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Abstract

Although price responsive demand response has been widely accepted as
playing an important role in the reliable and economic operation of power
system, the real response from demand side can be highly uncertain due to
limited understanding of consumers’ response to pricing signals. To model
the behavior of consumers, the price elasticity of demand has been explored
and utilized in both research and real practice. However, the price elasticity
of demand is not precisely known and may vary greatly with operating con-
ditions and types of customers. To accommodate the uncertainty of demand
response, alternative unit commitment methods robust to the uncertainty
of the demand response require investigation. In this paper, a robust unit
commitment model to minimize the generalized social cost is proposed for
the optimal unit commitment decision taking into account uncertainty of the
price elasticity of demand. By optimizing the worst case under proper robust
level, the unit commitment solution of the proposed model is robust against
all possible realizations of the modeled uncertain demand response. Numeri-
cal simulations on the IEEE Reliability Test System show the effectiveness of
the method. Compared to unit commitment with deterministic price elastic-
ity of demand, the proposed robust model can reduce the average Locational
Marginal Prices (LMPs) as well as the price volatility.
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Nomenclature
The main symbols used in this paper are defined below. Others will be

defined as required in the text.

0.1. Indices and Numbers
i index of generators, running from 1 to NG.

j index of demand, running from 1 to ND.

t index of time periods, running from 1 to NT .

k index of transmission lines, running from 1 to NK .

m index of energy blocks offered by generators (demand), running
from 1 to NI (NJ).

0.2. Variables
0.2.1. Binary Variables
uit 1 if unit i is scheduled on during period t and 0 otherwise.

ujt 1 if demand j is scheduled to be reduced during period t and 0
otherwise.

0.2.2. Continuous Variables
pit (m) power output scheduled from the m-th block of energy offer by

unit i during period t. Limited to pmax
it (m).

djt (m) demand reduction from the m-th block of demand j’s reduction
curve during period t. Limited to dmax

jt (m).

Pit power output scheduled from unit i during period t.

Djt demand reduction for demand j during period t.

λjt corresponding price when demand j during period t is reduced
by Djt.

Rit scheduled spinning reserve for unit i during time period t.

α̃jt a random variable of the slope of price elastic demand reduction
curve of demand j during period t.
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0.3. Constants
λit (m) marginal cost of the m-th block of energy offer by unit i during

period t.

mcjt (m) marginal opportunity or alternative cost of the m-th block of
demand j’s reduction curve during period t.

Ai operating Cost of unit i at the point of Pmin
i .

Bj opportunity or alternative cost demand j when it is reduced by
Dmin

j .

Cit capacity cost offer of unit i during period t for providing up-
spinning reserve.

Pmax
i maximum output of unit i.

Pmin
i minimum output of unit i.

Dmax
jt maximum reduction of demand j during period t.

Dmin
jt minimum reduction of demand j during period t.

λmax
jt corresponding price when demand j during period t is reduced

by Dmax
jt .

λmin
jt corresponding price when demand j during period t is reduced

by Dmin
jt .

λref
jt reference price when demand j during period t is not reduced .

αjt the slope of price elastic demand reduction curve of demand j
during period t.

emjt the m-th elbow point of the piece-wise linear price elastic demand
reduction curve of demand j during period t

4αjt deviation from the nominal slop of price elastic demand reduction
curve of demand j during period t.

DF
jt fixed demand of demand j during period t.

Dref
jt reference responsive demand of demand j during period t without

reduction.

GSFki generation shift factor to line k from unit i.

GSFkj generation shift factor to line k from demand j.

Fmax
k transmission limit of line k.

Γ0 control parameter of robustness level.
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1. Introduction
Following the deregulation of power system, electricity prices in the whole-

sale market have at times experienced dramatic and rapid changes. This
price volatility may arise from market power or an imbalance in supply and
demand stemming from, for example, loss of generation units, unit ramp-
ing constraints, transmission lines outages or congestion and sudden load
changes. When renewable energy resources, such as, wind and solar, are in-
troduced, this problem can become worse, e.g., frequent negative electricity
prices occur in the western region of ERCOT [1]. Under these circumstances,
demand response (DR) programs, which can change the energy consump-
tion patterns of consumers, could improve market efficiency and reduce price
volatilities. DR is implemented for obtaining reliable and efficient electricity
markets in several countries [2]-[4].

Considerable efforts have been devoted to incorporating DR into the mar-
ket clearing process to achieve the highest efficiency. In [5], an electricity
market in which generators and consumers can submit offers and bids on
both energy and reserve are proposed, but the network and multi-period
constraints are neglected. In [6] and [7], a price elasticity matrix (PEM) is
proposed and taken into consideration when scheduling generation and set-
ting the pool price. An iterative market clearing algorithm is used and the
demand is adjusted in proportion to the difference between market clear-
ing price and the reference price. In [8], a day-ahead market clearing tool
is proposed for the load shifting behavior of consumers by submitting price
sensitive bids. The effect of DR on the market are quantified and analyzed.
In [9], price responsive demand shift bidding of consumers is introduced in
a day-ahead market with network constraints. A linear price-elastic demand
curve is used to represent the sensitivity of demand with respect to price. DR
with inter-temporal characteristics is incorporated into a security constrained
unit commitment (SCUC) for economic and security purposes in [10]. The
price-elastic demand curve is approximated as a stepwise linear curve. DR
participation in the spinning reserve market is also investigated in [11]-[13].

