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ABSTRACT

PURPOSE:The mechanisms by which gut microbiota contribute to methylmercury metabolism
remain unclear. Among a cohort of pregnant mothers, theobjectives of our pilot study were to
determine 1) associations between gut microbiota and mercury concentrations in biomarkers
(stool, hair and cord blood) and 2) the contributionsof gut microbial mercury

methylation/demethylation to stool methylmercury.

METHODS: Pregnant women (36-39 weeks gestation, n=17) donated hair and stool specimens,
and cord blood was collected for a subset (n=7). The diversity of gut microbiota was determined
using16S rRNA gene profiling (n=17). For 6 stool samples with highest/lowestmethylmercury
concentrations, metagenomic whole genome shotgun sequencing was employed to search forthe
mercury methylation gene (hgcA), and two mer operon genes involved in methylmercury

detoxification (merA and merB).

RESULTS: Seventeen bacterial genera were significantly correlated (increasing or decreasing)
with stool methylmercury, stool inorganic mercury,or hair total mercury; however, aside from
one genus, there was no overlap between biomarkers. There were no definitive matches for hgcA

or merB, while merA was detected at low concentrations in all six samples.

MAJOR CONCLUSIONS:Proportional differences in stool methylmercury were not likely
attributedto gut microbiota through methylation/demethylation. Gut microbiotapotentially

altered methylmercury metabolism using indirect pathways.

KEYWORDS: prenatal, mercury, gut, microbiota,microbiome, metabolism
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1. INTRODUCTION'

Microbes modulate the toxicity of mercury (Hg) through methylation of less toxic
inorganic Hg(II) (IHg)and demethylation (i.e., detoxification) of methylmercury (MeHg)
(Barkay et al 2003; Gilmour et al. 2013; Parks et al. 2013; Smith et al. 2015). The distal
gastrointestinal tract is one of the most densely populated ecosystems, with greater than 10''-10"
organisms per mL of luminal content. Thus the gut ispotentially an important reservoir for Hg
cycling and MeHg metabolism.

Several animal and human studies confirmed gut microbiotamodulate the enterohepatic
cycling of MeHg. Co-consumption of high-fiber foods, including wheat and fruit, were
associated with lower absorption of MeHg into tissues (Passos et al. 2007; Rowland et al. 1984,
1986), presumably due to higher elimination of MeHg.Treatment of animals with antibiotics
reduced decomposition of MeHg in the large intestine compared to controls (Seko et al. 1981),
and increased the half-time of MeHg elimination (Rowland et al. 1984), implicating gut
microbes in MeHg metabolism. Microbial MeHg detoxification involvesMerA, the mercuric
reductase, andMerB, the organomercurial lyase(Barkay et al., 2003). Both genes encoding these
proteinswere recovered from human and non-human primate feces, verifyingdecomposition of
Hg species by gut microbiota potentially occurred (Liebert et al. 1997).Tanzanian pregnant
women who consumed probiotics daily (i.e., yogurt) had significantly lower blood Hg
concentrations compared to controls, matched by age, nutritional status and fish intake (Bisanz et
al. 2014). Methylation of I[Hg by gut microbes is also possible;to date, one commensal
methanogen (Methanomassiliicoccus luminyensis)isolated from human feces (Dridi et al. 2012)
contained the gene cluster (hgcA and hgcB) required for IHg methylation (Parks et al.

2013).However, the capacity of intestinal bacteria to methylate Hg was observed by some

1 Abbreviations: BMI, body mass index; CH,Cl,, dichloromethane; CMMR, Alkek Center for
Metagenomics and Microbiome Research; CVAFS, cold vapor atomic fluorescence
spectrometry; DDI, double-distilled; USEPA, U.S. Environmental Protection Agency; GC, gas
chromatography; Hg, mercury; Hg(0), elemental mercury; IHg, inorganic mercury(Il); IOM,
Institute of Medicine of the National Academies; KEGG, Kyoto Encyclopedia of Genes and
Genomes; MeHg, methylmercury; NIH, U.S. National Institutes of Health; NRC, National
Research Council; ORNL, Oak Ridge National Laboratory; OTU, Operational Taxonomic Units;
PCoA, Principal Coordinates Analysis; QIIME, Quantitative Insights Into Microbial Ecology;
THg, total mercury; WGS, whole genome shotgun sequencing
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researchers (Rowland et al. 1975), but not others (Zhou et al. 2011). The mechanisms by which
gut microbes contribute to MeHg cycling in the human body remain unclear.

