Baseline Face Detection, Head Pose Estimation, and Coarse
Direction Detection for Facial Data in the SHRP2 Naturalistic
Driving Study

J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and
T. Karnowski, Member, |IEEE
Oak Ridge National Laboratory, Oak Ridge, TN

Abstract—Keeping a driver focused on the road is one of the
most critical steps in insuring the safe operation of a vehicle.
The Strategic Highway Research Program 2 (SHRP2) has over
3,100 recorded videos of volunteer drivers during a period of 2
years. This extensive naturalistic driving study (NDS) contains
over one million hours of video and associated data that could
aid safety researchers in understanding where the driver’s
attention is focused. Manual analysis of this data is infeasible;
therefore efforts are underway to develop automated feature
extraction algorithms to process and characterize the data.
The real-world nature, volume, and acquisition conditions are
unmatched in the transportation community, but there are also
challenges because the data has relatively low resolution, high
compression rates, and differing illumination conditions. A
smaller dataset, the head pose validation study, is available
which used the same recording equipment as SHRP2 but is
more easily accessible with less privacy constraints. In this
work we report initial head pose accuracy using commercial
and open source face pose estimation algorithms on the head
pose validation data set.

I. INTRODUCTION

A LARGE component of the Strategic Highway Research

Program (SHRP2) program is an extensive naturalistic
driving study (NDS), which features video and other sensor
recordings from over 3,100 volunteer drivers for up to 2
years each [1]. A custom data acquisition system (DAS)
was developed by engineers at the Virginia Tech
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Transportation Institute (VTTI) [8] to capture and record the
data, which has a resulting size of over 2 Petabytes. A large
part of this data is video from the cameras in the DAS,
which offers exciting possibilities for analysis and insight
into the driver practices. Many areas of intelligent vehicle
technology, such as driver alertness monitoring, predicting
driver actions, improved warning systems, advanced driver
assistance, and human machine interaction could all benefit
from the NDS data. Indeed, the real-world nature, volume,
and acquisition conditions are unmatched in the
transportation community, but there are also challenges
because the data has relatively low resolution, high
compression rates, and differing illumination conditions.
Furthermore, manual analysis of such a large collection can
be slow, tedious, and error-prone. Consequently, the Federal
Highway Administration (FHWA) is leading efforts to
develop and deploy automated feature extraction algorithms
to measure driver and surrounding vehicle behavior to
increase the utility of the NDS [2]. The algorithms under
development include tools to automatically extract data
regarding the driver disposition, surrounding roadway
information, passenger information, and general driving
performance. A particularly useful indicator of driver state
can be found by analysis of the face and head, which can
indicate drowsiness, distraction, or other important
characteristics. As a result, automating the analysis of the
face and head are of primary importance. In this paper we
discuss the performance of a variety of baseline methods on
a SHRP2-like data set, including detection, pose estimation,
and coarse direction of focus. This data set is publicly
available from VTTI at no cost, although a simple data
sharing agreement must be established.

I1.BACKGROUND

The processing of imagery to identify and characterize
faces is an important application area in computer vision.
The basic core methods of face detection including facial
landmark detection serve as preliminary steps to more
informative applications such as subject recognition, and
subject state estimation such as emotional expression or
drowsiness. These topics are highly researched with the
state-of-the-art still improving at levels from basic detection
and landmark identification [7, 23, 28] to higher level



™ -~
Figure 1. Example images from sample SHRP2 data during (left)
daytime and (right) low-light conditions [5]

representations such as emotion [9]. There are also many
excellent survey papers such as [26, 27] for face detection,
[20] for head pose estimation, and [6, 15] for face
recognition. Applications for these techniques range from
social and commercial media knowledge discovery to
security and surveillance.  Transportation (specifically
monitoring for distraction and interpreting driver behavior)
is also an area of high interest [11, 16, 30]. Much research
focuses on providing real-time feedback to the driver to alert
them of dangerous situations [10, 22, 24], but there is also
interest in video interpretation [19] which can help improve
the analysis of face data for safety research [18].