In order to eliminate the barrier of DR participating in electricity mar-
ket, Federal Energy Regulatory commission (FERC) issued Order No. 719 in
2008 [14]. By this order, FERC requires that ISOs/RTOs accept bids from
qualified demand response resources to provide ancillary services. In addi-
tion, aggregators on behalf of small retail customers are allowed to bid DR
directly into the organized markets. Currently, several ISOs/RTOs (e.g. Cal-
ifornia ISO, ERCOT, ISO-New England, Midwest ISO, PJM, and New York
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ISO) have provided opportunities for customers to participate in wholesale
energy, capacity and ancillary services markets [15]. Taking New York ISO
for example, DR resources may offer operating reserves, regulation, energy
reduction and capacity service by participating into the Demand Side Ancil-
lary Services Program, Day-Ahead Demand Response Program, Emergency
Demand Response program and Installed Capacity Special Case Resources
Program [16]. By 2010, 31,695 MW of demand response are available in
ISO/RTO markets, up from 17,146 MW at the end of 2006. Such gains
represent 6.6 % of 2008 peak demand within the regions combined [14].

In the above literature and market practice, DR directly bids into various
markets and is modeled as a deterministic price-elastic demand curve. How-
ever, the actual price-elastic demand curve is uncertain and variable in time.
In addition, consumers may modify their demand as prices change without
being centrally dispatched. Therefore, power system scheduling, particularly
unit commitment (UC), needs to be robust against the uncertainty in the
price elasticity of demand. In recent years, significant contribution has been
made by using the stochastic optimization models to solve UC problem un-
der various uncertainties, in particular, under wind power output uncertainty
[17]-[20]. A stochastic UC model is developed to determine the optimal re-
serve levels considering the volatile wind power in [21]. The impacts of large-
scale wind power on system operating cost, realisability and environment are
fully assessed in [22]. In [23], Benders decomposition technique is used to
solve the stochastic UC problem. A chance-constrained two-stage stochas-
tic UC with uncertain wind power output is proposed in [24]. Nevertheless,
stochastic UC is rarely used in real system operation for two reasons. Firstly,
the realization of uncertainty by a large number of scenarios dramatically in-
crease the dimension of optimization model and reduce the solution efficiency.
Secondly, the exact wind distribution is rarely available in short-term, such
as day-ahead. For these reasons, robust optimization model, which requires
less information of the uncertain parameter and has high solution efficien-
cy, has been proposed to solve the UC problem with uncertainty recently.
Two-stage robust UC models have been developed to solve the day-ahead
UC problem under load uncertainty in [25] and [26], wind power output un-
certainty in [27], generator and transmission uncertainty in [28] and market
price uncertainty in [29]. For robust UC, the uncertainties are expressed by
deterministic uncertainty sets neglecting their probability distributions and
the worst case is optimized. Compared to stochastic UC, robust UC has
relatively low dimension and high solution efficiency.
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Considering the uncertainty of demand response, a scenario set of demand
price elasticities is proposed in [30] to represent the stochastic DR, i.e., cus-
tomers have different responses to the electricity prices in different scenarios,
but the probability distribution of the demand elasticities is difficult to quan-
tify. In [31] and [32], the price elasticity of demand is assumed to be varying
within a given range. A robust UC approach is proposed to maximize the
social welfare under the worst case joint wind power output and price-elastic
demand curve scenario. This method allows for increased demand elasticity
and results in a paradoxical reduction of total social welfare. This is because
social welfare is not the right index of evaluating the economic benefit of
system with demand response. The calculated social welfare is reduced as
a consequence of increased demand elasticity [33]. Under this situation, the
worst scenario in term of maximizing social welfare in [31] and [32] appears to
be the one with the most price-elastic demand. This is clearly incorrect since
greater demand elasticity leads to more reliable and/or efficient operation of
the system due to the flexibility of demand.

In view of the above concerns, the main contribution of this paper is
to propose a new robust UC model to correct for the inconsistency that
occurs when the effect of uncertain demand elasticity on social welfare is
calculated. In the proposed model, the objective is to minimize the gen-
eralized social cost, which consists of generation cost and opportunity cost
of reduced demand or alternative cost of electricity consumption. In this
model, a low elasticity of demand results in increased generalized social costs
and more generation capacity is needed, which is consistent with practical
system operation. A robust UC model is developed to take into account
the uncertain price elasticity of demand. The proposed robust UC model
can be used for the reliability unit commitment run process (e.g., reliability
assessment commitment in Midwest ISO) to ensure sufficient resources are
available and online to cover uncertainties. Numerical simulations show that
the proposed model can reduce both the average electricity price and the
volatility of prices.

The rest of this paper is organized as follows. In Section II, the proposed
UC model to minimize generalized social cost is formulated. The robust
UC model considering uncertainty demand elasticity is developed in Section
III. Results of numerical simulations are presented in Section IV. Finally,
conclusions are given in Section V.
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2. Proposed UC Model to Minimize Generalized Social Cost
In this section, we first compare the proposed UC for minimizing gener-

alized social cost with a traditional UC for maximizing social welfare. The
mathematical formulation of proposed UC is presented. Consumers have the
opportunity to reduce their electricity charges by adjusting their activities
according to the market clearing prices; however, some consumers will not
have the ability or sufficient incentive to adjust demand at a given price.
Accordingly, demand is divided into fixed and price elastic components.