This pilot study involves trimester 3 pregnant women because the fetus is the most
vulnerable population to the deleterious effects due to MeHg exposure [National Research
Council (NRC) 2000], and trimester 3 coincides with the period when brain growth is most
rapid. Pregnancy is also associated with changes in gut microbiota composition (Koren et al.
2012; Santacruz et al. 2010), which may alter MeHg metabolism, and hence fetal MeHg
exposure. The following hypotheses were investigated:1) gut microbiota alter the speciation and
toxicity of Hg through Hg(II) methylation and/or MeHg demethylation, and 2) gut microbiota
affect MeHg bioavailability to the developing fetus by altering Hg speciation.

2. MATERIALS AND METHODS

Recruitment. Between November-December 2013, pregnant women from the Greenville
Health System (Greenville, South Carolina,USA)were invited to participate, who were 36-39
weeks pregnant, at least 18 years of age, and in good general health. Nineteen mothers provided
informed consent, including17 mothers who donated both hair and stool samples (89%). Cord
blood samples were obtained for a subset (n=7, 37%). Trimester 1 (8-12 weeks gestation) body
mass index (BMI) (kg/m?), weight change during pregnancy, ethnicity, and antibiotic treatment
were determined from the medical record (Table 1).Adherence to Institute of Medicine (IOM) of
the National Academies Guidelines for healthy weight gain during pregnancy (IOM 2009)was
determined from trimester 1 BMI and weight change at recruitment. Protocols were approved by
the Institutional Review Boards at Greenville Health System and the University of South
Carolina.

Biomarker collection and preservation. A hair sample wascollected from the occipital

region, which was tied with a string and stored in a plastic bag at room temperature. Mothers
were given a stool collection kit including sterile collection containers (Thermo Fisher02-544-
208) and detailed instructions adapted from the Human Microbiome Projectprotocols [Human
Microbiome Project (HMP) 2010]. Participants shipped stool samples overnightto the University
of South Carolina. Upon receipt, stool samples were aliquoted using sterile microspatulas
(Corning 3012)into 2 mL sterile cryovials (Thermo Fisher50-476-502), and then a separate

sample was aliquoted using acid-washed utensils intopre-weighed acid-washed 50 mL
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polypropylene vials. Vials were stored frozen (-80°C) until analysis. Whole blood wascollected
from the umbilical cord into vials (Becton Dickinson, K2EDTA, Royal Blue) and frozenat -20°C
and then at -80°C.

Hg analyses for hair. Hair samples corresponding to trimester 3 were analyzed, based on

the monthly growth rate of hair (Loussouarn et al. 2005), assuming a 10-day lag between MeHg
intake and absorption into the hair shaft (Cernichiari et al. 1995). Hair samples were washed in
1% (v/v)2-mercaptoethanol, shaken for 1 hour, then triple rinsed withdouble-distilled (DDI)-H;0,
and air-dried overnight in a Class II Biosafety Hood (Baker Company, Sanford, ME, USA). Hair
total Hg(THg) (~10 mg) was analyzed with a portable Hg vapor analyzer (Lumex, Model RA-
915+/PYRO-915+, St. Petersburg, Russia) using thermal decomposition and atomic absorption
spectrophotometry[U.S. Environmental Protection Agency (USEPA) Method 7473](USEPA
2007). There was insufficient hair for MeHg analysis.

