

UCRL - 4789

PARACANTOR

A two group, two region reactor code

by

Stuart P. Stone
UCRL - Livermore

Programmers:

Paracantor I -

R. Brousseau

Paracantor II -

R. Brousseau

M. Ferris

Report Compiled by:

S. Stone

K. Purdum

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

PARACANTOR IIntroduction

Paracantor I is a two energy group, two region, time independent reactor code, which obtains a closed solution for a critical reactor assembly. The code deals with cylindrical reactors of finite length and with a radial reflector of finite thickness. It is programmed for the I.B.M. Magnetic Drum Data-Processing Machine, Type 650. The limited memory space available does not permit a flux solution to be included in the basic Paracantor code. A supplementary code, Paracantor II, has been programmed which computes fluxes, including adjoint fluxes, from the output of Paracantor I.

General Description of Paracantor I

A. Physics

Paracantor I, in general, follows the two energy group theory found in The Elements of Nuclear Reactor Theory¹ by Glasstone and Edlund. This report will give a brief resume of the theory which is pertinent to the Paracantor code. The notation used in the report and the code conforms to that of the book. The form of the equations has been modified where either ease of programming or saving of machine time results.

A two energy group approximation to reactor neutron behavior divides the neutrons into two groups: slow or thermal and fast or fission neutrons. The general equation for the conservation or balance of neutrons may be written

$$\text{Production} - \text{Leakage} - \text{Absorption} = \frac{\partial n}{\partial t}$$

where $\frac{\partial n}{\partial t}$ is the time rate of change of the neutron density. If a system is in an equilibrium state, referred to here as critical, $\frac{\partial n}{\partial t}$ is zero. If the equilibrium state does not exist, an assumption, such as

$$\phi(r, t) \equiv \phi_0(r) e^{w_i t}$$

permits a solution of the "steady state" condition for a given w_i .

1. Samuel Glasstone and Milton C. Edlund, The Elements of Nuclear Reactor Theory, D. Van Nostrand Company, Inc., New York, 1952, Fourth Print.

Unfortunately, a true solution is severely complicated by the process of delay neutron emission. However, the assumption that all neutrons emitted in the fission process are prompt, ($w_i \rightarrow w_{\text{prompt}}$), does permit a ready solution of the above type.

Using the equation for the conservation of neutrons given above, four differential diffusion equations may be obtained for a two energy group, two region problem.² These may be solved upon the application of the usual neutronic boundary conditions, i.e., the neutron fluxes must be finite and non-negative, there must be continuity of fluxes and current densities at the core-reflector interface, and the fluxes must become zero at the extrapolated boundary of the finite reflector. As a result, four flux equations are obtained, which represent the solutions of the differential equations and involve four unknown constants. For a consistent set of solutions, the determinant of the coefficients must be zero.

Paracantor I determines each element of the fourth order determinant from various stored constants and input data, which includes one predesignated variable parameter, such as the core radius. This parameter is varied by a "receipte" until the desired degree of convergence is obtained. The main parameters, from which the unknown variable may be chosen, are:

1. The core radius - R
2. The moderator to fuel atom ration - (M/u)
3. η - contained in $k = \eta \epsilon \rho f$
4. The cylindrical height - H
5. The reflector thickness - T

The computing time thus depends upon the nearness of the input value of the variable parameter to the value which satisfies the critical equation. In general, 6 to 10 iterations are required to obtain a convergence of the parameter to an accuracy of $\approx \frac{1}{4}\%$. The average machine running time, for normal production, is 5 - 8 minutes per problem. The output, which includes volumes, masses and all of the functions necessary to compute fluxes, is punched out on cards. The computer is then left in readiness for the succeeding problem, which is automatically read in and solved.

2. Ibid - p. 240

B. Equations

No attempt will be made to justify or prove the numerous assumptions and conditions necessary to solve the two group problem outlined below. Discussions of Fermi age theory, conditions for separability of time and space variables, treatments which consider delayed neutrons, and other concepts involved in neutron diffusion theory may be found in such references as Glasstone and Edlund.

The two group, two region diffusion equations used in Paracantor I may be written as

$$1) \nabla^2 \phi_{1c} - \left(\frac{\Sigma_{1c}}{D_{1c}} + \frac{\Sigma_{1a}}{D_{1c}} + \frac{W_p}{V_1 D_{1c}} \right) \phi_{1c} + \frac{k}{L^2} \cdot \frac{D_{2c}}{D_{1c}} \phi_{2c} = 0$$

$$2) \nabla^2 \phi_{2c} - \left(\frac{\Sigma_{2c}}{D_{2c}} + \frac{W_p}{V_2 D_{2c}} \right) \phi_{2c} + \frac{\Sigma_{1c}}{D_{2c}} \phi_{1c} = 0.$$

$$3) \nabla^2 \phi_{1r} - \left(\frac{\Sigma_{1r}}{D_{1r}} + \frac{W_p}{V_1 D_{1r}} \right) \phi_{1r} = 0$$

$$4) \nabla^2 \phi_{2r} - \left(\frac{\Sigma_{2r}}{D_{2r}} + \frac{W_p}{V_2 D_{2r}} \right) \phi_{2r} + \frac{\Sigma_{1r}}{D_{2r}} \phi_{1r} = 0$$

where equations 1 and 2 refer to the core (c) and equations 3 and 4 refer to the reflector (r). The subscripts 1 and 2 refer to fast and slow neutrons respectively.

In the above equations:

ϕ_i is the neutron flux = nv_i where n is the neutron density
 v_i is the velocity assigned to the i th group

D represents the diffusion coefficients

$\Sigma_{1a} / D_{1c} \equiv 1/\tau$ where τ is the Fermi age length

Σ_{1a} is the macroscopic absorption cross section in the fast core equation. It is to be noted that this term does not appear in many two group presentations.

L^2 is defined on page 8.

Σ_{2c} is the total absorption cross section in the slow group of core. Σ_{2c} includes both moderator absorption and fuel absorption.

Σ_{2r} is the total absorption cross section in the slow group of the reflector.

The terms involving w_p come from the assumption $\phi(r,t) = \phi_0(r)e^{\frac{w_p}{V}t}$, where w_p may be considered the inverse reactor period with all neutrons assumed to be prompt. Thus,

$$\frac{dn}{dt} = \frac{1}{V} \frac{\partial \phi(r,t)}{\partial t} = \frac{w_p}{V} \phi(r,t)$$

$k = \eta \epsilon p f$ This is sometimes referred to as the four factor formula. In Paracantor I both the fast fission factor, ϵ , and the resonance escape probability, p , are assumed to be unity. Therefore, k is computed as the product,

$$\eta \times f$$

where f is the thermal utilization

$$f = \frac{\text{Thermal neutrons absorbed in fuel}}{\text{Total thermal neutrons absorbed}}$$

$$\text{and } \eta = \frac{\tau_f}{\tau_f + \tau_c}$$

τ = number of neutrons per fission (2.5)

τ_f = thermal fission cross section for fuel

τ_c = thermal radiative capture cross section for fuel

The factor η is considered a constant in any one Paracantor problem.

The condition necessary for solutions of the core equations (1 and 2) in the form

$$\nabla^2 \phi_c = - B^2 \phi_c$$

may be shown to be,

$$\text{Eqn. 5} \quad \frac{k}{(1 + \tau_c B^2 + \frac{1}{V})(1 + L^2 B^2)} = 1$$

$$\text{where } \gamma = \frac{\sum l_a}{\sum l_c} + \frac{w_p c}{V l_c}$$

Thus, the flux solution in the core involves a linear combination of the two roots of the above equation. For a cylinder the permissible solutions are

$$\phi_{lc} = AX + CY$$

$$\phi_{2c} = S_1 AX + S_2 CY$$

where

$$X = J_0(\mu r) \quad \text{and}$$

$$Y = I_0(\nu r)$$

J_0 and I_0 are normal and modified Bessel functions, respectively, of the first kind and zero order. (See Appendix A)

μ and ν , are the two roots of Equation 5 modified for a cylinder of finite length

$$\mu = \left\{ \frac{1}{2} \left[-\left(\frac{1}{\tau_c} + \frac{1}{L^2} + \frac{\nu^2}{\tau_c} \right) + \sqrt{\left(\frac{1}{\tau_c} + \frac{1}{L^2} + \frac{\nu^2}{\tau_c} \right)^2 + \frac{4(k-1-\gamma)}{\tau_c L^2}} \right] - \left(\frac{\pi}{H'} \right)^2 \right\}^{\frac{1}{2}}$$

$$\nu = \left\{ \frac{1}{2} \left[\left(\frac{1}{\tau_c} + \frac{1}{L^2} + \frac{\mu^2}{\tau_c} \right) + \sqrt{\left(\frac{1}{\tau_c} + \frac{1}{L^2} + \frac{\mu^2}{\tau_c} \right)^2 + \frac{4(k-1-\gamma)}{\tau_c L^2}} \right] + \left(\frac{\pi}{H'} \right)^2 \right\}^{\frac{1}{2}}$$

where H' = the actual height plus the extrapolated height

S_1 and S_2 are the coupling coefficients.

In a similar manner, the solutions to the reflector equations (3 and 4), may be written as

$$\phi_{1r} = FZ_1$$

$$\phi_{2r} = GZ_2 + S_3 \phi$$

where

$$Z_1 = I_0(K_{1r}r) - \frac{I_0}{K_0} [K_{1r}(R+T')] K_0(K_{1r}r)$$

K_0 is a modified Bessel function of the second kind, zero order.

(See Appendix A)

T' = the actual thickness plus the extrapolated distance.

$$K_{1r} = \left[\frac{1}{\tau_r} + \frac{w_p}{D_{1r}V_1} + \left(\frac{\pi}{H'} \right)^2 \right]^{\frac{1}{2}}$$

Z_2 is a function in K_{2r} corresponding to Z_1 .

$$K_{2r} = \left[\frac{Z_2 r}{D_{2r}} + \frac{w_p}{D_{2r}V_2} + \left(\frac{\pi}{H'} \right)^2 \right]^{\frac{1}{2}}$$

S_3 is the reflector coupling coefficient

The application of the boundary conditions that the fluxes and current densities be continuous at R , the core-reflector interface, leads to four equations in A , C , F , and G , the unknown constants. For a consistent set of solutions, the determinant, Δ , of the coefficients must

vanish; that is,

$$\begin{vmatrix} X & Y & -Z_1 & 0 \\ S_1 X & S_2 Y & -S_2 Z_1 & -Z_2 \\ D_{1c} X' & D_{1c} Y' & -D_{1r} Z_1' & 0 \\ S_1 D_{2c} X' & S_2 D_{2c} Y' & -S_2 D_{2r} Z_1' & -D_{2r} Z_2' \end{vmatrix} = \Delta \rightarrow 0$$

where X' , Y' , Z_1' , and Z_2' are the first derivatives of X , Y , Z_1 , and Z_2 , respectively, all evaluated at the core-reflector interface, (w.r.t.) r .

This is the critical equation for a two group, two region reactor. An expanded form of the determinant is used in Paracantor I.

Equations Used in Paracantor I Code

A. Input Data

The normal form of the input data used in Paracantor I may not be convenient for all uses. Various constants, which are normally stored in main program, can be changed by insertion of what may be described as optional input data. A sample input is included with the Test Problem in Appendix C.