A typical market equilibrium with deterministic demand curve is shown
in Fig. 1a. The maximum social welfare, which consists of consumers’ sur-
plus and suppliers’ surplus, occurs at the intersection of the electricity supply
and demand curves

(
D0

jt, λ
0
jt

)
. At the same point, the generalized social cost,

which consists of generation cost and opportunity cost of the reduced demand
or the alternative cost of electricity consumption is minimized. The general-
ized social cost can be seen as the complement of social welfare. When the
social welfare is maximized, the generalized social cost is minimized and vice
versa. In other words, with a deterministic supply and demand curves, a UC
that minimizes generalized social cost is equivalent to a UC that maximizes
social welfare. The mathematical proof of the equivalence between maximiz-
ing social welfare and minimizing generalized social cost under deterministic
demand curves is given in Appendix A.
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(a) Deterministic demand
curve
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(b) Uncertain demand curve

Figure 1: Market equilibrium with deterministic and uncertain demand
curves

When the demand curve is uncertain, as depicted in Fig. 1b, minimizing
generalized social cost may no longer be equivalent to maximizing social
welfare. The worst scenario in term of maximizing social welfare is when the
demand curve is green with a flat slope, i.e., the price elasticity is highest,
so that the social welfare is reduced by area A and the needed generation
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capacity is the minimum of all scenarios. In contrast, the worst scenario
in term of minimizing generalized social cost is when the demand curve is
grey with the greatest slope, i.e., the price elasticity is lowest, so that the
generalized social cost is the increased by area D and the needed generation
capacity is the maximum of all scenarios. In fact, the worst scenario in
term of minimizing generalized social cost is the best scenario in terms of
maximizing social welfare and vice versa. The mathematical proof can be
found in Appendix B.

The proposed UC model for minimizing generalized social cost is the cor-
rect approach when the demand curve is uncertain. In practice, with demand
becoming more price-elastic, the reliability and/or efficiency of system can
be improved due to the extra flexibility from demand side. In other words,
the worst case in actual system operation should be when the demand is
the least elastic, i.e., the price elasticity of demand is the lowest. This is in
contradiction with the traditional UC model for maximizing social welfare,
where the worst scenario is the highest price elasticity. In this tradition-
al model, the scenario with the most price-elastic demand is optimized and
the committed generation capacity is the minimum of all scenarios. When
the real price elasticity of demand is low, the generation capacity will be
insufficient and electricity price spikes may appear. This is the opposite of
what is desired from a robust optimization. As to the proposed UC model
for minimizing generalized social cost, the worst scenario is the one with the
lowest price elasticity. In the proposed model, the scenario with the least
price-elastic demand is optimized and the committed generation capacity is
the maximum of all scenarios. This is consistent with practical system op-
eration. Therefore, the proposed UC model is more appropriate than the
traditional UC model when the demand curve is uncertain.

It should be emphasized that the proposed UC model differs from the
traditional UC model only when the demand curve is uncertain. With un-
certainty, there is an area, including A, B, C and D, where the demand curve
can be realized. Consequently, the intersection of the electricity supply and
demand curves changes from a single point into a curve. Under this situa-
tion, the complementarity between social welfare and generalized social cost
no longer exists. In other words, maximizing social welfare is no longer equiv-
alent to minimizing generalized social cost with uncertain demand response.

The proposed UC model to minimize the generalized social cost with
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deterministic demand curve (price elasticity) is as follows:

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

+

NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

]

+

NT∑
t=1

NG∑
i=1

Sit (uit, ui,t−1)

+

NT∑
t=1

NG∑
i=1

CitRit (1)

s.t.
Pit =

NI∑
m=1

pit(m) + uitP
min
i ∀i, ∀t (2)

0 ≤ pit(m) ≤ pmax
it (m) ∀i, ∀t ∀m (3)

Djt =

NJ∑
m=1

djt(m) + ujtD
min
jt ∀j, ∀t (4)

0 ≤ djt(m) ≤ dmax
jt (m) ∀j, ∀t, ∀m (5)

NG∑
i=1

Pit =

ND∑
j=1

(
DF

jt +Dref
jt −Djt

)
∀t (6)∣∣∣∣∣

NG∑
i=1

GSFkiPit −
ND∑
j=1

GSFkj

(
DF

jt +Dref
jt −Djt

)∣∣∣∣∣ ≤ Fmax
k ∀k, ∀t (7)

Rit + Pit ≤ Pmax
i uit ∀i, ∀t (8)

Pit +Rit ≤
NG∑
i=1

Rit ∀i, ∀t (9)

In the above formulation, the objection function (1) is the generalized
social cost, including energy cost of generators (line 1), opportunity cost of
reduced demand (line 2), startup cost of generators (line 3) and spinning
reserve cost (line 4). All terms are in mixed-integer linear form except the
startup cost of generators (line 3), which can be simply recast into mixed-
integer linear form as in [34]. Constraints (2) and (3) approximate the energy
cost of generators by blocks [35]. Similarly, the opportunity cost of reduced
demand is linearized and approximated by (4) and (5). The market equilibri-
um is enforced by (6). A DC power flow is used to represent the transmission
constraints in (7). The coupling relationship between energy and spinning
reserve is represented by constraint (8). The minimum amount of spinning
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reserve based on “n − 1” contingency rule is ensured by (9) [36]. For more
comprehensive approach to quantifying spinning reserve, see [37]. Addition-
ally, each unit or demand is subject to its own operating constraints, includ-
ing minimum up and down time, initial condition, capacity limits and ramp
limits. See [38] for more details about the formulations of these constraints.