1. METHODS

A.Data

As in virtually all computer vision applications, the state-
of-the-art is usually advanced most significantly when data
sets exist that can be used to develop and compare
algorithms. For NDS work, there are a number of privacy
constraints, which make free, full sharing of the data
difficult. As an example the GPS location of trip start and
ends cannot be shared as they could be used to identify the
driver. Another example is the face video data, which also
contains identifiable information. However, there is an
alternate set of data, the “Head Pose Validation” (HPV)
study, which is available to qualified researchers with less
restrictive privacy agreements than the SHRP2 NDS [5].
This data was recorded by VTTI to serve as a means of
measuring head pose in drivers and testing different methods
for head pose estimation. Therefore, the HPV is an excellent
source of data for computer vision researchers in naturalistic
driving studies.

As a dedicated data collection system, the DAS interfaces
to several sensors installed by VTTI and SHRP2 contractors
as well as signals available on the controller area network
(CAN) bus. There are five NTSC analog cameras in the
system, which obtain images of the roadway to the front and
rear of the vehicle, as well as the interior (hands/steering
wheel and face). The DAS combines four of the camera
images into a single compressed 720x480 pixel frame for

storage. An additional cabin view camera is used, which
blurs the image to obscure passengers in the vehicle. The
cabin view snhapshot is recorded at intervals of 10 minutes.
The main subject for this paper is the face camera, which has
a focal length of 3.3 mm, with a 51.7 by 40.0 field of view,
and is scaled to 360x240 before recording to disk at 15
frames a second. In addition, the camera contains an IR pass
filter to improve dynamic range in the different
environmental conditions of real-world driving. To
illuminate the driver at night, the DAS has a built-in IR light
source. Some example images are shown in Figure 1.

A subset of the data, called the “clipped” set, is primarily
available for automated algorithm development. The
clipped set contains 41 participants, with 20 involved in
“static” trials (where the vehicle was not driven) and 21 in
“dynamic” trials (where the vehicle was driven in a fixed
route for roughly 30 minutes.) A single vehicle was used for
all trials. In the static tests, participants performed a variety
of “tasks”, such as putting on / taking off glasses, simulating
a cell phone conversation, etc. In the dynamic tests some
tasks were also performed but common driving activities
(such as a merge action) were also identified for some
frames. Data was recorded at night, during the day, and in
transition periods from day to night. Two DAS systems
were used to capture different, but related, video streams:
one for lower-resolution imagery data compatible with the
SHRP2 study, and a second which was modified to record
only the face camera. This second “high resolution” video
stream records the face camera at 720x480 pixels and does
not contain the dash, front or rear camera video.

For some frames, a ground truth face detection and head
pose are provided. These ground truth values were provided
by facial landmarks manually annotated by a set of video
reviewers on the high resolution DAS system, followed by
post-processing. A small percentage of frames have the
manually annotated landmarks but do not include rotation
estimates. Of a total of 911,018 frames from 41 SHRP2
videos, roughly 7% have facial landmarks and rotation
estimates. These frames occur often consecutively for
several short periods during the video.

The rotation estimate data provided for the HPV study
was based on the high resolution video taken of the
participant. It was not performed on SHRP2 format images.
In order to use this data with the SHRP2 images, the frame
offsets between the high and low resolution video had to be
found, using semi-automated image comparison followed by
manual verification.

B. Baseline Algorithms

Geometric - The first method of interest was a geometric
method used by VTTI during the initial collection and
analysis of the head pose study data. The method uses seven
manual face landmark annotations consisting of (1) outer
corner of right eye, (2) inner corner of right eye, (3) inner
corner of left eye, (4) outer corner of left eye, (5) tip of nose,
(6) right corner of mouth, and (7) left corner of mouth. For
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Figure 2. Examples of (top) GOTS landmarks with facial region-of-
interest and (bottom) DLIB landmarks on SHRP2 sample data [5]

many frames at least two analysts made annotation marks.
These analysts were trained according to a protocol to
establish consistency. The landmarks were located in the
high-resolution frame, but there is a constant scaling that can
be used to locate them in the corresponding low-resolution
(SHRP2) frame.

The resulting 7-point annotations were then converted to
head pose measurements using the methods of [12] (pitch)
and [14] (yaw and roll). In addition to these landmarks, the
geometric method utilized facial feature measurements taken
of each participant’s face. Most frames have 2 sets of
rotation estimates — a raw rotation estimate of the yaw, pitch
and roll and an estimation of each of these values filtered
with a 4th order Butterworth filter. On some frames the
filtered values are not available. The geometric method is
used in this work as the ground truth to compare to other
methods.