In general, the input data may be broken into four groups of information: 1) moderator data, 2) reflector data, 3) fuel data and 4) geometry constants.

The moderator and reflector materials are specified by six constants:

$$\frac{1}{\tau} \frac{\Sigma_2}{D_2} D_1, D_2, \rho_n, \rho/\rho_n$$

The first four are always given for normal material density, (ρ_n).

Paracantor I adjusts these material constants for any density variation desired by using the ratio of the desired density to normal density, (ρ/ρ_n).

The above constants adjusted for density are:

$$\frac{1}{\tau} = \left(\frac{1}{\tau} \right)_n \left(\frac{\rho}{\rho_n} \right)^2$$

$$\frac{\Sigma_2}{D_2} = \left(\frac{\Sigma_2}{D_2} \right)_n \left(\frac{\rho}{\rho_n} \right)^2$$

$$D_1 = (D_1)_n \left(\frac{\rho_n}{\rho} \right)$$

$$D_2 = (D_2)_n \left(\frac{\rho_n}{\rho} \right)$$

$$\rho = \rho_n \left(\frac{\rho}{\rho_n} \right)$$

where n denotes the value of the constant at normal material density.

The fuel is specified by the moderator/fuel atom ration, (M/u).

Optional input permits changes in η , Σ_a absorption for fuel, and c , the fuel concentration. These are normally constants or may be computed by relations involving constants germane to a specific moderator.

$$\eta = \sqrt{\frac{\sigma_f}{\sigma_f + \sigma_c}}$$

$$\Sigma_a^f = \frac{A(\%_n)}{M/u}$$

$$c = \frac{B(\%_n)}{M/u}$$

The value of η and the constants A and B must be adjusted to give the desired η , Σ_a^f and c values for a given problem.

The geometry constants are given by R , T , and H , with all values given in the actual dimensions. The extrapolated end points, which are assumed to be identical for the fast and slow groups, are computed by the following relationships.

$$T' = T + \Delta T \quad \text{where } \Delta T = 2.13 D_{2r}$$

$$H' = H + 2\Delta H \quad \text{where } \Delta H = 2.13 D_{2c}$$

The 2.13 constant may be changed by an optional input constant.

The core fast group absorption term expressed as $\frac{\Sigma_{1a}}{\Sigma_{1c}}$, is normally set equal to zero. However, any desired value may be specified in the input.

It is to be noted that if new optional input is desired to run a specific problem, the memory locations of such data remain occupied with the information from the preceding problem until it is restored to normal value or the program is re-read into the memory. Input constants which are set equal to zero should be so loaded with the problem input.

The basic input is, therefore:

$$M/u, H, T, R, 1/\ell, \frac{\Sigma_2}{D_2}, D_1, D_2, \rho_n, \frac{\rho}{\rho_n}$$

Typical optional input would be:

$w_p, \frac{\Sigma_{1a}}{\Sigma_{1c}}, \eta, V_1, V_2$ A, B, and the extrapolation constant

Intermediately Computed Constants

The following constants are computed from the input data:

$$L^2 = \left(\frac{1}{\frac{\Sigma_{2c}}{D_{2c}} + \frac{w_p}{D_{2c}V_2}} \right) \div \left[1 + \frac{\Sigma_a^f}{D_{2c}} \left(\frac{1}{\frac{\Sigma_{2c}}{D_{2c}} + \frac{w_p}{D_{2c}V_2}} \right) \right]$$

$$K_{1r} = \left[\frac{1}{\tau_r} + \frac{w_p}{D_{1r}V_1} + \left(\frac{\pi}{H} \right)^2 \right]^{1/2}$$

$$K_{2r} = \left[\frac{\Sigma_{2r}}{D_{2r}} + \frac{w_p}{D_{2r}V_2} + \left(\frac{\pi}{H} \right)^2 \right]^{1/2}$$

$$k = \eta \left(\frac{\Sigma_a^f}{\Sigma_a^f + D_{2c} \left[\frac{\Sigma_{2c}}{D_{2c}} + \frac{w_p}{D_{2c}V_2} \right]} \right)$$

Solution of the Critical Equation

The critical equation for a two group, two region reactor is given above, (page 6). An expanded form of the determinant is used in Paracantor I:³ that is,

$$\Delta = (D_{1c} \frac{X'}{X} - D_{1r} \frac{Z_1}{Z_1}) (S_2 D_{2c} \frac{Y'}{Y} - S_2 D_{2r} \frac{Z_1}{Z_1} - (S_2 - S_3) D_{2r} \frac{Z_2}{Z_2}) \\ - (D_{1c} \frac{Y'}{Y} - D_{1r} \frac{Z_1}{Z_1}) (S_1 D_{2c} \frac{X'}{X} - S_3 D_{2r} \frac{Z_1}{Z_1} - (S_1 - S_3) D_{2r} \frac{Z_2}{Z_2})$$

For a solution of the above equation it is necessary to compute the following quantities:

$$z_1 = I_o(a_1) - \frac{I_o(t_1)}{K_o(t_1)} K_o(a_1)$$

$$z_1' = K_{1r} \left[I_1(a_1) + \frac{I_o(t_1)}{K_o(t_1)} K_1(a_1) \right]$$

3. Ibid p. 246

$$z_2 = I_0(a_2) - \frac{I_0(t_2)}{K_0(t_2)} K_0(a_2)$$

$$z_2' = K_{2r} \left[I_1(a_2) + \frac{I_0(t_2)}{K_0(t_2)} K_1(a_2) \right]$$

where

$$a_1 = K_{1r} \times R \quad t_1 = K_{1r}(R + T)$$

$$a_2 = K_{2r} \times R \quad t_2 = K_{2r}(R + T)$$

If

$$a = 1$$

$$b = \left(\frac{1}{\tau_c} + \frac{1}{L^2} + \frac{\gamma}{\tau_c} \right)$$

$$-c = \frac{k-1-\gamma}{\tau_c L^2}$$

then the condition

$$\frac{k}{(1 + \tau_c^2 + \gamma)(1 + L^2 B^2)} = 1$$

leads to

$$\mu_{H=\infty} = \left[1/2(b + \sqrt{b^2 - 4ac}) \right]^{1/2}$$

$$\nu_{H=\infty} = \left[1/2(b + \sqrt{b^2 - 4ac}) \right]^{1/2}$$

which, when modified for a finite cylinder, become

$$\mu = \left[\mu_{H=\infty}^2 - \left(\frac{\pi}{H} \right)^2 \right]^{1/2}$$

$$\nu = \left[\nu_{H=\infty}^2 + \left(\frac{\pi}{H} \right)^2 \right]^{1/2}$$

if

$$\nu^2 > 0$$

$$X = J_0(\mu R)$$

$$X' = -\mu J_1(\mu R)$$

$$Y = J_0(\nu R)$$

$$Y' = \nu I_1(\nu R)$$

If

$$\nu^2 < 0$$

$$X = I_0(\sqrt{|\nu^2|} x R)$$

$$X' = \sqrt{|\nu^2|} I_1(\sqrt{|\nu^2|} x R)$$

The coupling coefficients, S_1 , S_2 , and S_3 , are computed by the following equations:

$$S_1 = \frac{1}{\tau_c} \frac{D_{1c}}{D_{2c}} \left(\frac{1}{\frac{1}{L^2} + \mu_{H=0}} \right)$$

$$S_2 = \frac{1}{\tau_c} \frac{D_{1c}}{D_{2c}} \left(\frac{1}{\frac{1}{L^2} - \sqrt{\frac{1}{K_{H=0}^2}}} \right)$$

$$S_3 = \frac{1}{\tau_r} \frac{D_{1r}}{D_{2r}} \left(\frac{1}{\frac{1}{K_{2r}^2} - \frac{1}{K_{1r}^2}} \right)$$

The procedure used to evaluate the determinant, or critical equation, is given below for the variable parameter R . The same procedure would be followed if one of the other variable parameters was used.

In the R iteration version, the determinant is evaluated for an initial guess of the critical R , an input number. Depending upon the sign of Δ , the R used is multiplied by an appropriate constant, such as, 1.1 or .75, and this new R is used in the next evaluation of Δ . This procedure is continued until an opposite sign for Δ is obtained. The two R values which bracket the critical R , that is the R for which $\Delta \rightarrow 0$, are used in an averaging scheme until the difference between two choices of R , resulting in an opposite sign of Δ , are less than a stored constant. At the conclusion of each iteration a single card is punched with values of μ , (the variable) and Δ .

The general relationship between the value of Δ and the variables R and M/u is given in Fig. I.

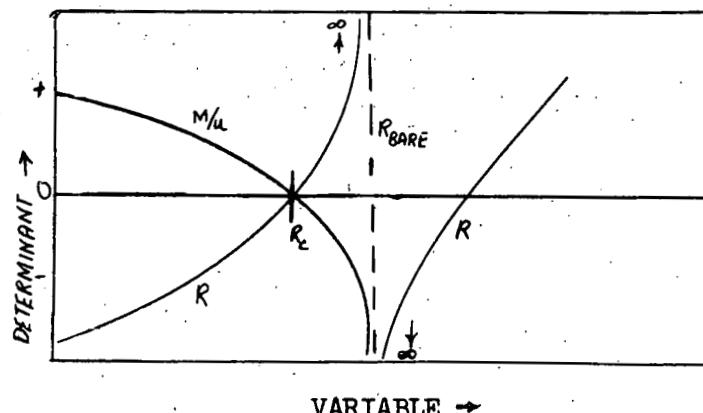


Figure I

As can be seen, other roots exist which are not normally of physical interest. Some indication of the value of the variable parameter must, therefore, be obtained from some other source. In the case of R , $\Delta \rightarrow \pm\infty$ in the region of the radius of the equivalent bare core and other roots exist for $R > R_{Bare}$. Therefore, the initial guess for R must be less than R_{Bare} and the constants used to modify the initial R must be sufficiently small to avoid "jumping" to the wrong branch. A solution obtained for one of the other roots may usually be easily detected since $\mu R \gg 2.405$ and thus X may have a negative sign. The $\mu^2 < 0$ loop allows a somewhat greater latitude for the M/u iterations. However, other roots may be obtained, usually for $\mu^2 < 0$. It is to be noted that - μ on the Paracantor I printout shows as $\mu^2 < 0$.

Output or Edit

When the necessary convergence of the variable parameter is reached, Paracantor I then computes and punches the rest of the output. If output is desired before convergence is reached, manual transfer to memory cell (1688) will force edit, and all resets necessary for solution of a new problem are performed.

Included in the output is the critical parameter together with values of the various functions, all evaluated at the critical parameter. In addition, the volume of the core and reflector and the masses of the fuel, moderator, and reflector are computed and punched. Also included in the output are two modified albedo's:

$$\beta_1 = \frac{1 + 2D_{1r} \frac{Z_1}{Z_1}}{1 - 2D_{1r} \frac{Z_1}{Z_1}}$$
$$\beta_2 = \frac{1 + 2D_{2r} \frac{Z_2}{Z_2}}{1 - 2D_{2r} \frac{Z_2}{Z_2}}$$

and the adjoint coupling coefficients:

$$S_1^* = \frac{1}{S_2} \left(-\frac{D_{1c}}{D_{2c}} \right)$$

$$S_2^* = \frac{1}{S_1} \left(-\frac{D_{1c}}{D_{2c}} \right)$$

$$S_3^* = \left(-\frac{D_{2r}}{D_{1r}} \right) S_3$$

$K_1(x)$ and $I_1(x)$ are also evaluated for $x = K_{1r}(R + T')$ and $x = K_{2r}(R + T')$. These would be of interest if it was desired to evaluate integrals such as $\int d\lambda d\mu$.