Hg analyses for stools. For THg, stool specimens (~0.6 g) were digested in 10 mL of

freshly prepared 7:3 nitric:sulfuric acid, samples were gently refluxed for 3 hours in a water bath
(85°C), then oxidized with 0.2 N bromine monochloride. Excess oxidant was neutralized with
hydroxylamine hydrochloride, and Hg was further reduced with stannous chloride, converting
[Hg to Hg(0). Quantification was by gold amalgamation followed bycold vapor atomic
fluorescence spectrometry (CVAFS) (Brooks Rand Model 111, Seattle, WA, USA)(EPA Method
1631) (USEPA 2002). For MeHg, stool samples (~0.6 g) were leachedin 1.5 ml 1 M
coppersulfate, 7.5 mL 25% nitric acid, and 10 mL dichloromethane (CH,Cl,) and MeHg was
back-extracted into DDI-H,O(Liang et al. 2004).MeHg extracts were analyzed following EPA
Method 1630 (USEPA 2001)using gas chromatography (GC)-CVAFS (Brooks Rand Model
[II).Stool THg and MeHg concentrations were reported in dry weight, which was determined
after drying a subsampleat 105°C overnight.

Hg analyses for cord blood. For THg,~0.7 g of blood were analyzed using EPA Method

7473 (22) (as described above).For blood MeHg, the same steps for stool MeHg were followed,
except leaching procedures differed:~0.6 g of blood were dried in a 70°C oven overnight, then
leached in2 mL 25% potassium hydroxide:methanol (w/v) for 3 hours in a 75°C oven, then 10
mL CH,Cl, and 2 mL hydrochloric acid were added (Liang et al. 2000). MeHg was quantified
by EPA Method 1630 (EPA 2001) using GC-CVAFS (as described above).
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Hg quality assurance/quality control(QA/QC). QA/QC parameters are summarized in

Table S1. Matrix-specific detection levels were based on the average mass of sample analyzed
(hair: 0.01 g, stool: 0.7 g, and blood: 0.6 g) and the region of the calibration curve where there
was a significant change in sensitivity, includinghair (THg: 9.5 ng/g), stool (THg: 0.033 ng/g,
MeHg: 0.0017 ng/g), and blood (THg: 0.14ug/l, MeHg: 0.0017 pg/l).Two values were below the
detection level, and half the detection level was imputed.

Gut microbiota and 16S rRNA gene profiling. Frozen stool samples (-80°C) were shipped

overnight to the Alkek Center for Metagenomics and Microbiome Research (CMMR) at Baylor
College of Medicine. Microbial genomic DNA was extracted using the PowerSoil DNA
Isolation Kit according to the manufacturer's instructions (MoBio Laboratories, CA, USA), and
the concentration and purity of the extracted DNA were evaluated through gel electrophoresis
and PicoGreen assays (Invitrogen, NY, USA).

For all stool samples (n=17), the 16S rDNA V4 region was amplified by polymerase
chain reaction (PCR) using bacteria/archaeal primers 515Fand 806R (see Table S2). Sequencing
was performed on the MiSeq platform (Illumina, CA, USA) using the 2 x250 bp paired-end
protocol,which yielded pair-end reads that almost completelyoverlapped. The primers contained
adapters for MiSeq sequencing and dual-index barcodes so that the PCR products werepooled
and sequenced directly (Caporaso et al. 2012), targeting at least 15,000 reads per sample. The
16S rRNA gene pipeline data incorporates phylogenetic and alignment-based approaches to
maximize data resolution. The read pairs were demultiplexed based on unique molecular
barcodes, and merged using USEARCH v7.0.1001 (Edgar 2010). The CMMR pipeline for 16S
analysis leverages the QIIME (Quantitative Insights Into Microbial Ecology) software package
(Caporaso et al. 2010), as well ascustom analytic packages.16S rRNA gene sequences were
classified into Operational Taxonomic Units (OTUs) at a similarity cutoff value of 97% using the
UPARSE pipeline in QIIME and the SILVA Database (Quast et al. 2013), and abundances were
recovered by mapping the demultiplexed reads to the UPARSE OTUs database. An OTU table
was constructedfor taxonomic summaries and calculate alpha- and beta-diversity(Lozupone and
Knight 2005).