GOTS and GOTS Tracked (G-T) — This method uses a
particular “Government Off-The-Shelf” software which
includes face detection, tracking, landmark detection, pose
estimation, and face recognition that is well suited for non-
frontal faces in uncontrolled lighting. (For this paper we
will refer to it simply as GOTS for simplicity.) This
particular tool has become a standard for evaluation due to
its government use rights and performance. For this study
we operated GOTS in two different modes: detection only
and detection with tracking. In the detection only mode each
frame is treated independently and GOTS operates like a
standard face detector. In the detection with tracking mode,
GOTS attempts to follow the face over time in order to
improve detection rates using one of multiple tracking
options (the “Serial Mode” was used in this study). GOTS
typically provides 3 landmarks for faces that are
approximately frontal including the two eyes and nose. For
faces significantly non-frontal 5 points are provided which
include the near eye, nose, and points near the cheek and ear.
The algorithm also provides estimates of the head roll and
yaw (but not pitch) and seems to be effective for a +/-90
degree yaw range centered on frontal.

DLib — This is an open source machine learning library
[17] that provides face detection and landmark detection

algorithms. Both of these algorithms appear to operate well
on a variety of poses from +/-60 degrees yaw and pitch from
frontal and under various lighting conditions. Performance
of the detector appears to drop off significantly in the range
from 60 to 90 degrees yaw. The software provides 72
landmark points.

DLib does not provide face pose or recognition
capabilities so for pose estimation we implemented our own
algorithm that is based on the face landmark locations. For
training we used the Pointing04 dataset [13] which included
15 people with 2790 total images. The landmark location
was clustered in a manner similar to k-means with the
exception that the distances to the cluster centers are
computed after aligning the landmarks to the cluster center
using the “AffineFromPointsLS” function from the PyVision
library [4]. Fifteen cluster centers were used. Once the
cluster centers are determined the training data is aligned to
the centers and the top 1/3 of the training data was used to
train support vector regression using the automatically tuned
implementation in OpenCV [3] to estimate the yaw and
pitch. This provides significant overlap with the
neighboring clusters and results in a smooth transition
between clusters for the pose estimates. Roll is estimated by
measuring the slope of the line passing through the eye
centers. Landmarks from both the GOTS and DLib methods
are shown in Figure 2 on sample SHRP2 data.

IV. RESULTS

We compare the results of baseline face detection and
head pose estimation with the ground truth results from the
Head Pose Validation set. Note that the head pose
comparison can only be generated for frames for which a
rotation estimate is available and that the particular
technique being evaluated was able to generate a face
detection and rotation estimate. All analysis was performed
on the low-resolution data stream, which is representative of
the true SHRP2 data.

A.HPV Face Detection Results

The first step in most automatic face analysis algorithms is
face detection. The percentage of frames detected are shown
in Table 1 and 2 for the non-driving (static) and driving
(dynamic) trials. We separate the trials because the dynamic
trials represent more normal driving conditions, but the static
offer a variety of different actions during a smaller period of
time. The “combined” method simply counts frames where
at least one of the other three methods detects a face. There
is very little difference in the face detection performance in
GOTS and DLib on the Daytime data. For the Night video
DLib shows a significant drop in performance while GOTS
shows a small improvement. There is significantly less light
in the Night video because the scene is illuminated by
infrared LEDs on the DAS. The difference in performance
may be due to the algorithms sensitivity to that particular
lighting condition. Regardless, this shows that GOTS has a
significant advantage on the Night videos. Additionally



TABLE 1: PERCENTAGES OF FRAMES WITH DETECTED
FACES FOR DIFFERENT BASELINE METHODS: STATIC

TRIALS
Algorithm Night Transition Day
G-T 84.7% 92.9% 75.5%
GOTS 79.0% 89.1% 66.0%
DLib 63.0% 79.7% 76.7%
Combined 87.1% 94.5% 86.1%

