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Abstract—Vegetation canopy structure is a critically important
habitat characteristic for many threatened and endangered birds
and other animal species, and it is key information needed
by forest and wildlife managers for monitoring and managing
forest resources, conservation planning and fostering biodiversity.
Advances in Light Detection and Ranging (LiDAR) technologies
have enabled remote sensing-based studies of vegetation canopies
by capturing three-dimensional structures, yielding information
not available in two-dimensional images of the landscape pro-
vided by traditional multi-spectral remote sensing platforms.
However, the large volume data sets produced by airborne LiDAR
instruments pose a significant computational challenge, requiring
algorithms to identify and analyze patterns of interest buried
within LiDAR point clouds in a computationally efficient manner,
utilizing state-of-art computing infrastructure. We developed
and applied a computationally efficient approach to analyze a
large volume of LiDAR data and characterized the vegetation
canopy structures for 139,859 hectares (540 sq. miles) in the
Great Smoky Mountains National Park. This study helps improve
our understanding of the distribution of vegetation and animal
habitats in this extremely diverse ecosystem.

I. INTRODUCTION

Forest ecosystems are a complex mosaic of diverse plant
and tree species, the location and distribution of which are
driven by a number of gradients like climate (ex. temperature,
precipitation regimes), topography (ex. elevation, slope, as-
pect), geology (ex. soil types, textures, depth), hydrology (ex.
drainage, moisture availability) etc. Diverse combinations of
these gradients support diverse composition and distribution of
vegetation which in turn supports an array of wildlife. Under-
standing the vegetation canopy structure is critical to under-
stand, monitor and manage the complex forest ecosystems like
those in the Great Smoky Mountain National Park (GSMNP).
Vegetation canopies not only help understand the vegetation,
but are also a critically important habitat characteristics of
many threatened and endangered animal and bird species for
which the GSMNP is home.

Remote sensing has been widely used to monitor regional to
global forest ecosystems and for mapping of vegetation types.
However, traditional remote sensing methods for vegetation
classification often use light reflectance from the top layer

of vegetation. Advances in Light Detection and Ranging (Li-
DAR) technologies have enabled remote sensing-based stud-
ies of vegetation canopies by providing a three-dimensional
representation of vegetation structure throughout the canopy.
While the application of LiDAR for study of forest ecosystems
is becoming more common, the richness of these data sets
are generally under-utilized due to the large volumes of the
data produced by these instruments and lack of computational
resources and analysis algorithms. Most of the LiDAR studies
focus on the development of high resolution Digital Elevation
Models, canopy heights and occasionally understory density
[1], [2]. While LiDAR dervied metrics have proven to be
useful for an array of applications [1]-[5], three-dimensional
information provided by the LiDAR are left unutilized.

The objective of this study is to develop methods to realize
the potentials of rich LIDAR data set to map and characterize
the three-dimensional structure and distribution of vegetation
canopies. We develop and apply data analytic techniques to
identify the ecologically important and understandable struc-
tural types by mining the large and complex volumes of
LiDAR data.

II. MATERIALS

A. Study area

The geographic area for this study was the Great Smoky
Mountains National Park (GSMNP), which in part covers
the Great Smoky Mountains and the Blue Ridge Mountains,
encompassing 816 sq. miles across Tennessee and North
Carolina in the United States. Results presented here focus
primarily on the Tennessee side of the GSMNP (approximately
540 sq. miles). The GSMNP covers complex topography
with elevations ranging from 876-6,643 feet above mean sea
level. The GSMNP is ecologically rich and diverse, consisting
of about 1,600 species of flowering plants, including 100
native tree species and over 100 native shrub species [6]. The
distribution of vegetation in the park is strongly influenced by
topography, moisture and other environmental gradients [7].



B. Airborne LiDAR data

Airborne LiDAR for 1,400 sq. km (540 sq. miles) for the
Tennessee portion of the GSMNP and the Foothills Parkway
was acquired by The Center for Remote Sensing and Mapping
Science at the University of Georgia and Photo Science, Inc.
under a U.S. Geological Survey (USGS)-funded program [8].
While details of data acquisition and processing are described
by [8], we briefly summarize the data here.

