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Abstract

Background: The digitization of health related information through electronic
health records (EHR) and electronic healthcare reimbursement claims and
the continued growth of self-reported health information through social media
provides both tremendous opportunities and challenges in developing
effective biosurveillance tools. With novel emerging infectious diseases being
reported across different parts of the world, there is a need to build systems
that can track, monitor and report such events in a timely manner. Further, it
is also important to identify susceptible geographic regions and populations
where emerging diseases may have a significant impact.

Methods: In this paper, we present an overview of Oak Ridge
Biosurveillance Toolkit (ORBIT), which we have developed specifically to
address data analytic challenges in the realm of public health surveillance. In
particular, ORBIT provides an extensible environment to pull together
diverse, large-scale datasets and analyze them to identify spatial and
temporal patterns for various biosurveillance related tasks.

Results: We demonstrate the utility of ORBIT in automatically extracting a
small number of spatial and temporal patterns during the 2009-2010
pandemic H1N1 flu season using claims data. These patterns provide
quantitative insights into the dynamics of how the pandemic flu spread
across different parts of the country. We discovered that the claims data
exhibits multi-scale patterns from which we could identify a small number of
states in the United States (US) that act as “bridge regions” contributing to
one or more specific influenza spread patterns. Similar to previous studies,
the patterns show that the south-eastern regions of the US were widely
affected by the H1N1 flu pandemic. Several of these south-eastern states act
as bridge regions, which connect the north-east and central US in terms of
flu occurrences.

Conclusions: These quantitative insights show how the claims data
combined with novel analytical techniques can provide important information
to decision makers when an epidemic spreads throughout the country. Taken
together ORBIT provides a scalable and extensible platform for public health
surveillance.

Keywords: Public health surveillance; non-negative matrix factorization;
electronic healthcare reimbursement; HIN1 2009 Pandemic
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Background

Public health surveillance is the continuous, systematic collection, analysis and interpreta-
tion of health related data for planning, implementing and evaluating public health practice.
It can serve as an effective vehicle for monitoring epidemiology of various health problems,
including infectious (e.g., flu, West Nile Virus, Ebola, etc.) and chronic (e.g., diabetes,
cancer, etc.) health conditions, documenting the impact of interventions and/or tracking
progress of specific health goals, and serve as an early warning system for impending pub-
lic health emergencies [1]. As emerging and re-emerging pathogens, such as the recent
Ebola virus outbreaks in West Africa [2] and the Middle Eastern Respiratory Syndrome
(MERS) outbreaks [3], become more prevalent, developing effective public health surveil-
lance systems is a priority for ensuring national security. Additionally, with the continued
increase in the number of asthma, diabetes and other chronic disease conditions, there is
an immediate need to develop tools that can aid decision makers (e.g., public health offi-
cials, physicians, epidemiologists and policy/law-makers) with critical information that can
eventually translate into effective health policies. With an estimated 50-60 million patients
diagnosed every year and continued growth of medical expenses related to these conditions,
the combined effect of these diseases is an extraordinary socioeconomic burden, which can
only be overcome by developing effective public health surveillance systems.

Public health surveillance is a big data problem

At the core of public health surveillance is the availability of health related data, which
can be broadly classified into two classes: (1) direct sources, which include health records
such as data from clinical and emergency visits, poison control centers, laboratory results,
hospitals, etc. and (2) indirect sources, which include health relevant information from
school attendance/closure reports, sales data (for over the counter medications, prescription
records, etc.), news feeds and social media. Taken together, these different datasets can
exceed several petabytes of data that have to be integrated and analyzed to obtain even
basic insights into how diseases spread within geographically separated populations.

With the digitization of health related information and web-based platforms that pro-
mote self-reporting (through Twitter, Facebook and other social media sites), there has
been an exponential growth of data available for public health surveillance. Current plat-
forms for biosurveillance make use of event-based, unstructured data such as news feed
aggregators and other publicly available data to monitor for emerging infectious disease
spread within geographically distributed populations. Examples of such systems include
the BioSense 2.0 program [4], GPHIN (Global Public Health Information Network) [5],
PHIN (Public Health Information Network) [?], ProMED-Mail [6], HealthMap [7], Google
Flu Trends, Bio-Caster, EpiSPIDER [8], EARS (Early Aberration Reporting System),
BCON (biosurveillance Common Operating Network), PHESS (Indiana Public Health
Emergency Surveillance System), LAHVA (Linked Animal-Human Health Visual Ana-
lytics), ESSENCE (Electronic Surveillance System for Early Notification of Community-
based Epidemics) [9], RODS (Real-time Outbreak and Disease Surveillance) [10], and
GEIS (Global Emerging Infections Surveillance and Reporting System) [11]. A detailed
overview of these systems and their applications is further described in Shmueli and
Burkhom [12]. These systems include tools for natural language processing (NLP) for
parsing unstructured textual data, basic statistical analyses tools, time-series counts/ratios
as well as geographic information system (GIS) based visualization that can summarize
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to the end-user the nature or urgency of an emerging infectious disease. It must be noted
that most tools developed are specific to infectious diseases; although the tools can be used
to analyze other non-infectious diseases, they are very rarely utilized for monitoring such
conditions.