TABLE 2: PERCENTAGES OF FRAMES WITH DETECTED
FACES FOR DIFFERENT BASELINE METHODS: DYNAMIC

TRIALS
Algorithm Night Transition Day
G-T 87.9% 88.9% 83.8%
GOTS 79.1% 83.7% 75.5%
DLib 70.7% 69.0% 77.1%
Combined 90.8% 91.1% 89.4%

TABLE 3: LANDMARK MEAN-ABSOLUTE ERROR IN PIXEL
FOR DIFFERENT BASELINE METHODS

Algorithm Night Transition Day
G-T 2.50 2.32 2.40
GOTS 2.50 231 2.36
DLib 5.16 4.67 4.62
TABLE 4: MEAN ABSOLUTE ERROR FOR YAW IN DEGREES
Algorithm Night Transition Day
G-T 5.89 4.48 5.89
GOTS 5.98 4.47 5.80
DLib 13.6 12.7 135
TABLE 5: MEAN ABSOLUTE ERROR FOR PITCH IN
DEGREES
Algorithm Night Transition Day
G-T 114 10.2 9.57
GOTS 11.3 10.2 9.43
DLib 10.7 10.6 10.9
TABLE 6: MEAN ABSOLUTE ERROR FOR ROLL IN
DEGREES
Algorithm Night Transition Day
G-T 1.72 1.58 2.04
GOTS 1.72 151 1.94
DLib 1.89 1.85 1.99

these results show that a 8% to 9% improvement can be
gained by enabling the GOTS face tracking in both modes.
Furthermore, incorporating all the methods improves
performance significantly for all cases (between 1% to
10%). The dynamic and static results fit intuition for the day
and night cases: dynamic trials have much face movement
that is representative of “regular” driving conditions, such as
long periods of little head motion with occasional glances,
while static trials include actions such as putting on caps
which occlude the face and cause problems with detection.
Another interesting note is that the transition cases perform

better for static trials than dynamic trials. A likely
explanation for this is that transition trials have more sudden
changes in temporal lighting condition because the vehicle is
moving.

The landmark performance evaluation is shown in Table
3. The comparison was done by comparing the detected
eye/nose landmarks from GOTS with the annotated ground-
truth eye/nose landmarks, with the inner and outer eyes
averaged for comparison with GOTS. For DLib, the
landmarks corresponding to the inner and outer eye were
used, along with the outer mouth and the nose tip. The mean
absolute error (MAE) was found for each trial and then the
mean of these values were used for the overall estimate.
There is not much change with GOTS from case to case,
although generally the error seems slightly less during the
day. The DLib error is greater overall, but we note that
DLib produces an order of several magnitude more points,
which can have advantages in some cases as it may be able
to leverage the relative position of many more values for
more robustness. Because the DLib is open source, and the
face detection and landmark detection are two distinct
function calls, it may be possible to pair the landmark
detection with another face detector to get the best of both
worlds. Additionally, it should be possible to retrain the
DLib detectors to obtain better results on this particular data
set. In general retraining is something that is infeasible with
other commercial face detection algorithms because training
APIs are typically not available.

B.HPV Pose Estimation Results

The pose estimation error is shown in Tables 4, 5, and 6 for
yaw pitch, and roll, separated by night, transition and day
trials (there was not a significant difference for the dynamic
vs static cases). Note that GOTS does not provide a pitch
calculation, so we simply used a constant value of 0 for its
estimate and give the error in that case. Both GOTS
implementations outperform the DLib case by roughly 10
degrees for Yaw. The DLib pitch values are roughly 3
degrees better than a constant estimate with a roughly 12
degree mean absolute error. The roll performs well for all
cases; this is a fairly straightforward measurement.

C.HPV Pose Consistency

One particularly useful attribute of the HPV is the
definition of coarse pose, or rough driver attention direction,
which can be obtained from the annotations in the data. As
an example, in Figure 3 we show the ground truth head pose
for ten of the 20 static trial participants in the “calibration”
task, where they are looking at the camera mounted by the
rear-view mirror. We see that for each participant, there is a
distinct clustering of the angles that define this particular
coarse head pose, as well as extent of the measurement.
However, there is considerable variation between the
participants themselves, with the largest difference
approximately 25 degrees in pitch. This suggests that coarse
head pose measurements may require some level of
normalization or calibration for an individual participant,

4
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Figure 3. Scatter plot showing Yaw and Pitch of ten of the static
trial participants performing the “calibration” task (looking at the
camera). Each subject is represented by a unique shape and color.

although this would hopefully be consistent from trip to trip.
There are several cases of task’ like this in the HPV, which
can comprise ground-truth events for coarse head, pose
measurements, but we must consider this intra-driver
variability when finding an overall method or standard for
coarse head pose identification.