A total of 1,658 flight miles of data were collected during
the period of February—April 2011. Four multiple discrete
returns per pulse were collected at a rate of 20.2 Hz by the
LiDAR instruments employed for the data collection. There
was overlap of 40-50% between adjacent flight lines for a
nominal flying height of 1,981.2 m above ground level. Scan
angles were +16° for a swath width of 1,134.7 m. Data
were calibrated and LiDAR points categorized as Unclassified,
Ground, Noise or Overlap. Data sets were split up into 1,500 m
x 1,500 m adjacent and non-overlapping tiles (Figure 1). The
tiled data sets, consisting of 724 tiles in “las” format (94 GB
total size), were obtained from the Great Smoky Mountains
National Park Service.
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Fig. 1. LiDAR tiles for TN side of Great Smoky Mountains National Park.
The underlying color image is a 1.5 m resolution digital elevation map for
the region.

C. Digital elevation model (DEM)

The LiDAR point cloud was processed by [8] using ESRI
ArcGIS software to create a 1.5 m resolution bare-earth digital
elevation model raster (DEM) (Figure 1). This DEM was used
as the bare Earth topography in the analysis presented here.

III. METHODS

A computationally efficient Python-based workflow (Fig-
ure 2) was developed to process and analyze the LiDAR point
cloud data sets.

A. Topographic detrending of LiDAR point cloud

The LiDAR point cloud data set for the GSMNP was based
on a vertical datum (NAVD88 — Geoid09). Raw LiDAR point
cloud elevations contain the imprints of the underlying topog-
raphy (Figure 3(a)). A topographic detrending was required
in order to convert the elevations from an absolute datum to
an above ground level (AGL) elevation (Figure 3(b)). Thus,
for every point in the point cloud data set, the corresponding
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Fig. 2. Computational workflow for the analysis carried out using n processes
in embarrassingly parallel fashion.

ground level elevation was identified using the 1.5 m DEM
(described in Section II-C), and the AGL elevation was cal-
culated (elevation from datum — ground level elevation). All
further analysis was done on the detrended point cloud.

B. Vertical canopy structure

The topographically detrended LiDAR point cloud was pro-
cessed to generate the vertical canopy structure of vegetation
in the full study area. A horizontal grid of 30 m x 30 m
resolution was used, to match the resolution of LANDSAT,
NLCD and other existing vegetation mapping products for the
GSMNP [9] and to enable comparison and further analysis.
Employing a 30 m x 30 m resolution also ensured suffi-
cient LIDAR point density to construct a three-dimensional
vegetation canopy structure. A 1 m vertical resolution was
used to identify vegetation height from the ground surface to
a maximum height of 75 m. The number of LiDAR points
in each vertical 1 m bin (at each 30 m x 30 m cell in the
horizontal grid) was identified to construct a vertical density
profile (Figure 3(d)). Normalized density profiles were created
by computing the percent of total points (at that cell) in 1 m
vertical bins.
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Fig. 3. (a) 3-D LiDAR point cloud at 30 m x 30 m region (black square) in a
typical GSMNP cove forest. (b) The raw LiDAR point cloud (3,985 points),
showing the imprints of the underlying cove topography. (c) LiDAR point
cloud after topographic detrending and filtering (3,936 points) that converted
the elevations to above ground level elevation. (d) Distribution of LiDAR
point density along the vertical profiles in a cove forest dominated by tall
trees and a dense understory.

C. Noise and ground filtering of LiDAR data

Raw LiDAR point cloud data often contain anomalous
and noisy returns used as elevation data, and identification
and elimination of these points is essential prior to analysis
(Figure 3(c)) [1], [10], [11]. Anomalously high elevation
values are often caused by atmospheric aerosols, dust and
smoke, birds and insects, or other unknowns, while very low
elevations are caused by low-lying vegetation (like shrubs,
grasses) or ground litter and complex slopes and topographic
relief. The following noise-removal steps were performed on
the entire LiDAR point cloud:

1) Anomalous high elevation points: The tallest tree
recorded within the GSMNP is a 190 foot (57.9 m)
high tulip-tree (Liriodendron tulipifera) [12] [13]. A
maximum height of 75 m (higher than the tallest possible
tree) was used in the analysis, and any LiDAR points
with AGL elevation higher than 75Am were filtered out
as noise.