A sample output is included with the Test Problem in Appendix C.

After the output has been punched, all counters and instructions are reset to the original form and the computer is automatically transferred to the load routine to read the input for the following problem.

Operation of the Paracantor Code

The basic deck, for both Paracantor I and Paracantor II, contains all of the load, punch and interpretative routines, tables, miscellaneous constants, and the main program necessary for the running of the codes. Also included are all of the necessary resets and constants which are needed to automatically restore both programs to the initial computing conditions. A single card, which precedes the deck, will clear the memory, if it is desired. However, this is not necessary for operation of the codes.

The basic Paracantor I deck iterates on the moderator to fuel atom ratio, (M/u). Short subdecks are available which convert this deck to iterate on one of the other variables, R, η , T or H. These subdecks should immediately follow the main deck and precede the input cards. (Figure 2) The variable to be iterated upon may be changed at any time, after the main deck has been read into the memory, by inserting the desired subdeck before the particular problem input. There is also a subdeck available to convert back to the basic M/u version. The coding for each subdeck version is given in Appendix B.

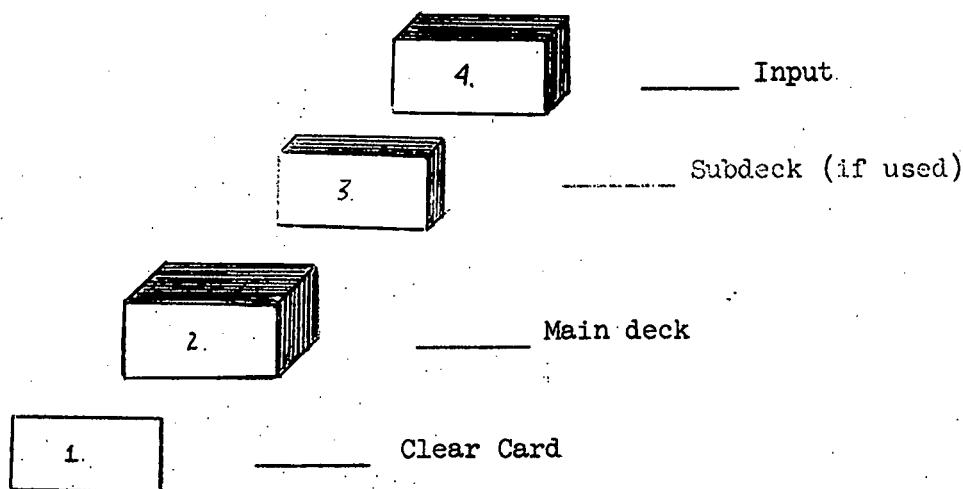


Fig. 2. Arrangement of Cards in Paracantor I

The control console switch settings for both Paracantor I and Paracantor II are:

1. Programmed switch is in the STOP position. Programming will be stopped whenever a stop code (01) is encountered.
2. Half-cycle switch is in the RUN position. The program will proceed automatically once it is started.
3. Control switch is in the RUN position. The program will proceed automatically once it is started.
4. Display switch is in other than READ-OUT STORAGE or READ-IN STORAGE, since the machine will not operate with the control switch in the RUN position if the display switch is in either of these two positions.
5. Overflow switch is set to SENSE. The overflow will be indicated but the machine will not stop except on quotient overflow.
6. Error switch is set to STOP. The machine will stop under any of the following conditions:
 - A. Validity error
 - a. Program register
 - b. Accumulator
 - c. Distributor
 - B. Clocking (timing) error.

Two methods may be used to start the Paracantor programs. (See Appendix F)

I. If the memory is not cleared:

- a. Set 70 1851 1851 on the storage entry switches.
- b. Depress the program or computer-reset key.
- c. Depress the program-start key.
- d. The read light on both the console and read punch unit will be on. Press the read key of the read punch unit to read entire code into the memory.

II. If the memory is to be cleared:

- a. Set 70 0001 0003 in the storage entry switches and proceed as outlined above.

The memory locations of the constants and other pertinent data for Paracantor I are given in Appendix B. The convergence criteria constant, (1684), may be changed to give the desired convergence for any problem. The constants, (1621 and 1622), which determine the rate of change of the variable being iterated upon may also be changed. However, the relation of these constants to unity must be preserved, i.e., the increase constant must remain greater than unity and the decrease constant must remain less than unity. Manual transfer to 1688 will force edit, including all necessary resets, if output is desired before convergence is reached.

It is to be noted that Paracantor does not contain a punch routine. Therefore, to obtain a memory dump, a punch routine, (SLPR), must be read into the memory, thus destroying a small portion of the code, (1950-2000).

A standard 80-80 read and punch board is used. The UCRL board has been modified to permit suppression of any memory cells in the punch band by the insertion of 8's in the corresponding positions in the last memory cell of the punch band. For example, to suppress the third memory cell, an 8 would be inserted in the third position of the last memory cell in the punch band.

In all coding and in the sample printouts which are included the minus sign always follows the number.

The following are some of the difficulties which may be encountered in the operation of the Paracantor I code:

1. e^x for $x > 115$ cannot be correctly evaluated by the 650 Floating Point routine, since an exponent greater than 99 is encountered. The quantity $K_{ir}(R + T')$ is most likely to be affected, thus limiting the thickness of the reflector usable in Paracantor I.
2. The two common causes of quotient overflow are:
 - a. v_1 and v_2 are not loaded. These must NOT be zero.
 - b. The square root of a negative number is attempted.
3. A program stop will be encountered if $K_{ir}r < .22$.

PARACANTOR II

The limited memory space available in the I.B.M. 650 does not permit flux solutions to be included in the Paracantor I code. A second code, Paracantor II, has, therefore, been programmed which computes the fluxes, including the adjoint fluxes, from the output of Paracantor I. The solution of the "critical" reactor by Paracantor I provides the critical parameters, which may be shown to apply to the solution of the adjoint "critical" conditions.

The normal two group, two region flux equations are: (See p. 4 & 5)

$$\phi_{1c} = AJ_0(\mu r) + CI_0(\nu r)$$

$$\phi_{2c} = S_1 AJ_0(\mu r) + S_2 CI_0(\nu r)$$

$$\phi_{1r} = F \left\{ I_0(K_{1r}r) - \frac{I_0}{K_0} [K_{1r}(R_c + T')] K_0(K_{1r}r) \right\}$$

$$\phi_{2r} = S_3 \phi_{1r} + G \left\{ I_0(K_{2r}r) - \frac{I_0}{K_0} [K_{2r}(R_c + T')] K_0(K_{2r}r) \right\}$$

The adjoint flux, represented by ϕ^* , is obtained by interchanging the rows and columns of the matrix operator and solving for a new flux. The calculation of the adjoint fluxes is of particular value in the application of perturbation theory.* The adjoint equations may be written:

$$\nabla^2 \phi_{1c}^* - \left(\frac{\Sigma_{1c}}{D_{1c}} + \frac{\Sigma_{1r}}{D_{1c}} + \frac{w_p}{V_1 D_{1c}} \right) \phi_{1c}^* + \frac{\Sigma_{1c}}{D_{1c}} \phi_{1c}^* = 0$$

$$\nabla^2 \phi_{2c}^* - \left(\frac{\Sigma_{2c}}{D_{2c}} + \frac{w_p}{V_2 D_{2c}} \right) \phi_{2c}^* + \frac{k}{L^2} \phi_{1c}^* = 0$$

$$\nabla^2 \phi_{1r}^* - \left(\frac{\Sigma_{1r}}{D_{1r}} + \frac{w_p}{V_1 D_{1r}} \right) \phi_{1r}^* + \frac{\Sigma_{1r}}{D_{1r}} \phi_{2r}^* = 0$$

$$\nabla^2 \phi_{2r}^* - \left(\frac{\Sigma_{2r}}{D_{2r}} + \frac{w_p}{V_2 D_{2r}} \right) \phi_{2r}^* = 0$$

where solutions may be expressed as follows:

$$\phi_{1c}^* = a^* J_0(\mu r) + b^* I_0(\nu r)$$

$$\phi_{2c}^* = S_1^* a^* J_0(\mu r) + S_2^* b^* I_0(\nu r)$$

$$\phi_{1r}^* = g^* \left\{ I_0(K_{1r}r) - \frac{I_0}{K_0} [K_{1r}(R_c + T')] K_0(K_{1r}r) \right\} + S_3^* \phi_{2r}^*$$

$$\phi_{2r}^* = f^* \left\{ I_0(K_{2r}r) - \frac{I_0}{K_0} [K_{2r}(R_c + T')] K_0(K_{2r}r) \right\}$$

A relative plot of the normal and adjoint flux equations may be obtained simultaneously and in a parallel manner. In Paracantor II an arbitrary choice

* Glasstone & Edlund, p.372

of one constant is made, and the other constants are determined from the boundary conditions. The normalizing factors, N and N^* , are obtained such that

$$\phi_{1c} = \phi_{1c}^* = 1.0 \quad \text{AT } R=0$$

The equations which are used in the code are, therefore:

$$A = \bar{A}N \quad a^* = \bar{a}^*N^*$$

$$C = \bar{C}N \quad b^* = \bar{b}^*N^*$$

$$F = \bar{F}N \quad f^* = \bar{f}^*N^*$$

$$G = \bar{G}N \quad g^* = \bar{g}^*N^*$$

assuming $\bar{F} = \frac{1}{Z_1}$ AND $\bar{F}^* = \frac{1}{Z_2}$

$$\text{then } \bar{A} = \frac{1}{X}(1 - \bar{C}Y)$$

$$\bar{C} = \frac{D_{1c}}{D_{2c}} \frac{Z_1}{Z_2} - \frac{X'}{X}$$

$$G = \frac{1}{Z_2} [S_1 \bar{A}X + S_2 \bar{C}Y - S_3]$$

$$\bar{a}^* = \frac{1 - S_2^* \bar{C}Y}{S_1^* X}$$

$$\bar{b}^* = \frac{D_{1c}}{D_{2c}} \frac{Z_1}{Z_2} - \frac{X'}{X}$$

$$g^* = \frac{1}{Z_2} [\bar{a}^* X + \bar{b}^* Y - S_3^*]$$

and the normalizing constants are

$$N = \frac{1}{\bar{A} + \bar{C}} = \frac{X}{1 + \bar{C}(X - Y)} \quad N^* = \frac{S_1^* X}{1 + \bar{b}^*(S_1^* X - S_2^* Y)}$$

The four fluxes ϕ_1 , ϕ_2 , ϕ_1^* , and ϕ_2^* and the cross products $\phi_1\phi_1^*$, $\phi_2\phi_2^*$, $\phi_1\phi_2^*$ and $\phi_2\phi_1^*$ are computed for values of the radius, which may be specified as input in the following manner.