Whole genome shotgun (WGS) sequencing. For 6 (of 17) samples, metagenomic libraries

were subjected to WGS (Illumina), including 3 samples with high (> median) stool MeHg (#
134, 146, and 157) and 3 with low (< median) stool MeHg (# 101, 118, and 163). To search Hg
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methylation genes, nucleotide sequence reads were converted into amino acid sequences by six-
frame translation. Although both HgcA and HgcB are considered essential for microbial Hg
methylation (Parks et al. 2013; Smith et al. 2015), most organisms possessing HgcA also contain
HgcB.Sequences of 77 HgcA homologs from bacteria and archaea with complete genome
sequences (http://www.esd.ornl.gov/programs/rsfa/data.shtml) were obtained from GenBank. A
30-amino-acid-stretch encompassing the highly conserved ‘cap helix’ region of HgcA,
containing the conserved motif TxG[IV|N[VI]WCA[AGS][GA][KE] (Parks et al 2013; Smith et
al. 2015) was used to search for the presence of HgcAin the metagenomic libraries. For MerA
and MerB, a reference database was created using the found sequences in the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database (Kanehisa et al. 2014). Metagenomic libraries
were searched using USearch's usearch local method with target coverage set to 0.8 (80%
coverage) and ID threshold of 0.5 (50%).

Statistics. Alpha- and beta-diversity were used to examine associations between gut
microbiota and dichotomized (high: >median, low: <median) Hg concentrations in biomarkers
(stool MeHg, stool IHg, and hair THg). Alpha-diversity (within sample diversity) was measured
with the Chaol index (richness) (Chao 1984), the Shannon diversity index, and the observed
number of sequences per sample. Beta-diversity (between sample diversity), defined as a
measure of the evolutionary distance between gut microbiotas, was evaluated with the Unifrac
distance metric(Lozupone and Knight, 2005).

Bivariate associations between Hg biomarkers (continuous, not dichotomized) and
phylum- and genus-level gut microbiota abundances were assessedusing Spearman's and
Pearson's correlation. Spearman's correlation was calculated with the untransformed variables.
For Pearson's correlation, a log;o-transformation was applied to right-skewed variables for gut
microbiota abundancesafter increasing all values by 0.001% due to the number of 0's;
0.001%was considered a minimum detection level. For one genus (unclassified
00r39Peptostreptococcaceae), 0.001% was disconnected from the remaining observations, and
therefore this value was not imputed for 0.Bivariate associationswere also determined between
categorical data from the medical record and Hg biomarkers (hair, stool and cord blood), and
phylum- and genus-level gut microbiota abundances using Wilcoxon rank-sum test or Student's
2-tailed t-test. Multiple test comparisons were applied using the Benjamini-Hochberg False

Discovery Rate (FDR) procedure(Yekutieli and Benjamini, 1999), using a g-value of
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0.20.Statistical analyses were completed using the R-platform or Stata (Version 9.2, College
Station, TX, USA).
Accession numbers.This study is registered in the U.S. National Institutes of Health

(NIH) Database for Genotypes and Phenotypes (dbGaP) under accession number
phs000970.v1.pl.

3. RESULTS

Demographics. Demographic data and body measurements are included in Table
1. Trimester 1 BMI averaged 29 kg/m? (range 16-40 kg/m?), including 76% of pregnant mothers
classified as overweight or obese (i.e., BMI > 25 kg/m?). More than half the mothers exceeded
IOM guidelines for healthy weight gain during pregnancy (IOM 2009). Gestational weight gain
was similar for obese and non-obese mothers(t-test, p=0.80).

Biomarker Hg concentrations. Hair and cord blood THg and/or MeHg indicated low

dietary intake of MeHg through fish consumption for most mothers. Hair THg
concentrationsaveraged 57 ng/g (Table 2), which was 5-10 times lower compared to cohorts of
U.S. pregnant women (average: 290-550 ng/g) (Oken et al. 2005; Xue et al. 2007). Cord blood
THg averaged 2.9 times lower compared to blood Hg for U.S. adults(0.99 pg/L, n=10,673)
(Nielsen et al. 2014), while the geometric mean for blood Hg was 1.9 times lower than Rhode
Island mothers (this study: 0.28 pg/L; Rhode Island: 0.52 pg/L, n=538, from King et al. 2012).
Biomarker Hg correlations. Maternal hair THg and cord blood MeHg (or THg) are
established biomarkers for fetal MeHg exposure (Cernichiari et al 1995; NRC 2000). Hair THg

