motion mechanisms
affect microstructural evolution.
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The longstanding problem of grain growth
stagnation at high temperatures

The equilibrium state of crystalline materials is a
single crystal.

However, grain growth only rarely proceeds to the
single crystal state.

— Stagnation is pervasively observed in
experiments

— Assumed — without physical justification —in  {f grain growth did not stop,

~ the cost of Si photovoltaics
most grain growth models would decrease dramatically.

Conventional wisdom attributes grain growth dR i 44
dr YLR RCJ

stagnation to solute drag or particle pinning, T
even in high purity materials.
Most grain growth models

assume a maximum

attainable grain size.
Sandia
National
Laboratones



Atomic-scale simulations reveal the pervasive
phenomenon of thermal roughening

« A thermal roughening transition has been observed with all boundary motion
mechanisms except thermally damped motion.

High T: — |
Atomically rough
Highly mobile
Continuous motion

T

r

K] Driving Force
= o 1400 1000 600 [eV/atom]
2 29(542)(210) 0.005
T8 0.010
S 0.025
S 6 .
£
a 9 ] Low T:
o
£, g’mﬁcally smooth
S5 06 1 14 138 Nearly immobile
1000/T|[K™'] Stepwise motion
Roughening
temperature



How thermal roughening affects the distribution of

grain boundary mobilities

« At a given temperature, grain boundary mobilities fall into two groups:

-Rough, mobile boundaries (M > 100 m/s_GPa at 1400K)

-Smooth, immobile boundaries (M ~ 0 m/s. GPa)

Mobility + 1 [ (m/s)/GPa ]

10000

1000

100

10

[Olmsted, Holm, Foiles, Acta Mater. 57 3704 (2009)]
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The roughening temperature varies widely;
smooth/slow boundaries are always present

0.4

* Data mining provides the distribution of
grain boundary roughening temperatures
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e The cumulative distribution of roughening
temperatures gives the fraction of
smooth/immobile boundaries as a function
of temperature.
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Experiments suggest further study

* Yoon and Cho [J. Mater. Sci. 40 (2005) 861] surveyed boundary roughening:

“In many metals and oxides, abnormal and normal grain growth behaviors
were observed to be correlated with grain boundary roughening.”

Faceted (smooth) boundary
at 1100° Cin316L SS

Unfaceted (rough) boundary
at 1350° Cin 316L SS

= How does grain boundary roughening affect grain growth in polycrystals?

Sandia
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Incorporate boundary roughening data into
microstructural evolution simulations

* Begin with an equiaxed polycrystalline
microstructure
— uniform boundary energies
— slightly pre-coarsened
— 100x100x100 lattice

» Assign boundary mobilities at random

— smooth boundaries M ~ 0
— rough boundaries M ~ 1

— fraction of smooth boundaries f,,

depends on T’ 800 0.7
« Allow system to evolve via normal grain 1000 0.35
growth physics
— Monte Carlo Potts model 1200 0.2
— 16 independent runs for each f,, 1400 0.1

— SPPARKS parallel code package
http://www.sandia.gov/~sjplimp/spparks.html




Grain growth kinetics

100 R

o

P

D /D

grain radius R
o

stagnant grain size

0.1 1
time (MCS) smooth boundary fraction f

» Grain growth stagnates in the presence of smooth boundaries
 The stagnant grain size has a power law dependence on smooth boundary fraction f,

 Not all boundaries must be immobile for the structure to be stagnant

Sandia
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Mesoscale simulations connect atomic-scale
phenomena to microstructure

Atomistic results +  Mesoscale simulations = Microstructural insights
oo 1 10 8
= = - =
% 08 2& en. /.
g 8 Q
EO.G 2 ﬁ 6
'g 'E -
= 0. o ¥ 9
2 £ £
©
g > &
o o] (=2)
% 0 — L @ s
03 04 05 06 07 08 09 1 10_1 1 g 3
homologous temperature T/T smooth boundary fraction f, =
D 2
-
7

03 04 05 06 07 08 09 1
homologous temperature T/T

» Grain growth does not proceed to completion
at any temperature

» The stagnant grain size increases with T

_ —Boundary roughening may play a critical
Sandia . o .
@ National role in grain growth stagnation.
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Coupling back to atomistic simulations
provides physical validation