3. Robust UC with Uncertain Price Elasticity of Demand
In this section, we first introduce a price elastic demand reduction curve

to represent the price elasticity. Then, the model of uncertain price elasticity
is introduced. The robust UC with uncertain price elasticity of demand is
formulated.
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Figure 2: A typical price elastic demand reduction curve

A typical price elastic demand reduction curve is shown in Fig. 2. The de-
mand reduction increases monotonically with electricity price increase. The
slope of the curve αjt represents the price elasticity of demand. The electric-
ity price λjt of a consumer corresponding to reduction of demand by Djt can
be represented as:

λjt = λref
jt + αjtDjt (10)

The opportunity cost or alternative cost of reduced demand can be deter-
mined by the integral of the curve from 0 to Djt.

Cjt(Djt) = λref
jt Djt + 0.5αjt (Djt)

2 (11)
The quadratic cost function (11) can be approximated by piecewise linear
functions similar to that for generation units [34]. The marginal cost mcjt(m)
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can be represented as

mcjt (1) = λref
jt + 0.5αjt

(
Dmin

jt + e1
jt

)
mcjt (2) = λref

jt + 0.5αjt

(
e2
jt + e1

jt

)
...

mcjt (m) = λref
jt + 0.5αjt

(
em−1
jt + emjt

)
Bjt = λref

jt D
min
jt + 0.5αjt

(
Dmin

jt

)2

(12)

In the proposed UC with deterministic price elasticity, we have deter-
ministic estimates for the slope αjt of the price elastic demand reduction
curve. The parameter αjt is very hard to quantify or estimate as mentioned
before. Here, each αjt is modeled as an independent, symmetric and bound-
ed random variable (but with unknown distribution) α̃jt, that falls within
[αjt −4αjt, αjt +4αjt], where 4αjt ≥ 0.

To formulate a robust UC, we introduce an integer control parameter Γ0,
which takes values within the interval [0, |J0|], where J0 = {(jt) | 4αjt > 0},
i.e., αjt is subject to parameter uncertainty (αjt = α̃jt) for all (jt) ∈ J0.
The parameter Γ0 controls the level of robustness in the objective. We are
interested in finding a solution that optimizes against all scenarios under
which a number Γ0 of price elasticities can vary in such a way as to maximally
increase the objective function. If Γ0 = 0, the uncertainty of price elasticity
is completely ignored, while if Γ0 = |J0|, uncertainties in price elasticity are
fully considered, leading to the most conservative solution [29][39].

For a demand with uncertain price elasticity, the opportunity cost of
reduced demand in the worst scenario is (13), where e0

jt = Dmin
jt and eNJ

jt =
Dmax

jt . Considering all demands with uncertain price elasticity, we can obtain
the robust counterpart of equation (1) as (14).

NJ∑
m=1

[
λref
jt + 0.5 (αjt +4αjt)

(
em−1
jt + emjt

)]
djt(m)

+λref
jt D

min
jt + 0.5 (αjt +4αjt)

(
Dmin

jt

)2
ujt

=
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

+4αjt

∣∣∣∣∣ujt (e0
jt

)2
/2 +

NJ∑
m=1

djt(m)(em−1 + em)/2

∣∣∣∣∣ (13)
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min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

+

NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

]

+

NT∑
t=1

NG∑
i=1

[Sit (uit, ui,t−1) + CitRit]

+max{S0|S0⊆J0,|S0|≤Γ0}
∑

(jt)∈S0

{
4αjt

∣∣∣ujt (e0
jt

)2
/2

+

NJ∑
m=1

djt(m)(em−1 + em)/2

∣∣∣∣∣
}

(14)

By the property of strong duality, the proposed robust UC with uncertain
price elasticity of demand can be reformulated as (15)-(21). A detailed de-
scription of how to convert the nonlinear objective function (14) into a mixed
integer one as (15) can be found in Appendix C [39].

It should be noted that the proposed robust UC only considers self-
elasticities of demand. To take deterministic cross-elasticities into account,
the deterministic UC model (1)-(9) becomes a mixed integer quadratic pro-
gramming (MIQP) [40]. To extend the proposed robust UC model to consider
the uncertain cross-elasticities into account, the quadratic terms in objective
function can be transformed into quadratic constraints. Correspondingly, the
MILP model (15)-(21) will become a mixed integer quadratic constrained
programming (MIQCP). For simplicity, only self-elasticities are considered
in this paper.

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

+

NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

]

+

NT∑
t=1

NG∑
i=1

[Sit (uit, ui,t−1) + CitRit] +

NT∑
t=1

ND∑
j=1

qjt + z0Γ0 (15)

s.t. (2) to (9)

z0 + qjt ≥ 4αjtyjt ∀jt ∈ J0 (16)

qjt ≥ 0 ∀jt ∈ J0 (17)
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yjt ≥ 0 ∀jt ∈ J0 (18)

−yjt ≤ xjt ≤ yjt ∀jt ∈ J0 (19)

xjt = ujt
(
e0
jt

)2
/2 +

NJ∑
m=1

djt(m)(em−1 + em)/2 ∀jt ∈ J0 (20)

z0 ≥ 0 (21)
The solution methodology used in this paper is from [39], which is also

utilized in [31] and [32]. The min-max problem is converted into a monolithic
mixed integer linear programming problem by dualizing the inner maximiza-
tion problem. Unlike [31] and [32], only uncertainty of demand price elasticity
is considered in our model, which results in uncertainty only in the objective
function. Thus, dualization of the inner maximization problem does not gen-
erate nonlinear terms, and the whole optimization model can be solved by
MILP. In [31] and [32], uncertainties from both demand response and wind
are taken into account, which appears in both objective function and con-
straints. Dualization of the inner max-min problem generates bilinear terms.
Thus, Benders’ Decomposition algorithm is used to solve the multi-stage op-
timization problem. In other word, the solution methodology in this paper
can be seen as a simplified version of that in [31] and [32].