and cord blood MeHg concentrations were highly correlated when log;o-transformed(Pearson's
rho=0.91, p<0.01, n=7) (Figure 1).Stool MeHg was more positively correlated with cord blood
MeHg (Pearson's tho=0.58, p=0.18, n=7) than hair THg (Pearson's tho=0.16, p=0.54, n=17)
(when log)o-transformed); however, both were non-significant(Figure 1).Results did not differ
when the sample size was limited to mothers with cord blood data (Pearson's rho=0.24, p=0.61,
n=7). These data suggested stool MeHg did not contribute significantly to fetal MeHg exposure.

Medical record data and Hgbiomarkers.There were no significant associations between

Hg biomarkers [hair THg, stool MeHg, and stool IHg (IHg=THg-MeHg)], and categorical data
from the medical record, including 1) trimester 1 weight status (obese/non-obese), 2) weight gain

during pregnancy (excessive weight gain versus below or within IOM guidelines), and 3)
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antibiotic treatment (yes versus no or uncertain) (Wilcoxon rank-sum test, p = 0.15-0.92, n=17; t-
test, p = 0.17-0.90, n=17).The latter results were surprising because antibiotic treatment altered
the enterohepatic cycling of Hg in mice (Rowland et al. 1984; Seko et al. 1981). For both animal
studies, MeHg-chloride was administered near the same time as antibiotics(seven days after
antibiotics started, Rowland et al., 1984; two days before antibiotics started, Seko et al., 1981). In
the present study, antibiotic treatment occurred within the previous three months and possibly
did not coincide with dietary MeHg intake.

16S rRNA gene profiling of gut microbes. The total number of mapped reads for 17 stool

samples was 356,456, averaging 20,968 reads per sample; analyses were performed on an equal
number of reads per sample (15,928).16S rRNA reads were assigned to 7 phyla, including the
following 5 phyla representing 98 + 0.94 % of gut microbes. On average (+ 1 SD), Firmicutes
comprised 56% = 17%, followed by Bacteroidetes (17% £ 17%), Actinobacteria (17% = 19%),
Verrucomicrobia (3.9% + 7.2%), and Proteobacteria (3.1% = 6.9%).The 7 phyla were
represented by 81 genera (averaging 52 + 7.2 genera per mother), including 21 genera with
abundances >1% (Supplemental Material, Figure S1). The most abundant genera
wereBifidobacterium(15% £ 18%), Bacteroides(11% * 13%), Alistipes (4.1 £ 5.3),
Subdoligranulum (5.7% + 4.6%), Blautia(5.5% * 4.3) unclassified Lachnospiraceae spp. (4.8%
* 3.9%), and Akkermansia spp. (3.9%= 7.2%). The latter was the sole representative of the
Verrucomicrobia phylum, and therefore results/discussion for Verrucomicrobia were omitted.
Indices for microbial richness (i.e., alpha-diversity)did not differ significantly for gut
microbiotas with high (> median) and low (< median) concentrations of hair THg and stool IHg
(p=0.44-0.85) (Figure S2). Microbial richness estimated by the Chaol index was significantly
higher for mothers with high stool MeHg concentrations (p<0.05), while there were no
significant differences using other indices (p=0.29-0.50). Chaol is more sensitive to rare
species, whereas the Shannon index estimates the uniformity of sequences (Chao 1984),
suggesting differences between high/low stool MeHg are due to the presence/absence of rare gut
microbial species.Beta-diversity patterns were visualized using Principal Coordinates Analysis
(PCoA) (Figure S3). For all three outcomes (stool MeHg, stool IHg, and hair THg)beta-diversity
did not differbetween high/low groups using unweighted and weighted Unifrac distance metrics