2) Anomalous low elevation points: Topographic features
(like steep slopes, and high reliefs, etc.) and surface
litter often cause anomalous reflections that are recorded
by the sensors as negative elevations, especially after
topographic detrending due to errors in the DEM. Thus,
the points with negative elevations were filtered out.

3) Low height vegetation: Some areas of the GSMNP are
dominated by low height vegetation (shrubs and grasses)
and are often lower than one meter in height. Grid
cells where 95% or more LiDAR return points were
within 1 m from the ground surface were identified and
classified as low lying vegetation.

4) Anomalously high number of returns at the same ele-

vation: Due to errors and noise in the point cloud data,
some locations contain an anomalously large fraction of
total returns at a cell recorded at the same elevation.
Thus, a correction was performed if more than 30%
of total returns at a cell were recorded from the same
1 m vertical bin, by applying a smoothing and replacing
the anomalous return counts in the vertical bin with a
simple average of return counts in bins directly above
and below. This simple correction allowed identification
and removal of anomalous spikes in vertical canopy
structures. The scheme was manually spot checked at a
number of locations and was determined to be adequate
and not to introduce any artifact in the data.

While we developed a number of steps to remove noise and
applied corrections to the data, inaccuracies remain in the data
and are carried throughout the rest of the analysis, requiring
careful ecological interpretation of the results to identify and
filter useful signals from noise.

D. Classification and spatial distribution of vegetation canopy
structure

A key objective of this study was to understand the spa-
tial distribution, pattern and dominance of various vegetation
types and canopy structures in the study area. Multi-variate
clustering techniques have been widely used in Earth science
for delineation of ecoregions that are relatively homogeneous
with respect to a collection of observable environmental and
climate characteristics [14]-[17].

Here, we used a k-means algorithm to cluster the gridded
vertical canopy structure data set (Section III-B) into groups
containing locations with similar vertical canopy structures
(Figure 3d). The k-means algorithm groups data (X;, Xo,

.., X,) with n records into a desired number of clusters, k,
equalizing the full multi-dimensional variance across clusters
[18]. The number of clusters, k, is supplied as an input
and remains fixed. The k-means algorithm starts with initial
centroid vectors (C1, Co, ..., C),) and calculates the Euclidean
distance of each pixel (X;, 1 < i < n) to every centroid
(C;, 1 < j < k), assigning it to the closet existing centroid.
The centroid vector is recalculated as the vector mean of
all dimensions of each pixel assigned to that centroid. This
classification and re-calculation process is iteratively repeated
until fewer than some small fixed proportion of observations
changes their cluster assignment between iterations. We as-
sumed convergence was achieved when fewer than 0.05% of
the observations changed cluster assignments.

In [16], we developed a parallel version of the k-means al-
gorithm to accelerate convergence, handle empty cluster cases,
and obtain initial centroids through a scalable implementation
of the triangular equality based acceleration method [19]. [20]
extended this to a fully distributed and highly scalable parallel
version of the k-means algorithm for analysis of very large
data sets, which was used in this study.



E. Computational workflow

A computationally efficient workflow was developed in
Python for processing and analyzing the massive LiDAR
point cloud. To exploit the inherent parallelism in analysis of
LiDAR point cloud data, an embarrassingly parallel scheme
was implemented to allow processing of each “las” file in a
different process on a multi-core machine. The “laspy” [21]
Python module was used for processing LiDAR point cloud
data sets in “las” format. The Geo-spatial Data Abstraction
Library 2.0.0 [22] was used for analyzing geospatial data sets
(e.g., DEM), which allowed for efficient access to elevation
data sets for desired geographical regions within the parallel
workflow. Figure 2 shows a schematic of the analysis workflow
implemented for mapping vegetation canopy structure and
distribution using LiDAR.