4. Case Studies
The proposed robust UC model is demonstrated on a modified IEEE

Reliability Test System [41]. In the modified system, there are 17 demand
nodes, 26 thermal generators and the hydro units have been removed. The
ramp rates and quadratic cost coefficients are taken from [42]. The unit
quadratic cost curves in [42] are converted into piece-wise linear cost curves.
In addition, we assume that all units offer spinning reserve at the rate of 10%
of their highest incremental cost for producing energy [43].

The analysis is conducted for a 24-hour scheduling horizon and each time
interval is set to one hour. The forecasted demand is taken from Table 2 in
[42]. The UC with forecasted demand is solved and the LMPs are calculated
by minimizing the generation cost. These LMPs are set as the reference prices
λref
jt of the price elastic demand reduction curves as in Fig. 2. Then, each

demand is divided into two parts: fixed and price elastic with a proportion
of 80% and 20%, respectively. The price elasticity is set to 0.2 $/MW2h [9].
Based on these parameters, the price elastic demand reduction curves of the
form in Fig. 2 are determined. The minimum reduced demand is set to be
50% of the price elastic portion. The opportunity cost of reduced demand is
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calculated and then linearized into piece-wise linear segments.
All numerical simulations are coded in MATLAB and solved using the

MILP solver CPLEX 12.2. With a pre-specified duality gap of 0.1%, the
running time of each case is about 20 seconds on a 2.66 GHz Windows-based
PC with 4 G bytes of RAM.

4.1. Effect of Robustness Level
In order to show the effect of Γ0, we assume the slope of the demand

reduction curves for all load falls within [0.1, 0.3] $/MW2h. In addition, the
robustness level is defined as Γ0/ (NT ×NJ), where 0 means no robustness
and 1 means fully robust. For different robust levels, the generalized social
costs are calculated and shown as in Fig. 3.
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Figure 3: Effect of Robustness Level

As can be seen in Fig. 3, the generalized social cost monotonically in-
creases, but not linearly with the robustness level. We are trying to find
an optimal solution that optimizes against all scenarios under which a num-
ber Γ0 of price elasticities can vary in such a way as to maximally increase
the objective function. Specifically, when the robust level is low, i.e., Γ0 is
small, the larger demands, which have major impact on the objective func-
tion, are considered. As a result, the generalized social cost and the solution
robustness increase quickly. When the robust level is high, i.e., Γ0 is big,
the smaller demands, which have a minor impact on the objective function,
are also taken into account. In this case, the generalized social cost and the
robustness of solution increase more slowly. Thus, there is a diminishing
return for considering greater uncertainty.

A set of 50 randomly sampled slopes of the demand reduction curves are
generated based on a uniform distribution in the interval [0.1, 0.3] $/MW2h.
For the sampling of elasticities, we assume all load have the same demand
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elasticity to make it easier to see the impact, but we could easily consider cor-
related probabilistic models of demand price elasticity at different nodes. For
each UC solution, an economic dispatch problem is formulated for generators
committed and demands scheduled for reduction. The social welfare is max-
imized with constraints, including energy balance, transmission limits (DC
power flow), spinning reserve requirements and other capacity limits. The
economic dispatch problem is solved by linear programming and the LMPs
are obtained as a byproduct. After solving the economic dispatch problem
for all samples, the average LMPs over all nodes are calculated and reported.
To mimic the high cost of dispatching fast-start units or involuntary load
shedding in the real-time operation, a slack variable is added to the total
spinning reserve constraint and the corresponding penalty factor is set to be
500 $/MW. The average total social welfare is calculated and shown in Table
1. It should be noted that the benefit of fixed demand is neglected because
it is a large positive constant, so the average social welfare values here are
negative.

As can be seen, the proposed robust solution has higher average social
welfare than deterministic solution. The highest social welfare happens when
robust level is 0.1 (increased by 4.06 %). As observed, the robust solution
performs best when the robust level is relatively small. This can be ex-
plained by the central limit theorem. When a large number of independent
random variables, NT × NJ , are aggregated, the volatility scales according
to
√
NT ×NJ . Therefore, a proper level of robust level should be chosen as

O(
√
NT×NJ)

NT×NJ
[26]. In this paper, with NT = 24 and NJ = 17, 2×

√
NT×NJ

NT×NJ
≈ 0.1,

which is close to the best robust level. Thus, the proposed robust solution
with the proper robustness level can improve the economic performance of
the system. For the rest of case studies, we set the robust level as 0.4.

4.2. Robustness against Uncertainty of Price Elasticity
The unit commitment results of the proposed robust and deterministic

UC are compared in Fig. 4. As can be seen, more units are committed at
hours 7, 8 and 19-22 by the proposed robust method because the approach
considers the worst-case scenario of demand price elasticities. In this worst-
case scenario, the price elasticity of demand is over-estimated and the real
price elasticity of DR is much lower as in Fig. 1b. As a result, the generation
capacity is insufficient and electricity price spikes appear. By optimizing
for this scenario, more units must be committed and additional generation
capacity made available. Consequently, the electricity spikes are reduced.
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Table 1: Average total social welfare for different robust levels

Robust
Level

Average
Social

Welfare ($)

Robust
Level

Average
Social

Welfare($)