(p=0.11-0.64).
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Medical record data and gut microbiota. Like Hg biomarkers, there were no significant

associations between gut microbiota phyla and categorical data from the medical record,
including 1) trimester 1 weight status (obese/non-obese), 2) weight gain during pregnancy
(excessive weight gain versus below or within IOM guidelines), and 3) antibiotic treatment (yes
versus no or uncertain) (Wilcoxon rank-sum test, p=0.07-0.92). Among gut microbiota
genera,abundance of Blautia(phylum: Firmicutes)was significantly higher for mothers who
gained excessed weight (Wilcoxon rank-sum, p<0.05), and unclassified members of the
genusRuminococcaceae(phylum: Firmicutes)were significantly higher for mothers prescribed
antibiotics (Wilcoxon rank-sum, p<0.05); however all correlations were not significant at a FDR
of 20%.The abundance of Akkermansia spp. was higher (but not significantly) for mothers that
gained excessive weight compared to normal weight (Wilcoxon rank-sum, p=0.09). This trend
differed from Santacruz et al. (2010), who reported significantlylower abundance of
A.muciniphilia amongSpanish pregnant women that gained excessive weight (n=16)compared to
normal weight (n=34).

Bacterial diversity and Hg biomarkers. For continuous Hg biomarkers (stool MeHg,

stool IHg, and hair THg), significant associations were observed between stool MeHg and
Proteobacteriausing Pearson's correlation (rho = -0.61, p<0.01), but not Spearman's correlation
(tho = -0.45, respectively, p=0.07). However, thisinverse association was driven by a single
observation; when this observation was removed Pearson's correlation was no longer significant
(p=0.13). Seventeen genera (of 81) were significantly correlated (Spearman's and/or Pearson's)
with stool MeHg, stool IHg or hair THg (p<0.05), including three genera that were significantly
correlated at a FDR of 20% (Figure 2, Table S3).Two genera were positively associated with
stool MeHg (both were unclassified members of the Ruminococcaceae genus), and one genus
was inversely associated with stool IHg (Moryella). There was no overlap between taxonomic
groups significantly correlated with stool MeHg, stool IHg or hair THg, aside from one genus
(Subdoligranulum) (Figure 2, Table S3).

Metagenomic WGS results. Among 6 stool samples, including 3 with low MeHg and 3

with high MeHg, there were no definitive matches for HgcA. Although some of the matches
overall showed a high level of sequence identity to known HgcA sequences, significant sequence
variability was observed near the strictly conserved cysteine in the 'cap-helix' region, which was

expected to be the least variable region (Parks et al. 2013; Smith et al. 2015). For MerA, low

11
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abundant hits (<0.001%)were observed across all six samples with good identity scores, while

MerB produced no hits.

4. DISCUSSION
Stool MeHg and dietary MeHg intake. Results suggested stool MeHg concentrations did

not likely reflect biotransformation by gut microbiota through Hg(II) methylation or
demethylation, thus rejecting hypothesis 1. To date, one commensal methanogen (M.
luminyensis) isolated from human fecescontained the gene cluster required for IHg methylation
(Dridi et al. 2012; Parks et al. 2013). In this study, the proportional abundance of this genus was
less than 0.001%, suggesting: 1) the abundance of M. luminyensiswas too low to be detected, or
2) dietary MeHg intake contributed to stool MeHg. For 6 samples, including 3 with the
highest/lowest stool MeHg content, both ~gcAand merBgenes were not present. Microbial
methylation/demethylation did not likely contribute to the net stool MeHg concentrations,
supporting the second assumption. Alternatively, MeHg was demethylated abiotically, for
example, via phagocytosis (Suda et al. 1992). Gut microbiota possibly demethylated MeHg
using a different metabolic pathway (i.e., oxidative demethylation), which was reported in
anaerobic freshwater sediment (Barkay et al. 2003; Oremland et al. 1991); however no specific
genes have been identified with this process.

Ishihara (2000) published the only other study to date (to the best of our knowledge)
including IHg and MeHg concentrations for stool specimens from 4 Japanese men, who ingested
fish regularly (unlike most mothers in this study). Stool MeHg averaged 7.0 ng MeHg/g wet
weight and stool %eMeHg (of THg) averaged 17%, while hair THg averaged 4800 ng/g (Ishihara
2000), which were 72, 22, and 84 times higher than corresponding values for this study (Table
2). The magnitude difference for stool MeHg was likely higher (i.e., 200-300, not 72), because
Ishihara (2000) recorded stool Hg concentrations in wet weight (median wet:dry ratio for this
study = 3.50).