1. The flux for $r = 0$ is determined without the use of series, since $X(0) = 1$.

2. A Δr_c , an input number, is used to evaluate the flux at r_n .

$$r_n = n(\Delta r_c) \quad n = 1, 2, 3, \dots$$

The varying r_n is tested against R_c , until the next r_n would be greater than R_c .

3. The flux is evaluated at R_c using the core equations.

4. A second input number specifies the first $r_n > R_c$ at which the fluxes are to be evaluated.

5. A Δr_R , an input number, determines the spacing in the reflector in the same manner as in the core. The variable, r , is tested

against $R + T'$ and the last flux is determined at $R + T'$. This value should be zero or approach zero and, thus, provides a check on the calculation.

The fluxes for a given r are punched as soon as they are computed. The Bessel Functions are determined in the same manner as in Paracantor I. (See Appendix A).

Operation of the Paracantor II Code

Paracantor II is a completely self-contained and automatic code. Once the main program has been read into the memory it is not necessary to reload it in order to run as many problems as may be desired. The running time of the code is directly proportional to the number of flux points required, which is determined by the first card of the input. A typical problem, determining ten fluxes in both the core and the reflector, takes about five minutes.

The console switch settings for Paracantor II are the same as for Paracantor I. (p.13). A memory clear card again is optional and is not necessary for operation of the code. The code contains no programmed stop, since K_{ir} is guaranteed to be greater than 0.22 by a Paracantor I solution. If output is desired before the completion of a problem, manual transfer to memory location 1365 will compute the fluxes at $R + T'$ and reset the program for the next problem.

The test problem which is given for Paracantor II, (Appendix E), is a continuation of the same problem used in Paracantor I. No flow diagram is included for Paracantor II, since the calculational procedures follow Paracantor I in detail. The memory locations of the constants and other pertinent data is given in Appendix D.

The input for Paracantor II is in floating point form and consists of seven unaddressed cards. The first card of the input contains Δr_c , R_{1R} (the first r in the reflector for which fluxes are desired), and Δr_R . These quantities occupy locations 1-30 on the I.B.M. card. The next six cards are the last six cards from the Paracantor I output. These can be distinguished by the numbers 1-6 in the 71-80 positions of the cards. These must be in numerical order, since there is no check on the order being correct once the cards are read in. The last card in the main program is a transfer card (to 0646) to those commands which read the input into the memory. Upon the completion of a problem the code automatically transfers to 0646, therefore, no transfer card (s) are needed with any input. However, the transfer card in the main program must be the last card of the program.

The form of the input is:

Δr_c	R_{1R}	Δr_R					
M/u	T	H	w_p	S_1^*	S_2^*	S_3^*	1.0
R_c	S_1	S_2	S_3	μ	γ	v_c	2.0
K_{1R}	K_{2r}	Z_1/Z_1	Z_2/Z_2	M^f	M^m	v_R	3.0
M^R	β_1	β_2	η	D_{1r}	D_{2r}	D_{1c}	4.0
Z_1	Z_2	X	X^*/X	Y	Y^*/Y	$\frac{I_0(t_1)}{K_0}$	5.0
$\frac{I_0}{K_0}(t_2)$	$I_1(t_1)$	$K_1(t_1)$	$I_1(t_2)$	$K_1(t_2)$	$\frac{\sum I_a}{\sum I_c}$	D_{2c}	6.0

The output for Paracantor II is also in floating point form. The arrangement of the output is:

R	ϕ_1	ϕ_2	ϕ_1^*	ϕ_2^*
-	$\phi_1\phi_1^*$	$\phi_2\phi_2^*$	$\phi_1\phi_2^*$	$\phi_2\phi_1^*$

The following are given as aids in the operation of the Paracantor II code:

1. If Δr_c or Δr_R is set equal to zero, the program will go into a loop and the problem will not be completed.

2. If $\Delta r_c > R_c$, the flux calculation in the core may be skipped.

The program will compute the flux at $r = 0$ and $r = R_c$, from core

equations and then proceed in the normal fashion. In a similar manner, if $\Delta r_R > T'$, the program will bypass the reflector points, except for $r = R_{1R}$ and $r = R_c + T'$.

3. If $\Delta r_c = R_c/n$, where n is an integer, $\phi(R_c)$ is evaluated twice using the core equations. Similarly, if $\Delta r_R = T'/n$, a double evaluation of $\phi(R+T')$ is made.
4. If $R_{1R} = R_c$, the fluxes for R_{1R} are calculated by use of the reflector equations, thus providing a check on the flux boundary conditions.
5. If $R_{1R} < R_c$ or $R_{1R} > R_c + T'$, the program automatically replaces the R_{1R} by R_c and proceeds.
6. The fluxes at $R_c + T'$ are frequently identically zero, but occasionally will have absolute values of 10^{-8} to 10^{-12} .

This is generally because the Z 's are not zero due to round off in the $\frac{I_0}{K_a} [K_{ir} (R_c + T')]$ terms in Paracantor I.

Appendix A

Bessel Functions

The Bessel Functions used in Baracantor I are all evaluated by series with the exception of $J_0(x)$ and $J_1(x)$ for $x < 2$.

In the case of $J_0(x)$ and $J_1(x)$ a single series is used, since the desired value of the argument for solution of the critical equation usually lies below the first zero, ($x < 2.405$). The series used are:

$$J_0(x) = 1 - \frac{x^2}{(2)^2(1!)^2} + \frac{x^4}{2^4(2!)^2} - \frac{x^6}{2^6(3!)^2} + \frac{x^8}{2^8(4!)^2} - \frac{x^{10}}{2^{10}(5!)^2} + \frac{x^{12}}{2^{12}(6!)^2} - \frac{x^{14}}{2^{14}(7!)^2} \quad (p.1)$$

$$J_1(x) = \frac{x}{2} - \frac{x^2}{2^3 1! 2!} + \frac{x^5}{2^5 2! 3!} - \frac{x^7}{2^7 3! 4!} + \frac{x^9}{2^9 4! 5!} - \frac{x^{11}}{2^{11} 5! 6!} + \frac{x^{13}}{2^{13} 6! 7!} - \frac{x^{15}}{2^{15} 7! 8!} \quad (p.1)$$

Two series are used to evaluate $I_0(x)$ and $I_1(x)$, since the arguments of these Bessel functions may vary widely depending upon the reactor materials used. The series used are, therefore:

A. $x \leq 5$

$$I_0(x) = 1 + \frac{x^2}{2^2(1!)^2} + \frac{x^4}{2^4(2!)^2} + \frac{x^6}{2^6(3!)^2} + \frac{x^8}{2^8(4!)^2} + \frac{x^{10}}{2^{10}(5!)^2} + \frac{x^{12}}{2^{12}(6!)^2} + \frac{x^{14}}{2^{14}(7!)^2} \quad (p. 213)$$

$$I_1(x) = \frac{x}{2} + \frac{x^3}{2^3 1! 2!} + \frac{x^5}{2^5 2! 3!} + \frac{x^7}{2^7 3! 4!} + \frac{x^9}{2^9 4! 5!} + \frac{x^{11}}{2^{11} 5! 6!} + \frac{x^{13}}{2^{13} 6! 7!} + \frac{x^{15}}{2^{15} 7! 8!} \quad (p. 213)$$

B. $x > 5$

The asymptotic series are used, where the last coefficient has been adjusted to give the best fit as $x \rightarrow 5$. (1 part in 10^4)

$$I_0(x) = \frac{e^x}{(2\pi x)^{1/2}} \left\{ 1 + \frac{1^2}{1!8x} + \frac{1^2 \cdot 3^2}{2!(8x)^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{3!(8x)^3} + .15094433 \frac{1}{x^4} \right\} \quad (p. 271)$$

$$I_1(x) = \frac{e^x}{(2\pi x)^{1/2}} \left\{ 1 - \frac{1 \cdot 3}{1!8x} - \frac{1^2 \cdot 3 \cdot 5}{2!(8x)^2} - \frac{1^2 \cdot 3^2 \cdot 5 \cdot 7}{3!(8x)^3} - .19129591 \frac{1}{x^4} \right\} \quad (p. 271)$$

$K_0(x)$ and $K_1(x)$ are evaluated by an asymptotic series for arguments greater than 2. The last coefficient has again been adjusted to give a smooth fit as $x \rightarrow 2$. (1 part in 10^4)

$$K_0(x) = \left(\frac{\pi}{x}\right)^{1/2} e^{-x} \left\{ 1 - \frac{1^2}{1!8x} + \frac{1^2 \cdot 3^2}{2!(8x)^2} - \frac{1^2 \cdot 3^2 \cdot 5^2}{3!(8x)^3} + .058964527 \frac{1}{x^4} \right\} \quad (p. 271)$$

$$K_1(x) = \left(\frac{\pi}{x}\right)^{1/2} e^{-x} \left\{ 1 + \frac{1 \cdot 3}{1!8x} - \frac{1^2 \cdot 3 \cdot 5}{2!(8x)^2} + \frac{1^2 \cdot 3^2 \cdot 5 \cdot 7}{3!(8x)^3} - .077874253 \frac{1}{x^4} \right\} \quad (p. 271)$$

$K_0(x)$ and $K_1(x)$ for $x < 2$ are evaluated by a table look up plus a seven point LaGrangian interpolation scheme. The smallest argument which can be evaluated is $x = 0.22$. The form is as follows:

$$f_n = f_0 + nA + B^{II}C + B^{III}D + B^{IV}E + B^V F + B^{VI}G$$

where

f_0 is the first tabular value smaller than the f being searched for.

$$A = (f_1 - f_0)$$

$$C = (f_2 - f_1 - f_0 + f_{-1})$$

$$D = (f_2 - 3f_1 + 3f_0 - f_{-1})$$

$$E = (f_3 - 3f_2 + 2f_1 + 2f_0 - 3f_{-1} + f_{-2})$$

$$F = (f_3 - 5f_2 + 10f_1 - 10f_0 + 5f_{-1} - f_{-2})$$

$$G = (f_4 - 5f_3 + 9f_2 - 5f_1 - 5f_0 + 9f_{-1} - 5f_{-2} + f_{-3})$$

$$B^{II} = \frac{n(n-1)}{4}$$

$$B^{III} = \frac{n(n^2 - \frac{3}{2}n + \frac{1}{2})}{6}$$

$$B^{IV} = \frac{n(n^3 - 2n^2 - n + 2)}{48}$$

$$B^V = \frac{n(n^4 - \frac{5}{2}n^3 + \frac{5}{2}n + 1)}{120}$$

$$B^{VI} = \frac{n(n^5 - 3n^4 - 5n^3 + 15n^2 + 4n - 12)}{1440}$$

Appendix B

Problem: Paracantor I - Subdecks

Loc.		Data	Instr.	Remarks
Instr.	Operation	Addr.	Addr.	
<u>M/u ITERATION</u>				
1658	LD	69	1627	1659 M/u \rightarrow 1679 for modification
1573		-00	1627	0000 .95 M/u \rightarrow 1627
1574	BR	-12	0931	0000 Recycle
1666	LD	69	1627	1667 M/u \rightarrow 1678 for modification
1576		-00	1627	0000 1.05 M/u \rightarrow 1627
1577	BR	-12	0931	0000 Recycle
1582		-00	1627	0000 $M/u_i + M/u_j$ $\frac{2}{2} \rightarrow 1627$
1583	BR	-12	0931	0000 Recycle
1621		49	9500	0000 Constant - decreases M/u
1622		50	1050	0000 Constant - increases M/u
1684		50	1000	0000 Convergence criteria
1124	LD	69	1627	1125 Transfers M/u to punch each iteration

R ITERATION (All D and I addresses of 1627 are changed to 0570)

1621		50	1100	0000 Constant - Increases R
1622		49	7500	0000 Constant - Decreases R
1684		49	2500	0000 Convergence Criteria

η ITERATION (All D and I addresses of 1627 are changed to 0584)
The recycle F.D. BR commands are changed to:

1621		-12	1165	0000
1622		50	1050	0000 Constant - Increases η
1684		49	9500	0000 Constant - Decreases η
		47	1000	0000 Convergence criteria

H ITERATION (All D and I addresses of 1627 are changed to 0569)
The recycle F.D. BR commands are changed to:

		-12	1163	0000
		The constants for R may be used.		