With this in mind, we performed an evaluation to
understand how the results compare if a calibration step is
applied to the data. We test for a good fit by allowing the
pose estimates P to be adjusted such that P’=sP+b, where s
and b are a scale and a bias that are selected on a per-video
basis. This provides a mechanism to find an optimal linear
adjustment to the estimates to align them with the ground
truth. One problem with solving for an optimal s and b is
that the vast majority of the driving data has the driver
looking directly out the front window. When solving for a
calibration using a least squares fit, we found that b would
be selected to correspond to that frontal pose in the ground
truth and s would be very small to compress all the data to
cluster all the estimates close to that value.

Instead we implemented a method that evenly weighs the
frontal estimate and non-frontal estimates to produce a more
useful calibration. We assume that the median of the ground
truth is consistent with when the driver is looking out the
front windshield and therefore can be used as an estimate to
define a region that the driver is considered to be looking
forward, say +/- 5 degrees around the center. A tolerance is
also defined such that errors within that +/-5 degree range
are considered to be correct. (Note that the 5 degree
tolerance on head pose was intentionally chosen as it is
difficult to achieve this level of accuracy, yet offers room for
improvement for future development.) The score is based
on the number of poses correctly estimated such that they
are within the range defined by the tolerance, however to
maintain  balance between when the drivers are
looking forward and when they are looking to the sides, the
score is split into those two categories based on the ground
truth and then they are evenly weighted. This means that the
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Figure 4. Plots of corrected automated yaw estimates for (top) G-

T and (bottom) DLib after applying robust calibration on a dynamic

trial. Note that the ground truth is not available for all frames so the
x-axis is not a direct correlation with all video frames.

frontal and non-frontal can each contribute at most a value
of 0.5 for a total maximum score of 1.0. This score indicates
what fraction of the estimates fall within the 5 degree range
after calibration. To optimize s and b with respect to this
score we used the GENITOR [25] algorithm.

Figure 4 shows an example of how effective the robust
calibration process aligned the pose estimates on a dynamic
trial from the HPV. In this particular instance G-T detected
faces in 99.1% of the ground truth frames and produced an
overall score of 0.757 which indicates that approximately
75.7% of poses were within the 5 degree tolerance. DLib
detected faces in 87.9% for the frames resulted in an overall
score for that video of 0.652. This particular example
worked very well, but there are other cases where the
agreement is not as high, suggesting either an issue with the
particular video or even the ground truth. For the entire HPV
dataset, the MAE dropped to 5.34 degrees and 5.54 degrees
for G-T and DLib respectively, which is comparable for G-T
(from 5.51 degrees uncalibrated) and a dramatic
improvement for DLib (from 13.3 degrees uncalibrated).

V.CONCLUSIONS

In this work we presented the application of baseline face
detection and pose estimation to naturalistic driving study
data, specifically the Head Pose Validation data set which is
representative of the SHRP2 NDS, including issues such as
relatively low resolution, high compression rates, and
differing illumination conditions. We applied a commercial
package with government-use, GOTS, which detected faces
on 80-90% of the available frames of data in the set and
achieved a yaw estimate that was within 4-6 degrees of the
ground truth on average. We also used an open source face
detector, DLib, which we trained to produce head pose.
Given the reduced accuracy of this method, and variation
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within the data set as shown by the “calibration” task, we
explored methods for achieving more consistent estimates
with automated methods. Further work in this area will
include more automation and blind testing as well. While
our immediate goal is to use this data set, and others, to
create standards and methodologies to facilitate efforts to
automate feature extraction for the SHRP2 NDS, the HPV
will be beneficial for the development of algorithms in many
areas of intelligent vehicle technology, such as driver
alertness monitoring, predicting driver actions, improved
warning systems, advanced driver assistance and human
machine interaction.
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