The distal gut is considered the primary site where MeHg is demethylated to IHg, which
is less likely to be absorbed through the intestinal wall and thus excreted, reducing human MeHg
body burden (Clarkson and Magos 2006). Results from this study and Ishihara (2000) indicated

not all MeHg was demethylated before excretion. Combined with the analysis of

12
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hair/blood/stool (Figure 1), stoolMeHg did not correlate significantly with fetal MeHg exposure,

i.e., MeHg was not bioavailable.

Hg biomarkers and gut microbial taxa. Seventeen genera were significantly associated
with Hg biomarkers (stool MeHg, stool IHg, and hair THg), and aside from one genus
(Subdoligranulum), there was no overlap between biomarkers (Figure 2). A majority of genera
were not significantly associated with Hg biomarkers at a FDR of 20%; however these modest
associationssuggestedother pathways were possibly more important for MeHg metabolism and
exposure. For some genera their functions are well known, which are discussed below.

Akkermansia spp. were positively correlated with stool MeHg (when log)o-transformed)
(Pearson's tho=0.50, p<0.05). To date, no species in this phylum (Verrucomicrobia) have been
identified, which containthe gene cluster required to methylate IHg (i.e., hgcA and hgcB) (Parks
et al. 2013). The intestinal tract is covered by a mucus layer, which insulates gut microbes from
host tissues and protects the epithelium from pathogenic microorganisms, as well as toxins and
acids(Derrien et al. 2004). A. muciniphilais the dominant human bacterium that resides within
the mucus layer and degrades mucin, providing usable energy to non-mucolytic bacteria (Derrien
et al. 2004).Enrichment of A. muciniphila is associated with stronger gut barrier function (Png et
al. 2010), and is considered a biomarker for a healthy intestine (Belzer and de Vos 2012).

We hypothesize that gut microbiota contributed indirectly to MeHg metabolism through
improved gut barrier function, whichprevented re-absorption of MeHg through the intestinal
epithelial layer and concentrated MeHg in the stool.Using an in vitro model, Vazquez et al.
(2013) reported the mucus layer represented a barrier to transport of MeHg and inorganic Hg(II),
trapping 70% and 40%, respectively, supporting an association between intestinal permeability
and Hg absorption into systemic circulation.Higher absorption of other metals (cadmium and
lead) was reported for germfree mice compared to controls, which was attributed to differences
in the gut barrier function and expression of host-genes such as metallothioneins (Breton et al.
2013). Therefore, gut microbiotamay reduce MeHg bioavailability and fetal exposure through
indirect pathways (i.e., intestinal permeability), as well asdirect pathways (i.e.,
methylation/demethylation).

Other genera were significantly associated with stool MeHg (positive: Subdoligranulum,
negative: Streptococcus spp.). Streptococcus spp. is one of the most dominant microbes in breast

milk, and some Streptococcus spp. are associated with greater pathogen resistance among
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preterm neonates (Martin et al. 2004). Both genera were previously reported in maternal stool
and breast milk, and the authors suggestedthe maternal gut was a source of microbiota to breast
milk (Jost et al. 2014). From this study, both positive and inverse associations indicatedietary
MeHg intake may impact maternal stool gut microbiota, and possibly breast milk microbiota

composition, which should be further investigated.

5. CONCLUSIONS

Methylation of IHg and reductive detoxification of MeHg mediated by the mer operon
are two known pathways that microbes use to alter Hg cycling (Barkay et al. 2003; Gilmour et al.
2013; Liebert et al. 1997; Parks et al. 2013; Smith et al. 2015). It is thought that gut microbes
demethylate MeHg and reduce bioavailability to cross the intestine into systemic circulation
(Clarkson and Magos 2006). Although this was a small data set, results from this pilot study
suggested gut microbes possiblyreduced MeHg bioavailability and exposure byindirect
pathways. This conclusion is supported in part by an absence of hgcA and merB in 6 stool
samples with highest/lowest stool MeHg concentrations, and in part by associations between Hg
biomarkers and gut microbial taxa with known functions(e.g., Akkermansiaspp.).Future research
should consider both direct and indirect pathways by which gut microbiota affect MeHg
metabolism and exposure. Direct pathways include microbial methylation/demethylation and
indirect pathways include changes in the gut barrier function.