1163	A-B-C	-06	0569	1153 } H' - 2 Δ H = H
1164		-00	1629	0000 }
1124	LD	69	1629	1125 Transfers H to punch each iteration

T ITERATION (All D and I addresses of 1627 are changed to 0568)
The recycle F.D. BR commands are changed to:

		-12	1163	0000
		The constants for R may be used.		

1163	A-B-C	-06	0568	1152 } T' - Δ T = T
1164		-00	1628	0000 }
1124	LD	69	1628	1125 Transfers T to punch each iteration

Appendix B

Problem: Paracantor I - Memory Locations of Constants and Pertinent Data

Loc.		Instr.		
Instr.	Operation	Addr.	Addr.	Remarks
567				Empty
568				T'
569				H'
570				R (Input)
573				$1/\tau_c$
574				$\sum 2c/D_{2c}$
575				D_{1c}
576				D_{2c}
577				ρ_c
578				$1/\tau_r$
579				$\sum 2r/D_{2r}$
580				D_{1r}
581				D_{2r}
582				ρ_r
583				$\sum a$
584				η (Optional Input)
585				Extrapolation Constant (Optional Input)
586				2.0
587				Zero (all)
588				π
589				K_{1r}
590				K_{2r}
591				1.0
592				L^2
593				5.0
594				0.22 (Lower Argument Limit)
637	24	0029	0026	$\sum 1c/\sum l_c$
697	00	0001	0000	
698				Temporary Storage
699				Empty
702				Empty
703				Empty
704				Empty
705				Empty
719				(e/e_n) (Input)

Problem: Paracantor I - Memory Locations of Constants and Pertinent Data

Loc.		Data	Instr.		Remarks
Instr.	Operation	Addr.	Addr.		
720				$(\epsilon/\epsilon_n)_c$	(Input)
721				v_2	} (Optional Input) - must
722				v_1	be filled - non-zero
723				Empty	
725				$\nu_H = \infty$	
726				$\mu_H = \infty$	
740				Z^2	
741				Y^2/Y	
742				Y	
743				X'/X	
744				X	
745				$I_o/K_o [K_{2r} (R + T')]$	
746				Z^1	
747				$I_o/K_o [K_{1r} (R + T')]$	
748	00	0000	0797	} Constants in K_o, K_1 locator	
749	00	0000	0997	scheme	
760	01	0000	0000	Stop	
762	00	0001	0000		
763				n - Argument Fraction	
764				3.0	
765					
766					
767				Temporary Storage	
768	51	1000	0000		
769	50	9000	0000		
770	52	1200	0000		
771	50	4000	0000		
772	49	5000	0000		
773	50	6000	0000		
774	51	4800	0000		
775	53	1440	0000		
800					
895					
959	00	0000	0001		
1000					
1095					
1120					
1121					
1127				μ	Punch Band used
1128				Variable	} in Iteration
1129				Determinant	cycle
1131				Empty	
1132				Empty	
1133				Empty	
899				Empty	

Problem: Paracantor I - Memory Locations of Constants and Pertinent Data

Loc.		Data	Instr.		
Instr.	Operation	Addr.	Addr.		Remarks
1134				Empty	
1135				Empty	
1136	00	0888	8888	Punch Band (1127) Field Control	
1149				Empty	
1150				Empty	
1151				Empty	
1152				Empty	
1153				Empty	
1157	00	0000	0007		
1160				c - fuel concentration (gm/cm ³)	
1161				Empty	
1162				Empty	
1216	49	2500	0000	I ₀ (x) constants x < 5.0	
1217	48	1562	5000		
1218	46	4340	2778		
1219	44	6781	6840		
1220	42	6781	6840		
1221	40	4709	5028		
1222	38	2402	8975		
1223				Argument Storage	
1236	49	5000	0000	I ₁ (x) constants x < 5.0	
1643	48	6250	0000		
1644	47	2604	1667		
1645	45	5425	3472		
1646	43	6781	6840		
1647	41	5651	4033		
1648	39	3363	9306		
1649	37	1501	7547		
1255	49	1250	0000	I ₀ (x) constants x > 5.0	
1256	48	7031	2500		
1257	48	7324	2187		
1258	49	1509	4433		
1277	49	3750	0000		
1278	49	1171	8750		
1279	49	1025	3906		
1280	49	1912	9591		
1281	08	0000	0000	Table Constants	
1282	00	0000	0050		
1379	49	1250	0000		
1380	48	7031	2500	K ₀ (x) constants x > 2.0	
1381	48	7324	2187		
1382	48	5896	4527		

Problem: Paracantor I - Memory Locations of Constants and Pertinent Data

Loc.		Data	Instr.		
Instr.	Operation	Addr.	Addr.		Remarks
1406		49	3750	0000	
1407		49	1171	8750	
1408		49	1025	3906	
1409		48	7787	4253	
1417					$K_1(x)$ constants $x > 2.0$
1429					$A - \text{constants } \sum_a^r = \frac{A(e/e_n)}{m/n}$
1482		49	2500	0000	
1483		48	1562	5000	
1484		46	4340	2778	
1485		44	6781	6840	
1486		42	6781	6849	
1487		40	4709	5028	
1488		38	2402	8075	
1500		49	5000	0000	
1501		48	6250	0000	
1502		47	2604	1667	
1503		45	5425	3472	
1504		43	6781	6840	
1505		41	5651	4033	
1506		39	3363	9306	
1507		37	1501	7547	
1584					Empty
1621					Multiplication constants in
1622					new variable selection
1627					Edit Punch Band
↓					
1634					
1639					Working Storage
↓					
1642					
1675					a counter
1676					b counter
1677	00	0000	0002		
1678					(Variable)a
1679					(Variable)b
1684					Convergence Criteria Constant
1951					Temporary Working Storage
↓					
1960					
1979					Empty
1980					
↓					Short Load Routine
1999					

PARACANTOR I - TEST PROBLEM

The test problem which follows uses water as the moderator, U^{235} as the fuel, and thick graphite as the reflector. R , the core radius, is the variable parameter. A basic deck, a subdeck, and the input deck are, therefore, assembled in order.

Input

All numbers in the input are in floating point form. The order is immaterial except for the transfer card, (to 0026), which must always be the last card of the input. The input constants $\frac{1}{\tau}$, $\frac{\Sigma_2}{D_2}$, D_1 , and D_2 are given for normal density. All of the constants used are from Glasstone and Edlund.

A. Basic Input

First Card: $M/u, T, H, w_p$

Second Card: R initial

Third Card: $1/\tau_c, \frac{\Sigma_2c}{D_{2c}}, D_{1c}, D_{2c}, (\rho_n)c$

Fourth Card: $1/\tau_r, \frac{\Sigma_2r}{D_{2r}}, D_{1r}, D_{2r}, (\rho_n)r$

Fifth Card: $(\rho/\rho_n)_r, (\rho/\rho_n)_c$

B. Optional Input

Sixth Card: γ

Seventh Card: v_1, v_2

Eighth Card: $\frac{1-a}{\Sigma_1c}$

Ninth Card: $B \quad c = \frac{B(\rho/\rho_n)}{M/u}$

Tenth Card: $A \sum_a^f = \frac{A(\rho/\rho_n)}{M/u}$

Last Two Cards

Eleventh Card: Loads the i counter (0029) of the floating point routine.

Twelfth Card: Transfers to the floating point routine.

Output

All numbers in the output are in floating point form. The numbers in the eighth position on each card serve as markers for Paracantor II input. The arrangement of the output is as follows:

M/u	T	H	w_p	s_1^*	s_2^*	s_3^*	1.0
R	s_1	s_2	s_3	μ	$\sqrt{ }$	v_c	2.0
K_{1r}	K_{2r}	z_1'/z_1	z_2'/z_2	M^f	M^m	v_r	3.0
M^r	β_1	β_2	η	D_{1r}	D_{2r}	D_{1c}	4.0
z_1	z_2	X	X'/X	Y	Y'/Y	$I_o^{(t_1)} K_o(t_1)$	5.0
$I_o^{(t_1)} / K_o(t_1)$	$I_1(t_1)$	$K_1(t_1)$	$I_1(t_2)$	$K_1(t_2)$	$\frac{\Sigma_a}{\Sigma_{1c}}$	D_{2c}	6.0

where

$$t_1 = K_{1r}(R + T')$$

$$t_2 = K_{2r}(R + T')$$

APPENDIX D

PARACANTOR II - Memory Locations of Constants and Pertinent Data

Location of Instruction	Code	Data	Instruction	Remarks
568				R = 0
569	49	2500	0000	
570	48	1562	5000	
571	46	4340	2778	
572	44	6781	6840	$J_0(x)$ constants
573	42	6781	6840	
574	40	4709	5028	
575	38	2402	8075	
577	49	2500	0000	
578	48	1562	5000	
579	46	4340	2778	
580	44	6781	6840	$I_0(x)$ Constants
581	42	6781	6840	$x < 5.0$
582	40	4709	5028	
583	38	2402	8075	
584	49	1250	0000	
585	48	7031	2500	$I_0(x)$ constants
586	48	7324	2187	$x > 5.0$
587	49	1509	4433	
590				2.0
591				π
592				Extrapolation Constant
594				3.0
596				5.0
597				10.0

<u>Location of Instruction</u>	<u>Code</u>	<u>Data</u>	<u>Instruction</u>	<u>Remarks</u>
598				9.0
599				4.0
609				Empty
610				Empty
611				C
612				A
613				G
614				F
615				b*
616				a*
617				f*
618				g*
619				b*
620				a*
621				f*
622				g*
627				Initial R=0
628				} Set Punch Band to Zero
↓ 636				
650				Working Storage
659				Empty
660				Empty
667				1.0
677				Working Storage
678				Working Storage
709				Empty

<u>Location of Instruction</u>	<u>Code</u>	<u>Data</u>	<u>Instruction</u>	<u>Remarks</u>
710				Empty
727 ↓ 736				} Set Punch Band to zero
759				Empty
760				Empty
766				0.5
767				48.0
768				120.0
799	00	0000	897	Constant in K_o , locator scheme
809				Empty
810				Empty
816				6.0
817				1440.0
859				Empty
860				Empty
864				Working Storage
878	49	1250	0000	} $K_o(x)$ constants $x > 2.0$
879	48	7031	2500	
880	48	7324	2187	
881	48	5896	4527	
1951 ↓ 1960				Working Storage

UTILITY PROGRAMS USED IN PARACANTOR

I. Setting of Storage Entry Switches.

If the clear card shown below is used, the storage entry switches should be set to

70 0001 0003

If this card is not used, the Storage Entry keys should be set to

70 1851 1851

II. Storage Clear Card.

Description

This card places +0 in locations 0002 through 1999 inclusive, and places the instruction 70 1851 1851 in location 0000. It concludes by executing the instruction 70 1851 1851.