Robust
Level

Average
Social

Welfare($)
0 -440791.28 0.35 -423070.14 0.70 -423472.23

0.05 -422897.75 0.40 -423211.38 0.75 -423472.23
0.10 -422889.20 0.45 -423211.38 0.80 -423472.23
0.15 -422929.87 0.50 -423472.23 0.85 -423472.23
0.20 -423076.85 0.55 -423472.23 0.90 -423472.23
0.25 -423074.24 0.60 -423472.23 0.95 -423472.23
0.30 -423074.24 0.65 -423472.23 1.00 -423472.23
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Figure 4: Comparison of unit status between proposed robust and deter-
ministic methods

A set of 50 randomly sampled slopes of the demand reduction curves are
generated based on a uniform distribution in the interval [0.1, 0.3] $/MW2h.
From the unit commitment results of these two methods, the LMPs are
calculated for each sample slope and shown in Fig. 5. In Fig. 5a, the vertical
bars show the range of LMPs and the mark on each bar shows the average
value. Compared to the deterministic UC, the proposed robust UC shows
reduced variation of LMPs. Comparison of mean and standard deviation of
LMPs between the proposed robust and deterministic methods is shown in
Fig. 5b. Generally, both the average and standard deviation of LMPs are
reduced by the proposed method.

The unit commitment results of the proposed robust UC with different
penetration of responsive demand are compared in Fig. 6. As can be seen,
when the penetration level of responsive demand is increased to 40%, less
units are committed during hour 7.The reason is, with higher penetration
level of responsive demand, more flexibility will be provided from the de-
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Figure 5: Comparison of LMPs between proposed robust and deterministic
methods

mand side. Therefore, the committed capacity from generators is reduced.
Nevertheless, given the same penetration level of responsive demand, the
proposed robust UC always commits more generation capacity compared to
deterministic UC as the price of increased robustness.
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Figure 6: Comparison of unit status with different penetration of responsive
demand

4.3. Comparison of Robust UC to Maximize Social Welfare with Determin-
istic UC

The unit commitment results of robust UC with objective to maximize
social welfare and deterministic UC are compared in Fig. 7. Compared to
the deterministic UC, fewer units are committed during hours 9-21 and 23-
24 by the robust UC to maximize social welfare. This is because the worst
scenario in terms of maximizing social welfare is when the price elasticity of
demand is the highest as in Fig. 1b. By optimizing for this scenario, fewer
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units are committed. Still, if the real price elasticity of demand is lower than
the estimated one, the generation capacity will be insufficient and electricity
price spikes may appear. This can be seen from Fig. 8a and 8b.
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Figure 7: Comparison of unit status between robust UC to maximize social
welfare and deterministic UC
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Figure 8: Comparison of LMPs between robust UC to maximize social
welfare and deterministic UC

A set of 50 randomly sampled slopes of the demand reduction curves are
generated based on a uniform distribution in the interval [0.1, 0.3] $/MW2h.
From the unit commitment results of these two methods, the LMPs are
calculated for each sample slope and shown in Fig. 8a. Compared to the
deterministic UC, the robust UC with objective to maximize social welfare
shows increased variation of LMPs. Comparison of mean and standard de-
viation of LMPs is shown in Fig. 8b. As can be seen, both the average and
standard deviation of LMPs are higher by the robust UC with objective to
maximize social welfare.

To summarize, the worst scenario for the robust UC to maximize social
welfare is different from the worst scenario for the proposed robust UC to
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minimize generalized social cost. For robust UC to maximize social welfare,
the worst scenario is when the price elasticity is the highest. By optimizing
this scenario, fewer units are committed, and electricity price spikes will
be exacerbated due to insufficient generation capacity. For the proposed
robust UC to minimize generalized social welfare, the worst scenario is when
the price elasticity is the lowest. By optimizing this scenario, more units
are committed, and electricity price spikes will be reduced due to sufficient
generation capacity. Thus, the proposed robust UC to minimize generalized
social cost can obtain more robust UC decisions.

4.4. Robustness against Different Distributions of Price Elasticity
As mentioned before, the probability distribution for demand price elas-

ticity is difficult to estimate. Thus, it is important for a UC solution to be
robust against various distributions. Instead of uniform distribution, uncer-
tain price elasticities with normal distribution are tested in this subsection,
a new set of 50 randomly sampled slopes for the demand reduction curves
is generated that follows a normal distribution with mean 0.2 $/MW2h and
standard deviation 0.2/2.88 $/MW2h. This results in 85% of samples falling
between [0.1, 0.3] and negative samples are ignored [26]. Based on the unit
commitment results of these two methods, the LMPs are calculated for each
sample of price elasticities and shown in Fig. 9a. Compared to the deter-
ministic UC, the proposed robust UC significantly reduces volatility.
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Figure 9: Comparison of LMPs under normally distributed price elasticities

The mean and standard deviation of LMPs are calculated and shown in
Fig. 9b. As can be seen, both the average and standard deviation of LMPs
by the proposed robust method are reduced. The proposed UC method is
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robust against different probability distributions in elasticities.