Direct MD simulation of annealing of nanograined Ni

3-D Cubic cell with periodic boundary conditions
— 550r 110 a, (~20 or 40 nm) on a side

Initial structure

— 100 or 800 randomly centered and oriented
Voronoi grains

— Initial average grain diameter: ~5 nm
— 650k or 5.2M atoms
Foiles-Hoyt EAM Potential for Ni

Visualization key:
—  Color reflects local orientation of fcc

« Temperatures: 0.85 Ty, 0.75 Ty, 0.65 Ty, neighbor shell
_ _ —  Red: HCP configuration of nearest
— Ty = 1565 K for this potential neighbors
— Black: Unidentified neighbor
structure

Sandia
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Time evolution of microstructure differs with
temperature

Sandia
National
Lahoratories

T=0.85Ty T=0.65Ty
0.6 ns 10.0 ns



Time evolution of microstructure differs with
temperature

T=0.85T,, initial 0.2 ns 0.4 ns 0.6 ns

T=0.65T,,, initial 2n 10 ns

S india
N tional
Lahoratories




Atomic-scale results support mesoscale model for
roughening stagnation

= N
) 153
oo}

N

i

average diameter (nm)
= =
N
7
g
&

o N B ()] -]

o
o
(5]
=
[y
v
N

2.5 3 3.5

stagnant grai

e e S— e
03 04 05 06 07 08 09 1
homologous temperature T/T

sqrt(t) (ns)

* 0.65 and 0.75 T\, samples stagnate at grain sizes consistent with the predictions
of the microstructural simulation.
« Sample size is too small to reach stagnant size predicted for 0.85 T,, sample.

wnia  —Atomistic simulations quantitatively validate microstructural
@ Natonal .~ results and support the roughening stagnation model.

Lahoratories



Grain Growth Stagnation Myth: I;IJ STED

Myth: Grain growth stagnation is caused by impurities.

— Fact: Smooth grain boundaries stop grain growth, even in perfectly pure
materials.

E. A. Holm and S. M. Foiles,
Science 328 1138 (2010).
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Next steps in Mythbusting:
Anomalous low temperature boundary motion

 Conventional Wisdom: Grain structure is frozen in at low temperatures.

— Fact: We observe substantial grain growth at 4K in indented Cu that
contains large numbers of 23 boundaries.

— Many incoherent 23 boundaries have very high mobility at low temperatures due
to the thermally damped motion mechanism. Coincidence or not?

Sandia
'11 National
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Conclusions

* Most of what we’ve presumed about grain boundary mobility is wrong — at least for
some boundaries at some temperatures.

e  Our new understanding of grain boundary motion answers longstanding questions
about microstructural evolution.

«  We move beyond the old myths by integrating new results from atomistic simulations
with mesoscale models and experimental results.




Beyond Grain Boundaries:
Computational Materials Science at the Mesoscale

» Mesoscale models link structure, processing and properties.

| von Mises
Stress

abnormal gramn growth  static and dynamic recrystallization brittle fracture

1000 cveles

weld pool shape and hot tearing thermomechanical fatigue and failure ' percolation phenomena
m sandia and void link-up
National
S
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Step 1: An automated grain boundary
energy method

(1) Choose a periodic box size (here, 15a,/2). |+ For most boundaries:

(2) Determine which orientation pairs can fit | 5111 grain boundary, EAM Ni
inside the y-z periodic box (here, 388 pairs)

(3) For each pair of grains, construct and
minimize boundaries for

-A sampling of offset vectors spread
uniformly in the DSC cell (here, either D o
8 or 27 Offsets) "Sorted by increasing energ.y
--Each non-equivalent boundary * Forafew boundaries

plane placement in the x direction

---Three different atom removal
methods, each over a range
of cutoff radi

. For typ|ca| boundaries, we minimize 1271 55 <001> tilt boundary, normals <100><430>, -

EAM Ni

several hundred to several thousand % mm
- . D Sorted by increasing energy
configurations.

Energy (J/m*2)

0.5

o
1.29-¢
)
.
1.28
.