Card

0001:	00	0001	0000
0002:	16	0001	8002
0003:	69	0005	0004
0004:	24	0000	0006
0005:	70	1851	1851
0006:	65	0007	8002
0007:	21	1999	0002
0008:	00	0000	0000

III. The first card (or the second card, if a clear card is used)

is the Initial loader. This is read into locations 1851-1856.

1851:	70	1901	1852
1852:	69	1902	1901
1853:	69	1904	1903
1854:	69	1906	1905
1855:	69	1908	1907
1856:	70	1851	1996

This card will load cards of the following format:

1901 24 L(word 1) 1853

1902 Word 1

1903 24 L(word 2) 1854
 1904 Word 2
 1905 24 L(word 3) 1855
 1906 Word 3
 1907 24 L(word 4) 1851
 1908 Word 4.

The initial loader is used to load the standard load routine, which is loaded, four words per card, in the format shown above. (These cards must not be load cards.).

In the last card of the load routines of Paracantor I, the Instruction Address of word 7 is 1856. This is followed by a card having all 80 columns punched with zeros. This will clear the 1851-1860 read buffer. Control is automatically transferred to the standard load routine for reading the rest of the cards.

In the last card of the "Long Load and Punch Routine" used with Paracantor II, word 7 is 24 1851 1851 and word 8 is 70 1851 1996. This card is followed by a card with eighty zeros, which clears out the read band 1851-1860. Control is then automatically transferred to the "Long Load and Punch Routine" to read in the rest of the program.

IV. Standard Load Routine for Paracantor I.

This program will load n words per card, $1 \leq n \leq 7$, into consecutive locations, the first word being placed in the location punched in column 7 - 10. n is punched in column 6. If $n = 0$, the card serves to transfer control, the next instruction being taken from the address specified in columns 7 - 10. The program is included below.

V. Long Load and Punch Routine LLPR

The Long Load and Punch Routine, used in Paracantor II, is

is loaded four words per card by the initial loader described above.

A description of this routine, and the coding for both the load routine and punch routine is included below. The constant in 1981 in the load routine should read 24 0000 1999.

VI. Interpretive Routine

This problem uses the Floating Decimal Interpretive Routine described in IBM Technical Newsletter No. 8, pp. 17-43. This has been modified in that the multiplication routine, page 25 in the newsletter, has been changed so that it will yield a normal zero when one of the factors is zero. A constant, 98 9898 9898 is placed in location zero, so that a transfer of control to location zero due to the omission of cards will stop the machine with a recognizable number in the program register. The coding for the revised multiply routine is included below. An asterisk indicates a change from Technical Newsletter No.8.

VII. Exponential Routine

The interpretive system described above handles floating point arithmetic. This problem also uses the exponential function. In the interpretive system, a command of the form -22 AB will compute e^x , where x is the floating point number in location A, and store e^x in location B. The calculation uses a Chebyshev polynomial. The coding is included below.

IBM TYPE 650 PROGRAM SHEET

PROBLEM: Standard Load Routine for Paracantor I WRITTEN BY: _____

INSTR NO.	LOCATION OF INSTRUCTION	OPERATION		ADDRESS		REMARKS
		ABBRV.	CODE	DATA	INSTRUCTION	
1996	RD	70	1951	1994		
199	1994	RAL	65	1951	1981	
1981	SL	16	1998	1982		
1982	BRMIN	46	1951	1983		is n = 0 ? (transfer card)
1983	SLT	35	0004	1989	No	
1989	AL	15	1951	1984		n + A
1984	LD	69	1988	1991		
1991	STD A	22	1988	1992	Last word control	
1992	SLT	35	0004	1999		
1999	STD A	22	1959	1986	First store command	
1986	RAL	65	1990	1987	First load command	
1987	AU	10	1959	8002		
*	8002	LD	69	(1952+i)	8003	
*	8003	STD	24	(A+i)	1995	
1995	AU	10	1998	1980	Modify store command	
1980	AL	15	8001	1985	Modify load command	
1985	SU	11	1988	1993		
1993	BRNZU	44	1997	1996	End of card:?	
1997	AU	10	8001	8002		
Constants:						
1988		24	(0000)	1995		
1990		69	1952	8003		
1998		00	0001	0000		

Note: Instructions marked with (*) do not appear on Drum.

IBM TYPE 650 PROGRAM SHEET

PROBLEM: Revised Multiply Routing

WRITTEN BY: _____

INSTR NO.	LOCATION OF INSTRUCTION	OPERATION		ADDRESS		REMARKS
		ABBRV.	CODE	DATA	INSTRUCTION	
0134	RAL	65	0037	0141		
0141	SLT	35	0002	0097		
0097	STL	20	0151	0106		
0106	RAU	60	8003	0063		
0063	SRT	30	0002	0119		
0119	RAABL	67	8002	0128		
0128	SL	16	0131	0085		
0085	AU	10	0089	0093		
0093	BRMIN	46	0096	0147		
0096	SU	11	8001	0103		
0103	SL	16	8001	0161		
0161	SIT	35	0002	0117		
0117	AU	10	8002	0075		
0075	RSU	61	8003	0138		
0138	SRT	30	0002	0095		
0147	SU	11	8001	0155		
0155	AL	15	8001	0113		
0113	SIT	35	0002	0121		
0121	AU	10	8002	0115		
0115	RAU	60	8003	0138		
*	0095	MPY	19	0151	0109	
*	0109	LD	69	8003	0173	
*	0173	SLT	35	0002	0181	
*	0181	SRT	30	0001	0042	
*	0042	SCT	36	0001	0100	
*	0100	SRT	30	0009	0170	
*	0170	BRWV	47	0124	0125	OV if product of form X.XXX XXX
*	0124	SRD	31	0002	0082	Product of form X.XXXXXX
*	0082	BRNZ	45	0086	0083	
*	0086	STD A	22	0089	0047	
*	0047	STIA	23	0052	0163	
*	0163	RAL	65	8001	0083	Answer into lower
0083	STL	20	0037	0026		Finis
*	0125	SRD	31	0003	0135	Product of form XX.XXXXXX
*	0135	STD A	22	0089	0094	
*	0094	STIA	23	0052	0107	
*	0107	RAL	65	8001	0114	
*	0114	BRMIN	46	0171	0123	
*	0171	SL	16	0126	0083	Adjust exponent
*	0123	AL	15	0126	0083	
Constants:						
	0000	98	9898	9898		
	0126	01	0000	0000		
Note: An asterisk indicates a change from the program in Technical Newsletter No. 8.						

IBM TYPE 619 PROGRAM SHEET

PROBLEM: LOAD ROUTINE (Modified) for LLPR WRITTEN BY: LASNIK and KEIRSTEAD

IBM TYPE 650 PROGRAM SHEET

PROBLEM: $e^A \rightarrow B$

WRITTEN BY: _____

Storage locations 0466-0566

INSTR NO.	LOCATION OF INSTRUCTION	OPERATION		ADDRESS DATA	INSTRUCTION	REMARKS
		ABBRV.	CODE			
0022	SLT	35	0002	0503		
0503	LD	69	0559	0466		
0466	STDA	22	0478	0550	Set exit to Store Ans in B	
0550	RAABL	67	0037	0558		
0558	SL	16	0561	0515		
0515	BRMIN	46	0468	0518	is $ A \geq 50$ in 10?	
0518	RAU	60	0037	0510	Yes	
0510	BRMTN	46	0478	6005	is A negative? If NOT STOP	
0468	AL	15	0471	0475	$ A \leq 50$ in 10	
0475	BRMTN	46	0466	0531	is $ A \geq 10^{-10}$	
0531	RAL	65	0037	00557	Yes	
0557	SLT	35	0002	0513		
0513	SPL	20	0467	0470	$A \rightarrow 0467$	
0470	RAABL	67	8003	0477		
0477	SL	16	0480	0485		
0485	SIT	35	0004	0545		
0545	BRMTN	46	0500	0501	is $ A \geq 1$	
0500	SL	16	0553	0509	No: Modify Shift Right Inst.	
0501	AL	15	0554	0509	Yes: Modify Shift Left Inst.	
0509	SIT	20	0521	0514		
0514	RAL	65	0467	0521		
0521	SRT	30	000X	0527		
	SIT	35	000X			
0527	DIV	14	0481	0469	$A/10 = I + r$	
0469	STL	20	0473	0476	$I \rightarrow 0473$	
0476	SRT	30	0009	0547	$r = j + s; j \rightarrow 8003, s \rightarrow 8002$	
0547	STL	20	0552	0555	$s \rightarrow 0552$	
0555	SL	16	8001	0511		
0511	SIT	35	0004	0519	Modify Last Mult. Inst	
0519	AU	10	0522	0532		
0532	STU	21	0499	0512		
0512	RAU	60	0484	0543		
0543	MULT	19	0552	0517	$A_{10} \cdot S = K_{10}$	
0517	RAU	60	8003	0533		
0533	AU	10	0486	0494		
0494	MULT	19	0552	0474	$(A_9 + K_{10})S = K_9$	
0474	RAU	60	8003	0534		
0534	AU	10	0487	0494		
0544	MULT	19	0552	0566	$(A_8 + K_9)S = K_8$	
0566	RAU	60	8003	0524		
0524	AU	10	0483	0488		
0488	MULT	19	0552	0525	$(A_7 + K_8)S = K_7$	
0525	RAU	60	8003	0536		
0536	AU	10	0489	0496		
0496	MULT	19	0552	0526	$(A_6 + K_7)S = K_6$	
0526	RAU	60	8003	0537		
0537	AU	10	0490	0546		
0546	MULT	19	0552	0479	$(A_5 + K_6)S = K_5$	
0479	RAU	60	8003	0538		

IBM TYPE 650 PROGRAM SHEET

PROBLEM: $e^A \rightarrow B$

WRITTEN BY:

INSTR NO	LOCATION OF INSTRUCTION	OPERATION		ADDRESS INSTRUCTION	REMARKS
		ABBRV.	CODE		
0538	AU	10	0491	0497	
0497	MULT	19	0552	0529	$(A_4 + K_5)S = K_4$
0529	RAU	60	8003	0539	
0539	AU	10	0492	0549	
0549	MULT	19	0552	0482	$(A_3 + K_4)S = K_3$
0482	RAU	60	8003	0540	
0540	AU	10	0493	0548	
0548	MULT	19	0552	0530	$(A_2 + K_3)S = K_2$
0530	RAU	60	8003	0541	
0541	AU	10	0495	0498	
0498	MULT	19	0552	0562	$(A_1 + K_2)S = K_1$
0562	RAU	60	8003	0542	
0542	AU	10	0495	0499	
0499	MULT	19	0506+j	0528	$(A_0 + K_1)S = e^A$ (see note below)
0528	SCT	36	0000	0502	
0502	STU	21	0560	0563	$e^A \rightarrow 0560$
0563	SLT	35	0008	0523	
0523	RSL	66	8002	0564	
0564	SLT	35	0002	0520	-count to 8003
0520	AII	10	0473	0535	I-Count
0535	AU	10	0551	0556	$51 + I - \text{count} = \text{exp}$
0556	AL	15	0560	0516	
0516	SRD	31	0002	0478	e^A
0565	RAL	65	0472	0478	If $A < 10^{-10}$ set Ans to
0478	STL	20	B	0026	
					Note
					* If $j = -2$ mult. by $1/e^2$
					$j = -1$ mult. by $1/e$
					$j = 0$ mult. by 1
					$j = 1$ mult. by e
					$j = 2$ mult. by e^2