Findings from this analysis are limited. A food frequency questionnaire was not
administered, and dietary MeHg intake was inferred from Hg biomarkers. In addition, diet
profoundly affects the microbiome (Wu et al. 2011), and observed associations between Hg
biomarkers and gut microbiota taxa may be confounded by diet. Dietary MeHg intake was low
for most mothers, and therefore results were not necessarily applicable to populations ingesting
more fish.Most mothers were overweight or obese, which possibly affected MeHg metabolism
(Rothenberg et al. 2015). However, aside from one genus (Blautia), there were no significant
associations between obesity and gut microbiota, and there were no genera significant at the
FDR of 20%. Stool specimens do not accurately reflect microbial activity in proximal regions of
the gastrointestinal tract (Eckburg et al. 2005), where IHg methylation and/or demethylation
possibly occurred, and may not represent the mucosa-associated bacteria (Png et al. 2010). This

is a cross-sectional study, which precludes us from making any inferences about direction or
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causality. Lastly, this study was limited to a few weeks in late-stage pregnancy and may only be
suggestive of windows of susceptibility to toxic insult from MeHg for certain endpoints, while
missing susceptibility windows for other endpoints.

In spite of these limitations, profiles of gut microbes differed dramatically between Hg
biomarkers, and their roles in the transformation of MeHg and/or reducing MeHg

exposureshould be elucidated.
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8. FIGURE LEGENDS
Figure 1. Bivariate scatterplots relating total mercury (THg) or methylmercury (MeHg)
concentrations between a) hair-cord blood, b) stool-cord blood, and c) stool-hair, including

Pearson's correlation (rho).

Figure 2. Venn diagram including gut microbial genera that were significantly correlated with
stool methylmercury (MeHg), hair total mercury (THg), or stool inorganic mercury(Il) (IHg)
using Spearman's and/or Pearson's rho (n=17) (p<0.05).(*) indicates significance at a False
Discovery Rate of 20%, arrows represent the direction of correlation, and bolded numbers

indicate relative abundance was >1% (see Table S3).

(Graphical Abstract also provided)
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Table

TABLES

Table 1. Demographic data for 17 participants.

Average =1 SD
(range)
Gestation 37+ 0.94
(weeks) (36-39)
Trimester 1 BMI 29+£6.7
(kg/m®) (16 - 40)
Weight gain 14+£78
(kg) (1.4-33)
n (%)

Ethnicity

White 7 (41)

Black 7 (41)

Hispanic 3 (18)
Weight class

Underweight 1(5.9)

Normal 3 (18)

Overweight 5(29)

Obese 8 (47)
IOM Guidelines

Below 2(12)

Within 6 (35)

Above 9(53)
Antibiotic treatment
previous 3 months

No 10 (59)

Yes 6 (35)

Uncertain 1(5.9)

Institute of Medicine (IOM), trimester 1 body mass index (BMI)



Table 2. Summary statisticsfor total mercury, methylmercury and percent methylmercury (of

total mercury) in biomarkers, including maternal hair, maternal stool, and cord blood.

Parameter Hair Stool Cord Blood
(ng/g) (n=17) (ng/g) n=17) (pg/L) n=7)
Average | Median Average Median Average Median
(range) (range) (range)
THg 57 27 150 30 0.34 0.35
(BDL-230) (2.1-810) (BDL-0.67)
MeHg NA NA 0.097 0.060 0.23 0.18
(0.0025-0.39) (0.061-0.73)
%MeHg NA NA 0.78 0.12 69 50
(of THg) (0.0058-5.8) (25-124)

Below detection level (BDL), methylmercury (MeHg), not applicable (NA), total mercury (THg)
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Figure

Genera Stool MeHg

Akkermansia spp.

Clostridiales, Uncl. 0065¢
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15. Streptococcus
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