Energy (J/mA2)

= Careful boundary construction is
ra) Sand critical to finding the minimum
@ energy configuration.




An efficient boundary mobility
calculation method

* Apply a synthetic driving force for boundary motion:

For an atom in the For an atom in the AddeforallEaEER e a o
favored/growing grain: unfavored/shrinking grain: driffs i CT ol o
& &8 ' &8 " shrink; thus the boundary moves.
O=Cram O=0Qpgyp TU This energy is of undetermined,

arbitrary origin.
» Define the excess free energy function as:

F r
0 N < Niow - e
F grain g.b. grain
u(r;) =1 2(1_ COS2COZ-) Niow <Ni <Nhigh l 2
i 0.5FL
\ r Nhigh < N;
2 Nhigh = Niow 0

1
)] high
* Now, we just run molecular dynamics:

— Our potential:  @(7;) =@ gqpr () +u(r;) and force: f(,,l):_ﬁ(g(’”z)
]/2.
\ «—.We implement these in Sandia’ s LLAMPS code for MP MD.




Position (angstrom)

Atomic-scale evolution of flat grain boundaries via a
synthethic driving force

55° [111] symmetric, mixed-type boundary; F = 0.025 eV

50t

v =0.79 Alps

v=0.73 A/ps/

e

50
Time (ps)

100

Qualitatively:

*Fully periodic system:;
26,057 atoms; 2.3
mixed-type boundary

*Grain 2 in the center;
boundaries move
towards the center

Quantitatively:

 To calculate M, we input F, measure v, and use
v =MF

» Constant velocities over time, well below the
speed of sound

» M does not change with F, with ensemble
(NVE, NPT) or with direction of motion

» M agrees with results from simulations with
physical driving forces (i.e. stress driven)



Are the results realistic?

» Compare our artificial driving force calculations to realistic elastic driving force
calculations [H. Zhang, M.1. Mendelev, D.J. Srolovitz, Acta Mater. 52 (2004) 2569]

* We use the same interatomic potential (Voter-Chen Ni), the same range of driving forces,
the same temperatures, and the same 25 <100> asymmetric tilt boundary.

12
o0 H Zhang et al, tensile str.ain . 1400K
10 ® H Zhang et al, compressive strain e _
+—¢ This work
@ 8 - T N
g 1000K 1200K o
z . 4 ° -
2
E 8
> — ° T n
— . P —]
| |

| |
0 0.03  0.06 0 0.03 0.06
Driving force (GPa)

The artificial driving force gives realistic results.

 Netional D. Olmsted, S. M. Foiles, E. A. Holm, Scripta Mater. 57 1161-1164 (2007).




What do the mobility clusters represent?
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* High T: high mobility, atomically rough, continuous motion
* Low T: low mobility, atomically smooth, stepwise motion

» Each boundary has a characteristic roughening temperature 7,




Can we measure roughness directly?

Ni 25 <010> symmetric tilt boundary, <301><-301>
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; » We measure roughness as RMS
o displacement.

 For large systems, we observe a
7|  transition in roughness at a
characteristic temperature 7.

- Ty from roughness measurements
agrees with T, from mobility
analysis.

» For small systems, we cannot resolve
a transition in roughness, though the
1 change in mobility is evident.
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[IWe use the abrupt change in mobility
as the signature of the roughening
transition.



What factors affect roughening?
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» At low driving forces, boundaries roughen at a characteristic
roughening temperature — thermal roughening.

At high driving forces, boundaries remain rough at all temperatures —
kinetic roughening.

e * The driving force for kinetic roughening is typically much larger than
1] National _ the driving force for grain growth.




Results:
Mixed mobility modes

low temperature

high temperature

1o (%)

thermally
activated

anti-
thermal

athermal

immobile

thermally
damped

thermally
activated

5%

3%

52%

anti-
thermal

8%

5%

3%

athermal

2%

5%

0.5%

immobile

6%

thermally
damped

6%

» About 14% of boundaries move by a combination of mechanisms
- TA—>A, AT5TA, A—>AT, I-5AT, [I-A (14%)
- Thermal roughening (I->TA) (51%)

» While not all combinations are represented in our data, the observed
mechanism combinations are reasonable

al* Roughening appears possible for all boundary types