IBM TYPE 650 PROGRAM SHEET

PROBLEM: $e^A \rightarrow B$

WRITTEN BY:

Constants

INSTR NO.	LOCATION OF INSTRUCTION	OPERATION		ADDRESS		REMARKS
		ABBRV.	CODE	DATA	INSTRUCTION	
0559	STL	20	0000	0026		
0561		52	1151	2925	50 in 10	
0471		12	1151	2925		
0480		00	0000	0050		
0553		30	0000	0527		
0554		35	0000	0527		
0481		23	0258	5093	In 10	
0522		19	0506	0528		
0504		01	3533	5283	1/e ²	
0505		03	6787	9442	1/e	
0506		10	0000	0000	e ⁰	
0507		27	1828	1828	e	
0508		73	8905	6097	e ²	
0484		00	0000	0282	a ₁₀	
0486		00	0000	2825	a ₉	
0487		00	0002	4794	a ₈	
0483		00	0019	8343	a ₇	
0489		00	0138	8893	a ₆	
0490		00	0833	3364	a ₅	
0491		00	4766	6666	a ₄	
0492		01	6666	6661	a ₃	
0493		05	0000	0000	a ₂	
0495		10	0000	0000	a ₁ , a ₀	
0472		50	1000	0000		

THE LOAD AND PUNCH ROUTINE

1. THE LOAD ROUTINE

Definitions

Addressed Card: see Plus Card.

Control Field: Columns 1-10 on a card.

Field k: Columns $10k+1$ through $10(k+1)$ on the card. $k = 1, 2, 3, \dots$ or 7.

Minus Card: One having an "X" Punch in column 10 along with whatever other digit may be necessary.

Plus Card: One having no "X" punch in column 10.

Un-addressed Card: see Minus Card.

Units column of Field k: Column $10(k+1)$.

Word: Any 10 digit number with sign. It may represent either an instruction or a piece of data. It is entered in field k with the most significant digit in column $10k+1$ and the least significant digit in column $10(k+1)$. The sign, if the word is negative, is double punched an "X" in the units column of the field. No extra punch is necessary if the word is positive. Every column of the field must be punched and only the units column should be double punched.

The Control Field

Columns 1-5: punched 0,0,0,0,0 respectively.

Column 6: Punched with a single digit, n, permissible values of which will be enumerated in the following sections, Plus Cards and Minus Cards.

Columns 7-9: Punched with the first 3 digits of a 4 digit number having significance to the load routine in the circumstances to be described in the two sections, Plus Cards and Minus Cards, below.

Column 10: Punched with the fourth digit of the above-mentioned four digit number in the case of Plus Cards. In addition to this fourth digit, column 10 has an "X" punch if the card is a Minus Card.

Plus Cards

If n (column 6 in the Control Field) is zero, fields 1-7 on the card are ignored, and the load routine will transfer control to that instruction whose location is determined by the four digit number in columns 7-10 of the Control Field of the card.

If n is one of the digits 1,2,3,... or 7, fields 1 through n, respectively, of the card are transferred to the consecutive locations on the drum starting with that one whose address is given by the four digit number in columns 7-10 of the Control Field of the Card.

Values of n other than those listed above are not permissible for Plus Cards.

Minus Cards

If n (column 6 of the Control Field of the card) is zero, fields 1-7 on the card are ignored and the load routine will transfer control to that location whose address is determined by the four digit number in columns 7-10 of the Control Field of the card.

If n equals 9, an address is entered into the load routine which is that of the first of a sequence of locations to which information from succeeding cards (on which n≠0 or 9) will be sent up by the load routine. Fields 1-7 of the card are ignored. This address is taken from columns 7-10 of the Control Field of the card.

If n is one of the digits 1,2,3,... or 7, the n words, fields 1 through n respectively, of the card are stored on the drum in consecutive locations starting with the location whose address is one greater than that of the location to which the last word on the preceding card (on which n≠0 or 9) was sent. The four digit number in columns 7-10 of the Control Field of the card is ignored by the load routine. Hence these digits may be used for card identification purposes.

Values of n other than those listed above are not permissible on Minus Cards.

Entering from Program

The load routine may be entered from any program by transferring control to drum location 1996. Control is returned to the program by the use of a card having n=0 (column 6 of the control field) behind the deck of cards to be entered.

Example

Consider the following load deck, containing many of the possible combinations that can be handled by the load routine.

Card 1: A plus card for which n=3 and columns 7-10 of the control field contain the address 0300.

The load routine will send the word in field 1 to location 0300; the word in field 2 to location 0301; the word in field 3 to location 0302 and read in.

Card 2: A minus card on which n = 2

The load routine will send the word in field 1 to location 0303; the word in field 2 to location 0304 and read in.

Card 3: A minus card on which n=9 and columns 7-10 of the control field contain the address 0320.

The load routine will set its address counter to 0320 and read in.

Card 4: A minus card on which n=1.

The load routine stores field 1 of the card into location 0320 and read in.

Card 5: A minus card on which n=3.

The load routine stores the word in field 1 of the card into location 0321; the word in field 2 into 0322; the word in field 3, into 0323 and read in.

Card 6: A plus card for which n=0 and columns 7-10 of the control field contain the address 0303.

The load routine transfers control to the instruction in drum location 0303 and the program loaded on the preceeding five cards begins at that point.

2. THE PUNCH ROUTINE

A. How to Get a Memory Dump:

By loading the following word into the lower accumulator:
on A B \pm (A), where $n = 1, 2, 3, \dots$ or 7
and then transferring control to drum location 1971, the punch
routine will then punch out, n words to the card, all the words
in drum locations A through B, inclusive. Minus cards will be
punched if the word is negative and plus cards will be punched
if it is positive.

The routine may be entered from a program and when the
punch routine is finished, control will be transferred to that
instruction whose drum location is entered by the programmer in
the instruction address of location 1902.

B. The Punch Routine may also be used to emit an X-punch in column
75 or 76 on a card. See the How to Use the 650 sheet for details.

3. STORAGE REQUIREMENTS

The Punch and Load routines are scrambled together and occupy the
entire last two bands of drum, locations 1901 -1999 inclusive. If
location 1959 is used for temporary storage by the programmer, it
must contain zeros before the Punch Routine is used.

K. B. Williams/lm
June 12, 1956

SHORT LOAD AND PUNCH ROUTINE (SLPR)

The essential differences between this routine and the regular Load and Punch Routine (LPR) are as follows:

1. SLPR occupies permanently the locations 1951-1999 in memory and uses the read buffer 1901-10 and the punch buffer 1927-36. While punching, the spaces 1901-1903 are used in addition to the punching buffer zone.

2. SLPR treats all cards to be loaded as Plus (addressed) cards so that columns 7-10 must be filled in with the address to which the information on the card is to be sent. This is true whether or not the first field is positive or negative. SLPR will punch either Plus or Minus cards suitable for direct reloading with SLPR (or LPR with the use of the 9 card in case of Minus cards). CAUTION: If minus cards are to be punched the number of words to be punched must be an integral multiple of the number of words per card desired. Otherwise, the control field of the last card will not be set properly.

3. The exit from the punch routine is in 1953, otherwise all entrances are the same as in LPR; i.e. Load is entered at 1996 and Punch at 1971. Other than is noted above, the instructions and definitions for LPR hold for SLPR.

4. The Punch and Load portions SLPR are coded in separate blocks. The Punch portion occupies locations 1951-1979 and the Load routine occupies locations 1980-1999.

K. B. Williams/lm

June 12, 1956.

SHORT LOAD ROUTINE (SLR)

This is a load only routine, identical to SLPR in that it will load only Plus (addressed) cards.

It occupies spaces 1980-1999 and uses the buffer 1951-1960.

It will not punch.

It is entered, as with the other load routines at 1996.

K. B. Williams/lm

June 12, 1956

FORMAT FOR INITIAL LOADER CARDS

June 13, 1956

I. Long Load and Punch Routine (LLPR)

8000 70 1851 1851

Card 1

(1851) 70 1951 1852
(1852) 69 1952 1951
(1853) 69 1954 1953
(1854) 69 1956 1955
(1855) 69 1958 1957

Card 2 (and succeeding cards)

(1951) 24 L(word 1) 1853
(1952) Word 1
(1953) 24 L(word 2) 1854
(1954) Word 2
(1955) 24 L(word 3) 1855
(1956) Word 3
(1957) 24 L(word 4) 1851
(1958) Word 4

The last card contains all zeros. The last 2 words of the card preceding it are:

(1957) 24 1851 1851
(1958) 70 1851 1996

This clears read buffer 1851-1858 to zeros before transferring control to the Load Routine.

II. Short Load and Punch Routine (SLPR)

8000 70 1851 1851

Card 1

(1851) 70 1901 1852
(1852) 69 1902 1901
(1853) 69 1904 1903
(1854) 69 1906 1905
(1855) 69 1908 1907

Card 2 (and succeeding cards)

Same as Long Load and Punch Routine

III. Short Load and Non-Zero Punch Routine

8000 70 1851 1851

Card 1

(1851) 70 1951 1852
(1852) 69 1952 1951
(1853) 69 1954 1953
(1854) 69 1956 1955
(1855) 69 1958 1957
(1856) 70 1851 1996

Card 2

Same as Long Load and Punch Routine.

The last card is all zeros. The C(1957) from the preceding card is 24 XXXX 1856, which clears the read buffer 1851-1858 before transferring control to the load routine.

IV. Short Load Routine

Same as Short Load and Non-Zero Punch Routine

V. Multiple Storage Check (MSC)

8000 70 1851 or 70 0001 0003*

Card 1 Same as card 1 SLPR

Card 2 (and succeeding cards) same as card 2 SLPR.

Last card reads:

(1901) 24 0000 1903
(1902) 00 0000 0000
(1903) 24 0001 1904
(1904) 24 1851 1905
(1905) 24 1852 1906
(1906) 24 1853 1907
(1907) 24 1954 1908
(1908) 24 1855 1996

This card clears the storages used by the storage clear card as well as the read buffer 1851-1858 before transferring control to MSC.

* A storage clear card should precede the MSC.

K. B. Williams

lm

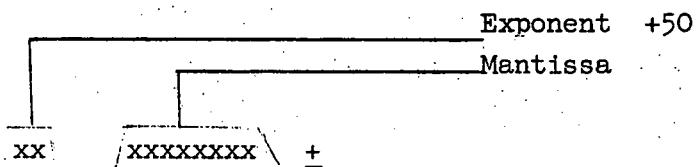
AN INTERPRETATIVE FLOATING DECIMAL SYSTEM FOR THE IBM TYPE 650

Introduction

This floating decimal system will perform 23 basic operations using a floating decimal number system by means of interpretative programming. It was designed with coding convenience as a prime objective.

