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 

Abstract—Keeping a driver focused on the road is one of the 

most critical steps in insuring the safe operation of a vehicle.  

The Strategic Highway Research Program 2 (SHRP2) has over 

3,100 recorded videos of volunteer drivers during a period of 2 

years.  This extensive naturalistic driving study (NDS) contains 

over one million hours of video and associated data that could 

aid safety researchers in understanding where the driver’s 

attention is focused.  Manual analysis of this data is infeasible; 

therefore efforts are underway to develop automated feature 

extraction algorithms to process and characterize the data.  

The real-world nature, volume, and acquisition conditions are 

unmatched in the transportation community, but there are also 

challenges because the data has relatively low resolution, high 

compression rates, and differing illumination conditions. A 

smaller dataset, the head pose validation study, is available 

which used the same recording equipment as SHRP2 but is 

more easily accessible with less privacy constraints.  In this 

work we report initial head pose accuracy using commercial 

and open source face pose estimation algorithms on the head 

pose validation data set. 

I. INTRODUCTION 

A LARGE component of the Strategic Highway Research 

Program (SHRP2) program is an extensive naturalistic 

driving study (NDS), which features video and other sensor 

recordings from over 3,100 volunteer drivers for up to 2 

years each [1].  A custom data acquisition system (DAS) 

was developed by engineers at the Virginia Tech 
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Transportation Institute (VTTI) [8] to capture and record the 

data, which has a resulting size of over 2 Petabytes.  A large 

part of this data is video from the cameras in the DAS, 

which offers exciting possibilities for analysis and insight 

into the driver practices.  Many areas of intelligent vehicle 

technology, such as driver alertness monitoring, predicting 

driver actions, improved warning systems, advanced driver 

assistance, and human machine interaction could all benefit 

from the NDS data.  Indeed, the real-world nature, volume, 

and acquisition conditions are unmatched in the 

transportation community, but there are also challenges 

because the data has relatively low resolution, high 

compression rates, and differing illumination conditions.  

Furthermore, manual analysis of such a large collection can 

be slow, tedious, and error-prone.  Consequently, the Federal 

Highway Administration (FHWA) is leading efforts to 

develop and deploy automated feature extraction algorithms 

to measure driver and surrounding vehicle behavior to 

increase the utility of the NDS [2].  The algorithms under 

development include tools to automatically extract data 

regarding the driver disposition, surrounding roadway 

information, passenger information, and general driving 

performance.  A particularly useful indicator of driver state 

can be found by analysis of the face and head, which can 

indicate drowsiness, distraction, or other important 

characteristics.  As a result, automating the analysis of the 

face and head are of primary importance.  In this paper we 

discuss the performance of a variety of baseline methods on 

a SHRP2-like data set, including detection, pose estimation, 

and coarse direction of focus.   This data set is publicly 

available from VTTI at no cost, although a simple data 

sharing agreement must be established.  

II. BACKGROUND 

The processing of imagery to identify and characterize 

faces is an important application area in computer vision. 

The basic core methods of face detection including facial 

landmark detection serve as preliminary steps to more 

informative applications such as subject recognition, and 

subject state estimation such as emotional expression or 

drowsiness.  These topics are highly researched with the 

state-of-the-art still improving at levels from basic detection 

and landmark identification [7, 23, 28] to higher level 
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representations such as emotion [9].  There are also many 

excellent survey papers such as [26, 27] for face detection, 

[20] for head pose estimation, and [6, 15] for face 

recognition.  Applications for these techniques range from 

social and commercial media knowledge discovery to 

security and surveillance.  Transportation (specifically 

monitoring for distraction and interpreting driver behavior) 

is also an area of high interest [11, 16, 30].  Much research 

focuses on providing real-time feedback to the driver to alert 

them of dangerous situations [10, 22, 24], but there is also 

interest in video interpretation [19] which can help improve 

the analysis of face data for safety research [18].   

III. METHODS 

A. Data 

As in virtually all computer vision applications, the state-

of-the-art is usually advanced most significantly when data 

sets exist that can be used to develop and compare 

algorithms.  For NDS work, there are a number of privacy 

constraints, which make free, full sharing of the data 

difficult.  As an example the GPS location of trip start and 

ends cannot be shared as they could be used to identify the 

driver.  Another example is the face video data, which also 

contains identifiable information.  However, there is an 

alternate set of data, the “Head Pose Validation” (HPV) 

study, which is available to qualified researchers with less 

restrictive privacy agreements than the SHRP2 NDS [5].  