IV. RESULTS AND DISCUSSION
A. Unique Vegetation Canopy Structures

A gridded data set of vertical canopy structure (Sec-
tion III-B) was classified using a k-means clustering algorithm
(Section III-D) to identify patterns of vegetation and to create
clusters of unique vegetation canopy structures. While large
volumes of LiDAR data are typically difficult to understand,
our classification method enables derivation of higher order
products that can be easily analyzed and understood by forest
and wildlife managers. Data sets were classified at various
levels of division (k =5, 10, 15, 20, 25, 30, 50, 75, 100). While
at lower levels of division (small k), different canopy structures
of interest may be lumped together, higher levels of division
may define clusters with insignificant differences in canopy
structures. Various approaches for determining the optimal
level of division for k-means clustering have been developed
and reported in the literature [23], [24]. However, most of these
methods are not effective for data sets like LiIDAR that contain
significant amounts of errors and noise. Thus, we classified
and analyzed the data sets at various level of divisions. k=30
was selected for subsequent analysis because it appeared to
have an optimal signal to noise ratio while allowing sufficient
resolution to distinguish different vegetation canopy structures.
A geospatial map of 30 vegetation classes was developed
(Figure 4(a)), with each class defined by a nominal vertical
canopy structure (Figure 4(b)).

Canopy structure classes (Figure 4(b)), identified well the
range of vegetation present in the GSMNP from tall and dense
tree canopies with very low understory vegetation (unimodal
profiles like 10 and 13), to tree canopies with understory
vegetation (represented by bi-modal profiles 5, 14, 17, etc.) to
low height shrub dominated vegetation (profiles 1, 4, 16, etc.).
While the classification method was able to identify unique
canopy structures, it also identified the areas with outliers or
noisy data in unique clusters (like 3 and 11), making it easy to
eliminate them from further analysis. Noise and errors along
the boundaries of the point cloud data tiles were identified
(potentially introduced by processing of the data [8]) and
filtered out in our analysis, imprints of which are visible in
the final map product (Figure 4(a)).

B. Translating Canopy Structures into Vegetation Types

We used Mapcurves [25] to identify the best “translation
table” between LiDAR clusters and vegetation types defined
by [9] (Table I). Although Mapcurves identifies the single
vegetation type having the best fit in terms of spatial overlap,
each LiDAR cluster is likely to overlap with many other vege-
tation types; however, Table I shows only the single vegetation
category [9] exhibiting the largest spatial co-registration.

Indeed, the inherently different natures of vegetation type
or composition and the above-ground vertical biomass distri-
bution might act to minimize any agreement between these
two maps. A number of different forest compositions might
show similar vertical structure distributions, despite substantial
differences in species composition. Conversely, a single forest
type might, throughout its successional development, sequen-
tially adopt a series of substantially distinct vertical profiles.
Moreover, the wide discrepancy in inherent resolution of these
two maps might further complicate their direct comparison.
While the vegetation type map consists of generalized descrip-
tive polygons, the analytical LIDAR map was coarsened to 30
horizontal meters.

Despite these differences, a number of consistencies emerge
from the comparison of these two maps. Successional vege-
tation types, including grasses, are restricted to LiDAR cat-
egories 0 and 3, although this is somewhat artificial, since
cluster 0 was defined a priori as low-stature vegetation less
than 1 m tall, and cluster 3 is anomalous, accounting for little
area in the map. The Spruce-fir type predominates within
a single profile cluster, number 21, and typifies these short
stature, high elevation forests. Similarly, profile cluster 27
solely predominates the Ericaceous shrub type. The Yellow
pine type has the majority of overlap with three profile clusters
(15, 24, and 29), which seem to differ in their degree of canopy
height, perhaps reflecting separate phases of successional
development.