0 5 10 15 20 25
10

15

20

25

30

35

Hour (h)

A
ve

ra
ge

 a
nd

 R
an

ge
 o

f 
LM

P
s 

($
/M

W
h)

 

 
Deterministic

Robust

(a) Average and range

0 5 10 15 20 25
0

2

4

6

Hour (h)S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 L

M
P

 (
$/

M
W

h)

 

 
Deterministic

Robust

0 5 10 15 20 25
10

15

20

25

Hour (h)

M
ea

n 
of

 L
M

P
s 

($
/M

W
h)

 

 

Deterministic

Robust

(b) Mean and standard deviation

Figure 10: Comparison of LMPs under uniformly distributed price elastic-
ities with high forecast error

4.5. Robustness Against High Forecast Errors of Price Elasticity
In practice, the interval of demand price elasticity may also be diffi-

cult to accurately estimate. When the forecast errors of price elasticity
are much higher than the estimation, i.e., the real interval of elasticity is
much larger than the one used in the UC, it is important for the solution to
remain robust. To evaluate this, the UC is solved for elasticity in a uniform-
ly distributed interval of [0.1, 0.3] $/MW2h and tested against the interval
[0.01, 0.39] $/MW2h. The LMPs are calculated for each sample and shown
in Fig. 10a. Compared to the deterministic UC, the proposed robust UC
significantly reduces the price volatility even though the estimated interval
is imprecise.

The mean and standard deviation of LMPs are calculated and shown
in Fig. 10b. As can be seen, both the average and standard deviation of
LMPs are reduced compared to that of the deterministic method. Thus, the
proposed UC method is robust against when the range of price elasticity is
poorly understood.

5. Conclusions
In this paper, a robust UC model to minimize the generalized social

cost is proposed. Compared to the traditional UC to maximize the social
welfare, the proposed UC model more effectively manages uncertainty in
the demand response. The UC solution of the proposed model is robust
against all possible modeled realizations of the uncertain demand response.
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Numerical simulation results on the IEEE Reliability Test System show that
the solution can reduce both average prices and price volatility relative to
the deterministic UC. In addition, the proposed UC method is robust against
different probability distributions and high forecast errors in the demand
elasticity.

Although we only consider the uncertainty of demand price elasticity in
this paper, the proposed robust UC model can be easily expanded to include
other uncertainties, such as, power output of renewable energy resources.
First, the power output of renewable energy resources can be assumed within
a given interval, which can be determined based on historical data and current
weather condition. The price elasticity of demand curve is also varying in a
range. Then, the objective is to minimize the generalized social cost under
the joint worst-cast scenario which takes account of all uncertainties. Multi-
stage robust optimization model can be used to realize the uncertainties in
different stages. Dualization of the inner optimization problem may generate
bilinear terms. In that case, Benders’ Decomposition algorithm can be used
to solve the multi-stage robust optimization problem. Space limits prevent
us from exploring these uncertainties further in this paper.

Appendix A. Proof of the equivalence between two UC models
under deterministic demand curves

Based on the proposed UC model to minimize the generalized social cost
with deterministic demand curve (1) - (10), we are going to prove this model is
equivalent to the traditional UC that maximizes social welfare. The function
of generalized social cost is:

FSC(xSC) =
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

+
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

]

+
NT∑
t=1

NG∑
i=1

Sit (uit, ui,t−1) +
NT∑
t=1

NG∑
i=1

CitRit (A.1)

where xSC = {pit(m), uit, djt(m), ujt, Rit}, xSC ∈ USC , and USC =
{xSC |xSC satisfies (2) − (9)}, so the proposed UC model to minimize gen-
eralized social cost could be simplified as minxSC∈USC

FSC(xSC).
Since the demand curves are deterministic and same for both models,

∀xSC ∈ USC , ∃xSW ∈ USW , where xSW = {pit(m), uit, ljt(m), vjt, Rit},
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ljt(m) = dmax
jt (m)−djt(m), vjt = 1−ujt, and USW = {xSW |xSW satisfies (2)− (9) ,

substituted with ljt(m) and vjt}. There is a one-to-one mapping relationship
between USC and USW .

Assume x̂SC = {p̂it(m), ûit, d̂jt(m), ûjt, R̂it} is the solution of the pro-
posed UC model minxSC∈USC

FSC(xSC), i.e., FSC(x̂SC) ≤ FSC(xSC), ∀xSC ∈
USC , substitute d̂jt(m) and ûjt by dmax

jt (m)− l̂jt(m) and 1− v̂jt, we obtain

FSC(x̂SC) =
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)p̂it(m) + Aiûit

]

+
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)dmax
jt (m) +Bj

]

−
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)l̂jt(m) +Bj v̂jt

]

+
NT∑
t=1

NG∑
i=1

Sit (ûit, ûi,t−1) +
NT∑
t=1

NG∑
i=1

CitR̂it (A.2)

Since
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)dmax
jt (m) +Bj

]
is total benefit of the whole

demand curve, which can be expressed as a constant C , and the function of
social welfare is

FSW (xSW ) =
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)ljt(m) +Bjvjt

]

−
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

−
NT∑
t=1

NG∑
i=1

Sit (uit, ui,t−1)−
NT∑
t=1

NG∑
i=1

CitRit (A.3)

We can obtain FSC(x̂SC) = C−FSW (x̂SW ), and FSC(xSC) = C−FSW (xSW ).
Thus, C − FSW (x̂SW ) ≤ C − FSW (xSW ), ∀xSW ∈ USW , i.e., FSW (x̂SW ) ≥
FSW (xSW ), ∀xSW ∈ USW . In other words, the solution of the proposed UC to
minimize generalized social cost maximizes the social welfare of the tradition
UC model at the same time. With deterministic demand curves, the proposed
UC that minimizes generalized social cost is equivalent to the traditional UC
that maximizes social welfare.
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Appendix B. Proof of equivalence between worst case of minimiz-
ing generalized social cost and best case of maximiz-
ing social welfare with uncertain demand curves

The generalized social cost of proposed robust UC under the worst sce-
nario of demand price elasticity is

F ′SC (xSC) =
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]