This data was recorded by VTTI to serve as a means of 

measuring head pose in drivers and testing different methods 

for head pose estimation.  Therefore, the HPV is an excellent 

source of data for computer vision researchers in naturalistic 

driving studies.  

As a dedicated data collection system, the DAS interfaces 

to several sensors installed by VTTI and SHRP2 contractors 

as well as signals available on the controller area network 

(CAN) bus.  There are five NTSC analog cameras in the 

system, which obtain images of the roadway to the front and 

rear of the vehicle, as well as the interior (hands/steering 

wheel and face).   The DAS combines four of the camera 

images into a single compressed 720x480 pixel frame for 

storage.  An additional cabin view camera is used, which 

blurs the image to obscure passengers in the vehicle.  The 

cabin view snapshot is recorded at intervals of 10 minutes.  

The main subject for this paper is the face camera, which has 

a focal length of 3.3 mm, with a 51.7 by 40.0 field of view, 

and is scaled to 360x240 before recording to disk at 15 

frames a second.  In addition, the camera contains an IR pass 

filter to improve dynamic range in the different 

environmental conditions of real-world driving.  To 

illuminate the driver at night, the DAS has a built-in IR light 

source.  Some example images are shown in Figure 1. 

A subset of the data, called the “clipped” set, is primarily 

available for automated algorithm development.  The 

clipped set contains 41 participants, with 20 involved in 

“static” trials  (where the vehicle was not driven) and 21 in 

“dynamic” trials  (where the vehicle was driven in a fixed 

route for roughly 30 minutes.)  A single vehicle was used for 

all trials.  In the static tests, participants performed a variety 

of “tasks”, such as putting on / taking off glasses, simulating 

a cell phone conversation, etc.  In the dynamic tests some 

tasks were also performed but common driving activities 

(such as a merge action) were also identified for some 

frames. Data was recorded at night, during the day, and in 

transition periods from day to night.  Two DAS systems 

were used to capture different, but related, video streams: 

one for lower-resolution imagery data compatible with the 

SHRP2 study, and a second which was modified to record 

only the face camera.  This second “high resolution” video 

stream records the face camera at 720x480 pixels and does 

not contain the dash, front or rear camera video. 

For some frames, a ground truth face detection and head 

pose are provided.  These ground truth values were provided 

by facial landmarks manually annotated by a set of video 

reviewers on the high resolution DAS system, followed by 

post-processing. A small percentage of frames have the 

manually annotated landmarks but do not include rotation 

estimates.  Of a total of 911,018 frames from 41 SHRP2 

videos, roughly 7% have facial landmarks and rotation 

estimates.  These frames occur often consecutively for 

several short periods during the video.  

The rotation estimate data provided for the HPV study 

was based on the high resolution video taken of the 

participant. It was not performed on SHRP2 format images.  

In order to use this data with the SHRP2 images, the frame 

offsets between the high and low resolution video had to be 

found, using semi-automated image comparison followed by 

manual verification.   

B. Baseline Algorithms 

Geometric - The first method of interest was a geometric 

method used by VTTI during the initial collection and 

analysis of the head pose study data.  The method uses seven 

manual face landmark annotations consisting of (1) outer 

corner of right eye, (2) inner corner of right eye, (3) inner 

corner of left eye, (4) outer corner of left eye, (5) tip of nose, 

(6) right corner of mouth, and (7) left corner of mouth.  For 

  

  
Figure 1.  Example images from sample SHRP2 data during (left) 

daytime and (right) low-light conditions [5] 
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many frames at least two analysts made annotation marks. 

These analysts were trained according to a protocol to 

establish consistency. The landmarks were located in the 

high-resolution frame, but there is a constant scaling that can 

be used to locate them in the corresponding low-resolution 

(SHRP2) frame. 

 The resulting 7-point annotations were then converted to 

head pose measurements using the methods of [12] (pitch) 

and [14] (yaw and roll).   In addition to these landmarks, the 

geometric method utilized facial feature measurements taken 

of each participant’s face.  Most frames have 2 sets of 

rotation estimates – a raw rotation estimate of the yaw, pitch 

and roll and an estimation of each of these values filtered 

with a 4th order Butterworth filter. On some frames the 

filtered values are not available.  The geometric method is 

used in this work as the ground truth to compare to other 

methods. 