Other public health monitoring systems such as Google Flu Trends [13] utilize internet
search patterns of users to predict the incidence of flu at local, regional (state-wide) and
national levels. While initial studies have shown that tools that make use of “proxy” datasets
can serve as useful monitors for emerging diseases [13, 14, 15, 7, 16], recent studies have
demonstrated that the estimates from internet search patterns can over-estimate the severity
of the outbreak [17, 18]. Self-reporting tools such as micro-blogging and social media are
also becoming effective proxies for public health surveillance [19, 20, 21, 22, 23], although
such datasets also have relatively higher noise and teasing out relevant information for
specific disease conditions can be quite challenging [24].

In the recent years, the availability of electronic health records (EHR) [25, 26] and elec-
tronic healthcare reimbursement claims (or briefly, claims) [27, 28, 29] have proven to be
valuable resources for collecting, monitoring and analyzing public health related questions.
While EHRs refer to an individual patient’s medical history collected and processed at in-
dividual medical facilities (such as a clinic or hospital), claims refer to electronic records
of claim transactions processed by retail pharmacies (and/or clinics). EHR and claims pro-
vide rich and timely information regarding prevailing medical conditions in any given geo-
graphic area; however, the use of EHR and claims for public health surveillance is still in its
early stages. Privacy and security related concerns, data disparity across diverse/individual
clinics/hospitals, as well the sheer complexity involved in aggregating and processing such
large-scale structured datasets can pose significant data analytic challenges for even simple
public health surveillance tasks [30, 31].

Thus, within the context of public health surveillance, the availability of these diverse
datasets pose two immediate ‘big data’ challenges: (1) scalable, seamless and uniform
access to diverse datasets and (2) scalable data analytic techniques that can provide rich
feedback to the end-user regarding emerging public health emergencies [32]. While there
is significant agreement within the public health community regarding the use of data an-
alytics and informatics techniques as being central to the success of any biosurveillance
program, the development of machine learning and data analytic techniques specifically
designed to handle heterogeneous datasets at massive scales has been especially challeng-
ing. These challenges can be attributed to the lack of standards and tools that facilitate
data/information exchange and secondly, to the lack of available data analytic frameworks
that can automatically integrate heterogeneous datasets and analyze them in near real-time
to provide insights into emerging public health problems. Additionally, the complex eti-
ologies of diseases pose special challenges in developing analytic tools to monitor them.
For example, the symptoms of the common flu and a serious outbreak such as West Nile
virus can be very similar, but teasing out these symptoms from a context specific search of
Twitter and other social media data can be quite challenging. Therefore, there is a need to
develop novel machine learning tools that can not only handle large datasets, but can also
simultaneously examine heterogeneous data sets to identify emerging patterns of disease

spread across geographically distributed regions.



Ramanathan* et al. Page 4 of 17

Oak Ridge biosurveillance toolkit for public health surveillance and dynamics

In this paper, we outline our recent efforts in developing novel machine learning tools for
public health surveillance addressing the aforementioned big data challenges [33]. The Oak
Ridge Biosurveillance Toolkit (ORBIT) is being developed as a machine learning platform
that processes both direct and indirect data sources by integrating insights from hetero-
geneous datasets for answering public health surveillance related queries. In contrast to
existing systems where the primary emphasis is on data collection, archival and visual-
ization of specific datasets, ORBIT is being developed as a distributed, component based
platform for novel statistical and machine learning tools that can provide insights into spa-
tial and temporal patterns of public health emergencies. By tightly integrating the machine
learning tools with visual analytics interfaces in a web-based framework, ORBIT allows an-
alysts and other end-users to explore heterogeneous datasets to detect patterns/correlations
across different data streams, identify emerging disease outbreaks and forecast outbreaks
and monitor control strategies.

