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Abstract

A major challenge in drug design is controlling binding specificity. High specificity for
drugs that target human proteins is often desirable to limit off-target binding. However,
lower specificity may be desirable in certain cases, for example, for drugs that target a
range of pathogen strains or mutations. We have developed the Common Conserved
Motifs (CCM)-2 method to identify structural features of proteins and ligands that
determine selectivity across a range of targets. In this study we used the data set from
Karaman et al® for kinase/ligand binding data. We cluster a large set of human kinases
and kinase inhibitors by their experimental binding profiles and identify in silico sets of
cluster-specific features that influence narrow and broad inhibitor binding. Knowledge
of these features has allowed us to predict and experimentally confirm specific kinase
inhibition for ligands outside the training set. Our method has applications in both I

Methodology

1. Obtain tables of binding data for ligand
binding to protein families
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2. Cluster binding data based on Euclidian
distances between vectors
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3. Perform in silico docking of all ligands to
all proteins

4. Identify intermolecular interaction motifs
that are unique to each protein cluster

5. Represent distances between atoms of
docked ligands and the unique cluster
interaction motifs as interaction vectors
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6. Construct a prediction model to
associate vectors with experimental
log(Ky) values or cluster numbers

7. Predict binding ability or cluster
assignments for additional ligands
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8. Experimentally verify binding
affinity predictions
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Example classification scheme for the Karaman et al set of 317 kinases and 38 ligands.> We clustered both the proteins with respect to ligand
binding profiles (top left) and ligands by protein binding profiles (bottom left) using the Matlab software package‘. The right panel shows the
binding matrix for ligands vs. proteins ordered by the ligand and protein clusterings. A k-centers algorithm was used to cluster the kinases
based on binding similarities. The Euclidean distance matrix associated with log(K) values of 38 ligands (i.e. 38 dimensions) was reduced to 3
principal components using PCA for the clustering metric, and the total number of clusters to generate was specified. Similarly the ligands were
reduced to 3 principal components and clustered. Ordered heat maps were plotted based on different clusterings. Kinases (or ligands) of the
same cluster are located contiguously in the grid. The results, particularly for 8 (shown) and 16 clusters, indicate that kinases within a cluster
tend to share strong similarity in the binding metric relative to each other and weaker similarities in the binding metric relative to kinases in other
clusters. Ligand clusters of 4 (shown) and 8 were robust.
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Healmap (ordered) showlng k-centers clustering of the

ligands based on binding similarities for 4 clusters.
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Heatmap (ordered) showing k-centers clustering the
kinases based on binding similarities for 8 clusters.
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Predicting Kinase Inhibitors and Non-Inhibitors Using a
Random Forest Model with Identified Unique
Features as Descriptors

For each of the 3839 kinase-ligand complexes whose structures we predicted by docking, a 578-element vector
was constructed. The first 77 elements consist of the distances between ligand hydrogen-bonding atoms and all
77 unique hydrogen bonding regions that we have identified. The next 400 elements are the distances between
ligand atoms that form polar contacts with the kinase and the 400 identified unique kinase polar-interaction
regions. The final 101 vector elements comprise the distances between the ligand atoms involved in hydrophobic
interactions with the kinase and the 101 identified unique hydrophobic interaction regions. Each vector was
assigned an inhibitor or non-inhibitor class label based on whether the experimental K, for the complex is
stronger than or weaker than 10 UM, respectively. The data set includes 892 inhibitors and 2947 non-inhibitors.

Following vector construction, we trained a random forest (RF) model using the R implementation of random
forest. RF is an ensemble partitioning method that builds predictions by averaging over multiple decision trees.
The 578-element vectors were treated as independent variables, and the corresponding inhibitor and non-
inhibitor class labels were treated as dependent variables. The RF model ensemble used 500 trees and
my=24

Our RF model has an out-of-bag prediction accuracy of 76% for inhibitors and 83% for non-
inhibitors.

The RF model was subsequently used to predict the inhibition ability of 9 compounds from oulsn:le the Karaman
et al set: aloisine, NU-6102, SC-221409, SU-11274, D4426,
dimethyladenine. These compounds were docked to CDK2, ZAP70, and PVK2 and the standard 578- element
descriptor vectors were constructed. The vectors were fed into the RF model to obtain predictions of inhibition.
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Experimental Validation of Inhibitor Predictions

We employed ionization mass y (ESI-MS) to perform inhibition assays for each of the
9 compounds from outside our training set against kinases CDK2, ZAP70, and PYK2. These kinases are
located in protein clusters IV, IV, and VIII, respectively. Each enzyme-inhibitor pair was analyzed at three
inhibitor concentrations (0.1, 1x, and 10x enzyme concentration) by calculating the reduction of the
phosphorylation rate of substrate peptides relative to control reactions that took place under V,,, conditions in
the absence of inhibitor.

Experimentally measured ligand K, values (M)
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What is the key feature of a broadly
[ binding kinase inhibitor?

Hydrogen-bonding interactions between
staurosporine and the kinase proteins only occur
between the ligand and the protein backbone.

Key conclusion: broad binding may be facilitated
by designing ligands to interact strongly with the A
invariant protein backbone, rather than the variable
sidechains. Conversely, specific binding may be
attributed to highly specific contacts between the
ligand and the protein sidechains.
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