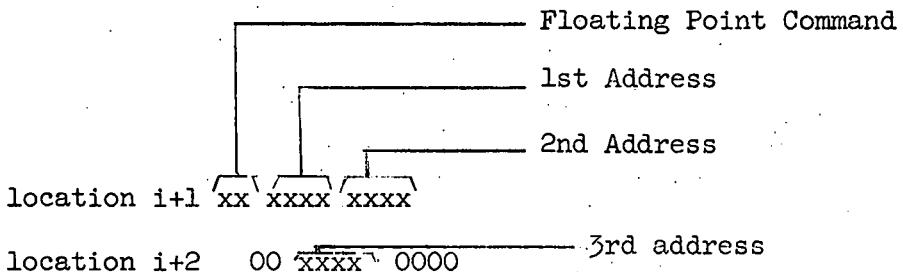
Floating decimal instructions, that is, instructions which are to be interpreted, have a negative sign. A floating decimal instruction consists of a two digit operation code, a 4 digit address specifying the location of the first factor, a 4 digit address specifying the location of the second factor (if required) and another 4 digit address specifying the location of the third factor (if required). It is a variable address system in that only as many addresses as are needed for the particular operation are required. Thus, some operations use only one address, some require two addresses and others require 3 addresses.

Floating decimal instructions will be taken from consecutive memory locations. If an instruction requires one or two addresses, the instruction is stored in one memory location. If three addresses are required, the third address is stored in the memory location immediately following the one containing the instruction.


Should a positive instruction appear, it is interpreted as a normal 650 instruction and subsequent instructions are not interpreted. Thus, upon occurrence of a positive instruction the 650 operates in its usual D-I mode. This continues until an instruction address of 0026 is given which causes control to return to the interpretative routine. The program will return to the floating decimal mode of operation at the point of departure.

For example, consider the following sequence:

<u>Location</u>	<u>Contents</u>
n	floating point instruction (-)
n+1	floating point instruction (-)
n+2	floating point instruction (-)
n+3	normal 650 instruction(+)


(The contents of n+3 are interpreted as a normal 650 instruction including the instruction address for sequencing. Normal execution of instructions continues until 0026 is used as an instruction address, at which time the program returns to the floating decimal mode of operation beginning with the instruction location n+4).

NUMBER FORM

where the Mantissa is in the form $1 \leq x.xxxxxxx < 10$

INSTRUCTION FORM

i+2 has this form only if the 3rd address is needed, otherwise the form of i+2 is the same as form of i+1.

START OF PROGRAM

To enter the interpretive routine for the first time to begin a sequence of interpreted instructions beginning at memory location i+1, the programmer must arrange to insert the number i+1 in the data address of location 0029. Then a programmed transfer to 0029 will begin the proper sequence of interpretive instructions. (See the "Hints and Aids" following this paper).

FLOATING DECIMAL ACCUMULATOR

A floating point accumulator referred to as k(location 0057) is used for accumulation and accumulative multiplication. It need not be addressed in operations which make use of it but can be addressed for other operations.

OPERATIONS

Below is a list of the operations with their codes, addresses required and estimated average time of execution.

<u>Code and Addresses</u>	<u>Operation</u>	<u>Estimated Average Time</u>
01, A, B	$A+B \rightarrow K$	62.8
02, A	$A+K \rightarrow K$	54.7
03, A, B	$A-B \rightarrow K$	63.1
04, A	$K-A \rightarrow K$	59.5
05, A, B, C	$A+B \rightarrow C$	81.8
06, A, B, C	$A-B \rightarrow C$	96.2
07, A, B, C	$A \times B \rightarrow C$	84.8
08, A, B	$A \times B \rightarrow K$	78.4
09, A, B, C	$A/B \rightarrow C$	92.2
10, A, B	$A/B \rightarrow K$	72.2
11, A, B	BR MIN A	28.4
12, A	BR	18.7
13, A, B	BRNZ A	30.8
14, A, B	$(A \times B) + K \rightarrow K$	102.5
15, A, B	$K - (A \times B) \rightarrow K$	102.5
16, A, B	$\sqrt{A} \rightarrow B$	157.9
17, A, B, C	$\sqrt{A^2 + B^2 + C^2} \rightarrow K$	416.3
18, A ₁ , B ₁ , n	$\sum_{i=1}^n A_i B_i \rightarrow K$	(32.4 92.3n)

<u>Code and Address</u>	<u>Operation</u>
19 A, B	$\text{Sin } A \rightarrow B$
20 A, B	$\text{Cos } A \rightarrow B$
21 A, B	$\ln A \rightarrow B$
22 A, B	$e^A \rightarrow B$
23 A, B	$\tan^{-1} A \rightarrow B$

EXPLANATION OF PROGRAMS

1. General Interpretation

The general interpretation routine takes instructions from consecutive memory locations and analyzes them to see if they are normal 650 instructions or if they must be interpreted. If the instruction is to be interpreted, the routine obtains the factor at address A and stores it in location 0037. Control is then transferred to the proper sub-routine.

Each subroutine (operation codes 01-023) begins at the drum location identical to the operation code. Thus, if operation code 08 is used, control is transferred to location 0008.

2. Operation Code 16 Square Root

This sub-interpretative routine computes the required square root and stores it in location B. The initial approximation is $X_0 = (1+4A)/(4+A)$, obtained from the RAND Corporation "Approximations in Numerical Analysis" form 15S, Notes.

3. Operation Code 18 Vector Multiplication

Operation 18 is a vector by vector multiplication. Address A_1 and address B_1 are the addresses of the first elements of each of the vectors. Succeeding elements of the vectors are then taken from consecutive memory locations starting with the initial locations A_1 and B_1 . The third address, n , indicates the number of elements in each vector.

Use is made of the sub-interpretative routine "Interpretation of 14" to perform accumulative multiplication. As each pair of factors are multiplied together and added to the previous sum, n is reduced by 1 and zero tested. When n has been reduced to zero, the last two factors have been multiplied and the operation is complete.

4. Operation Codes 19 and 20 - Computes $\sin \theta$ or $\cos \theta$

$|\theta| < \pi/2 \times 10^{10}$ if θ exceeds this range an incorrect answer will result. θ is positioned so that division by $\pi/2$ results in $\theta = I + f$ where $f \leq \pi/2$ and I is an integral. NOTE: θ MUST BE IN RADIANS.

If $\cos \theta$ is to be computed then $|I| + 1 \rightarrow I$ and $|f| \rightarrow f$.

If $\sin \theta$ is to be computed and θ is negative then $|I| + 2 \rightarrow I$. The adjusted I is divided by 4 so that $I/4 = Q+R$.

if $R = 0$ then $|f| \rightarrow f$

if $R = 1$ then $\pi/2 - |f| \rightarrow f$

if $R = 2$ then $-|f| \rightarrow f$

if $R = 3$ then $|f| - \pi/2 \rightarrow f$

$(f \cdot 2/\pi) = x$ where $-1 < x < 1$

$$\begin{aligned} \text{and } \sin(x) &= 1.570796318(x) - .645963711(x^3) \\ &+ .079689679(x^5) - .004673765(x^7) \\ &+ .00015148419(x^9) \end{aligned}$$

Locations 0466 \rightarrow 0569 are used for this routine. The relative error is not more than 5 in the 9th decimal.

5. Operation Code 21, Computes $\ln A$.

Let $x = y \cdot 10^K$

where $.1 \leq y \leq 1$

if $y \leq \frac{\sqrt{10}}{10}$

we use

(1) $\ln x = (K - 3/4) \ln 10 + 2 \sum^*$

where $2 \sum^* = t \left(\frac{2}{3} t^2 + \frac{2}{5} t^4 + \frac{2}{7} t^6 + \frac{2}{9} t^8 \right) + 2t$

and $t = \frac{y - 10^{-3/4}}{y + 10^{-3/4}}$

$\frac{2 \sum^*}{9} = \frac{(22/81)}{(11/9) - t^2}$

and if $y > \frac{\sqrt{10}}{10}$

we set $y = \frac{\sqrt{10}}{10} \cdot y$

and $K = K + \frac{1}{2}$

and go back (1)

This routine uses locations 0466-0566

6. Operation Code 22 - Computes $e^{\pm x}$
 $-50 \ln 10 < x < 50 \ln 10$

Procedure:

$\frac{x}{\ln 10} = \frac{(i \ln 10 + r)}{\ln 10}$ where: i is the integral part of
quot. and r , the remainder

$e^x = e^i \ln 10 + r = e^i \ln 10 \cdot e^r = 10^i e^r$

Following division by $\ln 10$, r is in the range

$-\ln 10 < r < \ln 10$

or approximately $-2.3 < r < 2.3$

we now split r into an integral part j and a fractional part s .

$$e^r = e^{j+s} = e^j \cdot e^s \quad j \text{ may be } -2, -1, 0, 1, 2$$

$$\left[\begin{array}{ccccc} 1/e^2 & 1 & 1 & e & e^2 \end{array} \right]$$

$$x = i \ln 10 + (j+s)$$

$$e^x = 10^i \cdot e^j \cdot e^s$$

where e^j is one of the above values. We then compute only e^s using a Chebyshev Polynomial. The error is not more than 5 in the 9th decimal. This routine uses locations 0466-0566.

7. Operation Code 23 - Computes $\tan^{-1} x$

$$\text{If } |x| < 1, \tan^{-1} x = \sum_{i=1}^8 a_i x^{2i-1}$$

$$\text{If } |x| > 1, \tan^{-1} x = \frac{\pi}{4} + \sum_{i=1}^8 a_i \left(\frac{x-1}{x+1} \right)^{2i-1}$$

The coefficients used are taken from RAND Corporation Approximations in Numerical Analysis, form 15S.

Locations 0466-0566 are used. The error is not more than 4 in the eighth decimal.

STORAGE

Operations 01-18 require 466 storage locations. It uses locations 0000 through 0465. Every location within this block is used, thus making it easy to incorporate this program with other programs.

LOADING

The interpretive routine and the commands for operations 01 through 18 can be loaded with the regular load routine. These commands have been punched sever per card and are entered into locations 0000-0465.

Operations 19-23 have been coded so that only the operations to be used need be entered on the drum. Therefore each subroutine was coded starting with location 0466. The sin and cos routines are coded as one unit and therefore must always be entered as one block. When more than one of these subroutines is used all but one subroutine must be translated, which can be done by using the translating routine. This translation must always be by an even amount to preserve the even-odd conditions.

A program using the interpretive routine can be loaded on with addressed or unaddressed cards. It is suggested that they can be loaded as unaddressed cards with only one instruction per card until the program is checked out. Since all instructions using the interpretive routine must be in sequence it will be easier to add and delete instructions in a program if the instructions are entered one per card. After the program is checked out, the instructions can be punched out 7 per cards for ease in future loading.

LOADING PROCEDURE SUMMARY

1. Load Routine
2. Interpretative Routine (Operations 01-18)
3. Translating Routine [if more than one subroutine (operations 19-23) is used].
4. Transfer to translating routine (Card punched 000000 1729 in cols. 1-10)
5. Subroutines to be translated with a translator card preceding each subroutine.
6. Transfer to Load Routine (Card punched 9900001996 in cols 1-10)
7. General program using Interpretative Routine

NOTE: If translating routine is not used, do only steps 1,2,7.