We illustrate the applicability of ORBIT to identify, quantify and describe spatial and
temporal patterns of the 2009-2010 pandemic HIN1 flu within the United States (US) from
an infectious disease surveillance perspective. We illustrate how the integration of hetero-
geneous data sources, including publicly accessible data from the US Centers for Disease
Control (CDC), openly accessible data from Google Flu Trends and claims obtained from
a private organization that consolidates diagnostic and prescription electronic transactions
can provide timely and novel information regarding how the 2009-2010 influenza pandemic
affected the entire US. Our analysis of these datasets shows that a small number of distinct
temporal patterns govern how the pandemic spread throughout the country. Additionally,
we extract intrinsic multi-scale patterns from the claims data, moving successively from lo-
cal to regional to national patterns. These patterns depict the process by which the HIN1 flu
spread across the entire country in distinct waves, each with its own unique temporal and
spatial signatures. Although this study is a retrospective analysis of the 2009-2010 flu sea-
son, we show that the patterns can also translate into meaningful insights for future years,
especially to interpret baselines. Taken together, our study provides a summary of ORBiT
capabilities and how it can be used as a scalable platform for public health surveillance.

Methods

In this section, we outline how ORBIT can incorporate claims data to discover spatial and
temporal patterns from the 2009-2010 pandemic HIN1 flu season. The description of the
ORBIT framework is provided elsewhere [33]. In this paper, we describe the claims data
and the use of non-negative matrix factorization (NMF) as a novel technique to analyze

claims data to automatically discover spatial and temporal patterns.

Dataset description

Electronic healthcare claims reimbursement data from IMS Health. IMS Health is a lead-
ing consolidator of claims within the US, collecting over 55-60 million claims every week.
This proprietary dataset therefore constitutes a unique resource for public health surveil-
lance. Two types of claims are collected by IMS Health: (1) diagnostic data (referred to as
claims) which processes claims from over a million medical practitioners/physicians every
year received from all parts of the US, including urban and rural areas; (2) prescription
data (referred to as Rx), which processes prescription claims from retail pharmacies within
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the US. The claims data consists of over 1 billion claims collected annually and represents
over 165 million unique patients. The Rx data consists of over 3 billion claims collected
annually and provides for a rich resource to monitor and track drug delivery and efficacy
across the entire country. IMS Health uses proprietary technology to protect patient privacy
and all of the data available/used for analysis are HIPAA-compliant.

For this study, we analyzed the IMS Health claims data from Apr 1, 2009 - Mar 31, 2010,
with a total of nearly one billion records. The claims data was processed for flu-related
records using the definition shown below:

o Flu case definition: include only hospital diagnosed cases of the flu, namely ICD9

codes 486XX and 488XX.

The definition of the flu corresponds to hospital diagnosed cases of the flu, which provides a
specific count in terms of the number of flu cases recorded within any zip code. The reason
we focus on this stricter definition is to count only cases that we know would have been
diagnosed with the flu and exclude other symptoms that perhaps can bias the observations
based on generic symptoms such as sore-throat, cough and fever. For organizing the data
based on a specific geographic location, we used the provider’s primary five digit zip code
that was directly accessible from the claims data. Note that this assumption is reasonable,
given that the patient’s service provider/pharmacy is most likely to be co-located unless the
patient remotely consults with his/her provider. In the current study, only 0.0001% of the
total records showed different 3 digit zip codes for the patient and their service provider.

The claims data is usually reported every day with claims coming into the data warehouse
continuously. However, due to claims submission delays by healthcare providers and inter-
nal data-processing and cleaning, there is a lag between the service date (i.e., the date on
which the physician issued the diagnosis) versus the date on which the data was actually
loaded/processed with the IMS Health data warehouses. Since the spatial resolution of the
claims data is at the zip-code level, we defined local metropolitan areas (for cities) and the
different geographic regions (see below) based on an aggregation of data from these in-
dividual zip codes, thus maintaining consistency between the definitions of individual zip
codes all the way to the entire nation.

CDC Influenza like Illnesses Network (ILINet) data. The US CDC maintains information
on patient visits to health care providers for influenza like illnesses (ILI), which consists
of more than 2,900 outpatient healthcare providers with the ability to track more than 30
million patient visits every year [34]. The data reported every week consists of the total
number of patient visits as well as the total number of patients with ILI-like symptoms
organized by age groups. ILI cases are defined based on observing fever (temperature of
100°F or 37.8°C or greater) and a cough/sore throat without a known cause other than
influenza. The CDC then baselines these reports based on the state population and defines
several metrics for individual geographic regions. These regions, known as the Health and
Human Services (HHS) regions are summarized in Table 1. Although there are different
forms of ILI surveillance including influenza-associated pediatric mortality surveillance
and influenza hospitalization network (FluSurvNet), for this current study, we used the
publicly available ILINet data [35].