GOTS and GOTS Tracked (G-T) – This method uses a 

particular “Government Off-The-Shelf” software which 

includes face detection, tracking, landmark detection, pose 

estimation, and face recognition that is well suited for non-

frontal faces in uncontrolled lighting.  (For this paper we 

will refer to it simply as GOTS for simplicity.) This 

particular tool has become a standard for evaluation due to 

its government use rights and performance.  For this study 

we operated GOTS in two different modes: detection only 

and detection with tracking.  In the detection only mode each 

frame is treated independently and GOTS operates like a 

standard face detector.  In the detection with tracking mode, 

GOTS attempts to follow the face over time in order to 

improve detection rates using one of multiple tracking 

options (the “Serial Mode” was used in this study). GOTS 

typically provides 3 landmarks for faces that are 

approximately frontal including the two eyes and nose.  For 

faces significantly non-frontal 5 points are provided which 

include the near eye, nose, and points near the cheek and ear.  

The algorithm also provides estimates of the head roll and 

yaw (but not pitch) and seems to be effective for a +/-90 

degree yaw range centered on frontal. 

DLib – This is an open source machine learning library 

[17] that provides face detection and landmark detection 

algorithms.  Both of these algorithms appear to operate well 

on a variety of poses from +/-60 degrees yaw and pitch from 

frontal and under various lighting conditions.  Performance 

of the detector appears to drop off significantly in the range 

from 60 to 90 degrees yaw.  The software provides 72 

landmark points. 

DLib does not provide face pose or recognition 

capabilities so for pose estimation we implemented our own 

algorithm that is based on the face landmark locations.  For 

training we used the Pointing04 dataset [13] which included 

15 people with 2790 total images.  The landmark location 

was clustered in a manner similar to k-means with the 

exception that the distances to the cluster centers are 

computed after aligning the landmarks to the cluster center 

using the “AffineFromPointsLS” function from the PyVision 

library [4].  Fifteen cluster centers were used.   Once the 

cluster centers are determined the training data is aligned to 

the centers and the top 1/3 of the training data was used to 

train support vector regression using the automatically tuned 

implementation in OpenCV [3] to estimate the yaw and 

pitch.  This provides significant overlap with the 

neighboring clusters and results in a smooth transition 

between clusters for the pose estimates.  Roll is estimated by 

measuring the slope of the line passing through the eye 

centers.  Landmarks from both the GOTS and DLib methods 

are shown in Figure 2 on sample SHRP2 data. 

IV. RESULTS 

We compare the results of baseline face detection and 

head pose estimation with the ground truth results from the 

Head Pose Validation set.  Note that the head pose 

comparison can only be generated for frames for which a 

rotation estimate is available and that the particular 

technique being evaluated was able to generate a face 

detection and rotation estimate.  All analysis was performed 

on the low-resolution data stream, which is representative of 

the true SHRP2 data.   

A. HPV Face Detection Results 

The first step in most automatic face analysis algorithms is 

face detection. The percentage of frames detected are shown 

in Table 1 and 2 for the non-driving (static) and driving 

(dynamic) trials.  We separate the trials because the dynamic 

trials represent more normal driving conditions, but the static 

offer a variety of different actions during a smaller period of 

time.  The “combined” method simply counts frames where 

at least one of the other three methods detects a face. There 

is very little difference in the face detection performance in 

GOTS and DLib on the Daytime data.   For the Night video 

DLib shows a significant drop in performance while GOTS 

shows a small improvement.  There is significantly less light 

in the Night video because the scene is illuminated by 

infrared LEDs on the DAS.  The difference in performance 

may be due to the algorithms sensitivity to that particular 

lighting condition.  Regardless, this shows that GOTS has a 

significant advantage on the Night videos.  Additionally 

 
Figure 2.  Examples of (top) GOTS landmarks with facial region-of-

interest and (bottom) DLIB landmarks on SHRP2 sample data [5] 
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these results show that a 8% to 9% improvement can be 

gained by enabling the GOTS face tracking in both modes.  

Furthermore, incorporating all the methods improves 

performance significantly for all cases (between 1% to 

10%).  The dynamic and static results fit intuition for the day 

and night cases: dynamic trials have much face movement 

that is representative of “regular” driving conditions, such as 

long periods of little head motion with occasional glances, 

while static trials include actions such as putting on caps 

which occlude the face and cause problems with detection. 

Another interesting note is that the transition cases perform 

better for static trials than dynamic trials.  A likely 

explanation for this is that transition trials have more sudden 

changes in temporal lighting condition because the vehicle is 

moving.      