The two profile types predominantly associated with Mon-
tane cove types reflect the tallest forests growing on the
most fertile sites, but the Montane Oak-Hickory type has four
otherwise similar vertical profile forms. The Northern/acid
hardwood type dominates five different profile types, which
may differ in the degree of understory, possibly Rhododen-
dron, that is present. As might be expected, the Chestnut
oak vegetation type, which accounts for much of the area
in the map (43%) is manifested across 12 different profile
types, perhaps reflecting differences in both forest age and
compositional differences.

C. Validation case studies

We conducted a number of case studies to verify the
LiDAR based canopy structures against best available maps
of vegetation in the GSMNP [9], which were available at
the same spatial resolution of 30 m. While the map resolu-
tion is the same, LiDAR-derived canopy structures developed
here represent aggregation from significantly higher resolution
source data compared to vegetation maps that classify the
region in traditional vegetation classes.



TABLE I
Mapcurves BASED TRANSLATION OF LIDAR DATA DERIVED 30 UNIQUE
VEGETATION CANOPY STRUCTURES TO TRADITIONAL VEGETATION
CLASSES FOR THE GREAT SMOKY MOUNTAIN NATIONAL PARK

Cluster H Dominant Vegetation Type
0 Successional or modified vegetation
1 Chestnut Oak Forest
2 Chestnut Oak Forest
3 Sueeessional-or ModifiedVegetation
4 Chestnut Oak Forest
5 Northern Hardwood/acid Hardwood Forest
6 Chestnut Oak Forest
7 Yellow Pine Forest
8 Northern Hardwood/acid Hardwood Forest
9 Chestnut Oak Forest
10 Montane Cove Forest
4 Chestnut Oak Forest
12 Northern Hardwood/acid Hardwood Forest
13 Montane Oak-hickory Forest
14 Northern Hardwood/acid Hardwood Forest
15 Yellow Pine Forest
16 Chestnut Oak Forest
17 Montane Cove Forest
18 Montane Oak-Hickory Forest
19 Chestnut Oak Forest
20 Montane Oak-Hickory Forest
21 Spruce-Fir Forest
22 Northern Hardwood/Acid Hardwood Forest
23 Chestnut Oak Forest
24 Yellow Pine Forest
25 Montane Oak-Hickory Forest
26 Chestnut Oak Forest
27 Ericaceous Shrubs (Heath Bald Type)
28 Chestnut Oak Forest
29 Yellow Pine Forest
30 Chestnut Oak Forest

Cades Cove, located in a valley surrounded by mountains,
is one of the most popular destinations in the GSMNP. Cades
Cove consists of woodlots interspersed within old-fields that
are mowed and burned to mimic a 19t century agrarian
settlement [26]. Figure 5(a) shows the area of low height
(less than 1 m tall) vegetation class identified by our study
which shows very good correspondence to the “Successional
or modified vegetation” types (Figure 5(b)) as mapped by
vegetation map of the GSMNP [9].

In contrast to the low height vegetation in Cades Cove,
forests in the mountain coves of the GSMNP are dominated
by tall trees with dense canopies, especially on North-facing
slopes. The Great Smoky Mountain Institute at Tremont
(GSMIT) is surrounded by “Montane Cove” and “Hemlock”
forests with tall and dense canopies (Figure 6(b)). Strong
correspondence and spatial overlap with vegetation canopy
classes 10 and 13 was identified for the region (Figure 6(a)).
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Fig. 5. Vegetation in Cades Cove valley in the GSMNP. (a) Low height (less

than 1 m tall) vegetation class identified by LiDAR derived canopy structure
product. (b) “Successional or modified vegetation” mapped by [9].

L% AL

Vegetation canopy classes 10 and 13 represent some of the
tallest vegetation in the GSMNP, having canopy heights of up
to 50 m from the ground, high density/biomass in tree canopies
with relatively low understory growth due to competition for
light and nutrients. The canopy profiles at a number of “Citizen
Science” phenology plots (marked by blue circles in Figure 6)
maintained by GSMIT were studied to match the known tree
types at the sites.