+
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)djt(m) +Bjujt

]
(B.1)

+
NT∑
t=1

NG∑
i=1

[Sit (uit, ui,t−1) + CitRit]

+
∑

(jt)∈J0

{
4αjt

∣∣∣∣∣ujt (e0
jt

)2
/2 +

NJ∑
m=1

djt(m)(em−1 + em)/2

∣∣∣∣∣
}

where xSC = {pit(m), uit, djt(m), ujt, Rit}, xSC ∈ USC , and USC =
{xSC |xSC satisfies (2) − (9)}, so the proposed robust UC model to mini-
mize generalized social cost considering all uncertain demand price elasticities
could be simplified as minxSC∈USC

F ′SC(xSC). Similarly, ∀xSC ∈ USC , ∃xSW ∈
USW , where xSW = {pit(m), uit, ljt(m), vjt, Rit}, ljt(m) = dmax

jt (m)−djt(m),
vjt = 1−ujt, and USW = {xSW |xSW satisfies (2) − (9) substituted with ljt(m)

and vjt}. Assume x̂SC = {p̂it(m), ûit, d̂jt(m), ûjt, R̂it} is the solution of the
proposed UC model minxSC∈USC

F ′SC(xSC), i.e., F ′SC(x̂SC) ≤ F ′SC(xSC), ∀xSC ∈
USC , substitute d̂jt(m) and ûjt by dmax

jt (m)− l̂jt(m) and 1− v̂jt, we get
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F ′SC(x̂SC) =
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)p̂it(m) + Aiûit

]

+
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)dmax
jt (m) +Bj

]

−
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)l̂jt(m) +Bj v̂jt

]
(B.2)

+
NT∑
t=1

NG∑
i=1

Sit (ûit, ûi,t−1) +
NT∑
t=1

NG∑
i=1

CitR̂it

+
∑

(jt)∈J0

{
4αjt

∣∣∣∣∣(e0
jt

)2
/2 +

NJ∑
m=1

dmax
jt (m)(em−1 + em)/2

∣∣∣∣∣
}

−
∑

(jt)∈J0

{
4αjt

∣∣∣∣∣v̂jt (e0
jt

)2
/2 +

NJ∑
m=1

l̂jt(m)(em−1 + em)/2

∣∣∣∣∣
}

Since
∑

(jt)∈J0

{
4αjt

∣∣∣(e0
jt

)2
/2 +

∑NJ
m=1 d

max
jt (m) (em−1 + em)/2

∣∣∣} and

NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)dmax
jt (m) +Bj

]
are constants which can be expressed as

C1 and C2 , and the social welfare of robust UC to maximize social welfare
under the best scenario of demand price elasiticity is

F ′SW (xSW ) =
NT∑
t=1

ND∑
j=1

[
NJ∑
m=1

mcjt(m)ljt(m) +Bjvjt

]

−
NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λit(m)pit(m) + Aiuit

]
(B.3)

−
NT∑
t=1

NG∑
i=1

Sit (uit, ui,t−1)−
NT∑
t=1

NG∑
i=1

CitRit

+
∑

(jt)∈J0

{
4αjt

∣∣∣∣∣vjt (e0
jt

)2
/2 +

NJ∑
m=1

ljt(m)(em−1 + em)/2

∣∣∣∣∣
}

We can obtain F ′SC(x̂SC) = C1 +C2 − F ′SW (x̂SW ), and F ′SC(xSC) = C1 +
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C2 − F ′SW (xSW ). Thus, C1 + C2 − F ′SW (x̂SW ) ≤ C − F ′SW (xSW ), ∀xSW ∈
USW , i.e., F ′SW (x̂SW ) ≥ F ′SW (xSW ), ∀xSW ∈ USW . In other words, the worst
scenario in term of minimizing generalized social cost is the best scenario in
terms of maximizing social welfare.

Appendix C. Derivation of Robust UC Objective Function (15)
Since only the last two lines of (14) are nonlinear, we only need to convert

them into mixed linear form. First of all, we define variables:

xjt = ujt
(
e0
jt

)2
/2 +

NJ∑
m=1

djt(m)(em−1 + em)/2 ∀jt ∈ J0 (C.1)

Then, the last two lines of (14) can be expressed as:

β (xjt) = max{S0|S0⊆J0,|S0|≤Γ0}
∑

(jt)∈S0

4αjt |xjt| (C.2)

= max

{∑
jt∈J0

4αjt |xjt| z0jt :
∑
jt∈J0

z0jt ≤ Γ0, 0 ≤ z0jt ≤ 1, ∀jt ∈ J0

}
By the property of strong duality, we can formulate the dual problem of (C.2)
as (C.3), where z0 is the dual variable of constraint

∑
jt∈J0 z0jt ≤ Γ0, qjt is

the dual variable of constraint z0jt ≤ 1 and yjt is auxiliary variable used to
obtain equivalent linear expression.

β (xjt) = min

{∑
jt∈J0

qjt + z0Γ0 : z0 + qjt ≥ 4αjt |xjt| , qjt ≥ 0, z0 ≥ 0, ∀jt ∈ J0

}

= min

{∑
jt∈J0

qjt + z0Γ0 : z0 + qjt ≥ 4αjtyjt, qjt ≥ 0, z0 ≥ 0,

−yjt ≤ xjt ≤ yjt, yjt ≥ 0, ∀jt ∈ J0} (C.3)
Assume all αjt are subject to uncertainty, substitute (C.3) into (14), we

derived the objective function of robust UC in mixed integer linear form as
(15).
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