The landmark performance evaluation is shown in Table 

3.  The comparison was done by comparing the detected 

eye/nose landmarks from GOTS with the annotated ground-

truth eye/nose landmarks, with the inner and outer eyes 

averaged for comparison with GOTS.   For DLib, the 

landmarks corresponding to the inner and outer eye were 

used, along with the outer mouth and the nose tip. The mean 

absolute error (MAE) was found for each trial and then the 

mean of these values were used for the overall estimate.  

There is not much change with GOTS from case to case, 

although generally the error seems slightly less during the 

day.   The DLib error is greater overall, but we note that 

DLib produces an order of several magnitude more points, 

which can have advantages in some cases as it may be able 

to leverage the relative position of many more values for 

more robustness. Because the DLib is open source, and the 

face detection and landmark detection are two distinct 

function calls, it may be possible to pair the landmark 

detection with another face detector to get the best of both 

worlds.  Additionally, it should be possible to retrain the 

DLib detectors to obtain better results on this particular data 

set.  In general retraining is something that is infeasible with 

other commercial face detection algorithms because training 

APIs are typically not available. 

B. HPV Pose Estimation Results 

The pose estimation error is shown in Tables 4, 5, and 6 for 

yaw pitch, and roll, separated by night, transition and day 

trials (there was not a significant difference for the dynamic 

vs static cases).  Note that GOTS does not provide a pitch 

calculation, so we simply used a constant value of 0 for its 

estimate and give the error in that case.  Both GOTS 

implementations outperform the DLib case by roughly 10 

degrees for Yaw.  The DLib pitch values are roughly 3 

degrees better than a constant estimate with a roughly 12 

degree mean absolute error.  The roll performs well for all 

cases; this is a fairly straightforward measurement. 

C. HPV Pose Consistency 

One particularly useful attribute of the HPV is the 

definition of coarse pose, or rough driver attention direction, 

which can be obtained from the annotations in the data.  As 

an example, in Figure 3 we show the ground truth head pose 

for ten of the 20 static trial participants in the “calibration” 

task, where they are looking at the camera mounted by the 

rear-view mirror.  We see that for each participant, there is a 

distinct clustering of the angles that define this particular 

coarse head pose, as well as extent of the measurement.  

However, there is considerable variation between the 

participants themselves, with the largest difference 

approximately 25 degrees in pitch. This suggests that coarse 

head pose measurements may require some level of 

normalization or calibration for an individual participant, 

TABLE 1: PERCENTAGES OF FRAMES WITH DETECTED 

FACES FOR DIFFERENT BASELINE METHODS: STATIC 

TRIALS 

Algorithm Night Transition Day 

G-T 84.7% 92.9% 75.5% 

GOTS 79.0% 89.1% 66.0% 

DLib 63.0% 79.7% 76.7% 

Combined 87.1% 94.5% 86.1% 

 
TABLE 2: PERCENTAGES OF FRAMES WITH DETECTED 

FACES FOR DIFFERENT BASELINE METHODS: DYNAMIC 

TRIALS 

Algorithm Night Transition Day 

G-T 87.9% 88.9% 83.8% 

GOTS 79.1% 83.7% 75.5% 

DLib 70.7% 69.0% 77.1% 

Combined 90.8% 91.1% 89.4% 

 
TABLE 3: LANDMARK MEAN-ABSOLUTE ERROR IN PIXEL 

FOR DIFFERENT BASELINE METHODS 

Algorithm Night Transition Day 

G-T 2.50 2.32 2.40 

GOTS 2.50 2.31 2.36 

DLib 5.16 4.67 4.62 

 

 

 
TABLE 4: MEAN ABSOLUTE ERROR FOR YAW IN DEGREES 

Algorithm Night Transition Day 

G-T 5.89 4.48 5.89 

GOTS 5.98 4.47 5.80 

DLib 13.6 12.7 13.5 

 
TABLE 5: MEAN ABSOLUTE ERROR FOR PITCH IN 

DEGREES 

Algorithm Night Transition Day 

G-T 11.4 10.2 9.57 

GOTS 11.3 10.2 9.43 

DLib 10.7 10.6 10.9 

 
TABLE 6: MEAN ABSOLUTE ERROR FOR ROLL IN 

DEGREES 

Algorithm Night Transition Day 

G-T 1.72 1.58 2.04 

GOTS 1.72 1.51 1.94 

DLib 1.89 1.85 1.99 
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although this would hopefully be consistent from trip to trip.  