D. Computational performance

The compute and data intensive steps involved in process-
ing, filtering/correcting and gridding of the LiDAR point cloud
data (Section III-A,III-B,III-C) were conducted with a Python
based workflow (Section III-E) developed for this research.
The workflow was tested and optimized for parallel perfor-
mance on low to moderate core-count Linux-based platforms.
We were able to process individual LiDAR “las” files within
15 seconds on average on Intel Xeon 2.40 GHz processors.
Each production run processed 98 GB LiDAR “las” data sets
and were performed using 8 processes with an average turn
around time of 22 minutes. The parallel k-means clustering
tool developed by [20] was used to classify the resulting
gridded canopy structure data sets (Section III-D).
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Fig. 6. Vegetation around The Great Smoky Mountain Institute at Tremont (a)
Tall canopy structures classes 10 (orange) and 13 (violet) derived using LIDAR
(b) “Montane Cove” forest mapped by [9]. Blue circles shows the locations
of phenology plots maintained by the Great Smoky Mountain Institute at
Tremont (GSMIT) Citizen Science program.

V. CONCLUSION

In this study, we developed a methodology and computa-
tional tools to analyze large volumes of LiDAR point cloud
data and applied our workflow to map and characterize vege-
tation canopy structures and their spatial distributions for the
Tennessee portion of the Great Smoky Mountain National Park
(GSMNP). LiDAR data sets often suffer from noise and errors
due to reflection/detection errors, conditions at the time of
data collection, complex terrain and relief and heterogeneous
vegetation. We developed schemes to identify and filter out
noise in the data that may induce errors in the characterization

of vegetation canopy structures. Cluster analysis was employed
to develop a canopy structure-based classification of vegetation
in the GSMNP. We found a strong correspondence between
the resulting canopy classes and a map of vegetation types
present in highly biodiverse complex terrain of the park.
The high resolution map of vegetation canopies will provide
forest and wildlife managers with critically important infor-
mation for resource management and conservation planning.
Species composition in the GSMNP is in a state of flux
due to various environmental stressors like fires, hemlock
death due to the wooly adelgid, and other factors, leading to
successional changes in this critically important ecosystem.
Computationally efficient tools developed in this study allow
forest managers to monitor the forest using repeat LiDAR
surveys, which was not previously possible because of the
complexity and volume of airborne LiDAR data sets.

VI. DATA PRODUCTS

All the data sets produced by this study and discussed
throughout this article has been archieved and available at Oak
Ridge National Laboratory Distributed Active Achive Center
[http://www.daac.ornl.gov] [27]. The collection contains the
following key data products from this study.

o 30 unique vegetation canopy structure classes (Fig-
ure 4(a), Section IV-A)
— Geospatial maps of vegetation canopy classes (Fig-
ure 4(a), Section IV-A). Format: Geotiff
— Representative vegetation canopy structures that de-
fine the 30 unique canopy structure classes (Fig-
ure 4(b), Section IV-A). Format: ASCII
o Mapcurves [25] based reclassification of the 30 unique
vegetation canopy classes to vegetationa category exhibit-
ing largest spatial co-registration
— Geospatial maps of reclassified 30 unique vegetation
canopy classes. Format: Geotiff
— Translation table from vertical canopy structure
classes (Figure 4(a), Section I'V-A) to vegetation type
[9] Format: ASCII
e Mapcurves [25] was also applied in opposite direction
with vegetation map [9] to identify vegetation canopy
classes that best co-registered with any given vegetation
type
— Geospatial maps of vegetation types [9] reclassed to
vegetation canopy classes. Format: Geotiff
— Translation table from vegetation types [9] to vertical
canopy structure classes (Figure 4(a), Section IV-A)
Format: ASCII

The Universal Transverse Mercator (UTM) projection sys-
tem Zone 17N, Datum NADS83 was used for all the geospatial
data products.
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Fig. 4. (a) 30 unique vegetation canopy structure classes identified by a k-means clustering algorithm for the Tennessee portion of the Great Smoky Mountains
National Park. (b) Representative vegetation canopy structures that define the 30 unique canopy structure classes in (a). The percent of total area occupied by
each class is described at the top of each class definition plot. Fill colors for the plots in (b) correspond to the colors for the class in the spatial map in (a).