There are several cases of task’ like this in the HPV, which 

can comprise ground-truth events for coarse head, pose 

measurements, but we must consider this intra-driver 

variability when finding an overall method or standard for 

coarse head pose identification. 

With this in mind, we performed an evaluation to 

understand how the results compare if a calibration step is 

applied to the data.  We test for a good fit by allowing the 

pose estimates P to be adjusted such that P’=sP+b, where s 

and b are a scale and a bias that are selected on a per-video 

basis.  This provides a mechanism to find an optimal linear 

adjustment to the estimates to align them with the ground 

truth.  One problem with solving for an optimal s and b is 

that the vast majority of the driving data has the driver 

looking directly out the front window.  When solving for a 

calibration using a least squares fit, we found that b would 

be selected to correspond to that frontal pose in the ground 

truth and s would be very small to compress all the data to 

cluster all the estimates close to that value.   

Instead we implemented a method that evenly weighs the 

frontal estimate and non-frontal estimates to produce a more 

useful calibration.  We assume that the median of the ground 

truth is consistent with when the driver is looking out the 

front windshield and therefore can be used as an estimate to 

define a region that the driver is considered to be looking 

forward, say +/- 5 degrees around the center.  A tolerance is 

also defined such that errors within that +/-5 degree range 

are considered to be correct.  (Note that the 5 degree 

tolerance on head pose was intentionally chosen as it is 

difficult to achieve this level of accuracy, yet offers room for 

improvement for future development.)  The score is based 

on the number of poses correctly estimated such that they 

are within the range defined by the tolerance, however to 

maintain balance between when the drivers are 

looking forward and when they are looking to the sides, the 

score is split into those two categories based on the ground 

truth and then they are evenly weighted.  This means that the 

frontal and non-frontal can each contribute at most a value 

of 0.5 for a total maximum score of 1.0. This score indicates 

what fraction of the estimates fall within the 5 degree range 

after calibration.  To optimize s and b with respect to this 

score we used the GENITOR [25] algorithm. 

Figure 4 shows an example of how effective the robust 

calibration process aligned the pose estimates on a dynamic 

trial from the HPV. In this particular instance G-T detected 

faces in 99.1% of the ground truth frames and produced an 

overall score of 0.757 which indicates that approximately 

75.7% of poses were within the 5 degree tolerance.  DLib 

detected faces in 87.9% for the frames resulted in an overall 

score for that video of 0.652.   This particular example 

worked very well, but there are other cases where the 

agreement is not as high, suggesting either an issue with the 

particular video or even the ground truth. For the entire HPV 

dataset, the MAE dropped to 5.34 degrees and 5.54 degrees 

for G-T and DLib respectively, which is comparable for G-T 

(from 5.51 degrees uncalibrated) and a dramatic 

improvement for DLib (from 13.3 degrees uncalibrated). 

V. CONCLUSIONS 

In this work we presented the application of baseline face 

detection and pose estimation to naturalistic driving study 

data, specifically the Head Pose Validation data set which is 

representative of the SHRP2 NDS, including issues such as 

relatively low resolution, high compression rates, and 

differing illumination conditions. We applied a commercial 

package with government-use, GOTS, which detected faces 

on 80-90% of the available frames of data in the set and 

achieved a yaw estimate that was within 4-6 degrees of the 

ground truth on average.  We also used an open source face 

detector, DLib, which we trained to produce head pose.  

Given the reduced accuracy of this method, and variation 

 
Figure 3.  Scatter plot showing Yaw and Pitch of ten of the static 

trial participants performing the “calibration” task (looking at the 

camera).  Each subject is represented by a unique shape and color. 
 

Figure 4.  Plots of corrected automated yaw estimates for (top) G-

T and (bottom) DLib after applying robust calibration on a dynamic 

trial.  Note that the ground truth is not available for all frames so the 

x-axis is not a direct correlation with all video frames. 
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within the data set as shown by the “calibration” task, we 

explored methods for achieving more consistent estimates 

with automated methods.  Further work in this area will 

include more automation and blind testing as well.  While 

our immediate goal is to use this data set, and others, to 

create standards and methodologies to facilitate efforts to 

automate feature extraction for the SHRP2 NDS, the HPV 

will be beneficial for the development of algorithms in many 

areas of intelligent vehicle technology, such as driver 

alertness monitoring, predicting driver actions, improved 

warning systems, advanced driver assistance and human 

machine interaction. 
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