Google Flu Trends data. 'The Google Flu Trends (GFT) project [13] builds an automated
method for discovering influenza-related search queries by aggregating historical logs of
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online web search queries and developing a log-linear model that estimates the probability
that a query is related to ILI. This model was validated across CDC-observed ILI per-
centages and made available for the public from http://www.google.org/flutrends/us/#US.
We downloaded the weekly information available for the same period covered by the IMS
Health claims data (Apr 1, 2009 - Mar 31, 2010).

Using Non-negative matrix factorization (NMF) to extract spatial and temporal
patterns from claims data

One of the many advantages of using claims data for public health surveillance is that it
provides information about ILI-incidence at individual zip code level resolution. Unlike
the ILINet data, which statistically aggregates total counts of ILI-symptoms over the entire
US from vast geographic regions, the claims data can be used to obtain fine-grained details
about specific regional variations and how that may have impacted the quick spread of
the 2009-2010 pandemic flu throughout the US. To explore the further use of claims data
and to perform a retrospective analysis of the 2009-2010 pandemic flu within the US, we
organized the ILI-related data from claims into a matrix A, that has the overall dimensions
of N, x Ny, where N, represents the total number of zip codes and V; represents the total
number of time points (365 days).

Based on the comparison of the ILINet and GFT data presented above, we hypothesize
that the flu incidence patterns are categorical in space and time. This is reasonable, espe-
cially given the geographic vastness of the US, the spatial (individual zip codes) and tem-
poral (daily reports of ILI-conditions) resolution of the claims data. Given prior knowledge
that there are at least three distinct ‘peaks’ associated with the 2009-2010 pandemic [36],
we want to extract low-dimensional representations for this claims data. Further, the flu
incidence matrices have non-negative entries (i.e., it is not possible to obtain a negative
count of patients reporting flu symptoms at a zip code). Hence, we used non-negative ma-
trix factorization (NMF) as a technique to extract low-rank approximations from the claims
data.

Given a data matrix A with non-negative values, with dimensions N, x N;, NMF finds
low-rank approximation (s) of the form A = WH, where W (N, X s) captures spatial
patterns and H (s x N;) describes temporal patterns within the data. Using the alternate least
squares algorithm proposed by Paatero, available as part of Matlab, we ran NMF for 1,000
iterations. To identify an appropriate low-rank subspace (s), we iterated over s = 1... 15,
dividing the original data into training and testing data. We tracked the residual errors using
the Frobenius norm for both training and testing data. For each choice of s, we performed
a total of 250 iterations. Once the optimal s was selected, we report the most stable version
of the basis matrices (W, H) by computing the KL divergence between every pair of the
250 instances of W from the training set and picking W with the lowest KL divergence
value.

Results

Influenza like llinesses (ILI)-related claims data provide higher spatial and
temporal resolution into ILI-case counts within the US

One of the primary goals for our study was to quantitatively assess the timeliness and
coverage (both in space and time) of the IMS Health claims data. As part of this exploratory
study, we extracted the data as described in the Methods section and compared this data
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with CDC ILINet and GFT datasets. Note that both CDC ILINet and GFT data are known
to be correlated [13, 17], however both datasets correspond to different modalities. While
the CDC ILINet data is primarily focused on out-patient visits, GFT uses search patterns
of users to identify patterns of influenza occurrence. In spite of the differences in data
collection and curation, we hypothesize that the IMS Health claims data, based on the case
definition used in this current study will closely match the temporal trends observed from
the CDC ILINet and GFT data.

ILI-incidence in claims are consistent with ILINet and GFT data across HHS regions. We
compared the ILI-incidence data at two spatial scales: (1) the overall country (Figure 1 cen-
ter panel) and the ten HHS regions (Figure 1 HHS-I through HHS-X panels). To ensure that
we were comparing similar quantities, we converted the counts from the ILI-incidence rates
from claims data into percentages, in a similar way outlined in previous papers. Not sur-
prisingly, the overall US ILI-incidence rates over time reflects a similar behavior across
both the claims and GFT data. The average agreement (quantified by the Pearson correla-
tion) between the GFT and claims data is about 0.9 (with a p-value of 4E-11), even within
individual HHS regions. However, the similarity is less pronounced with respect to the
agreement between the CDC ILINet data and IMS Health claims data; we speculate that
the publicly available information from ILINet has several incomplete entries for the same
time period. Therefore, when we compare the data in a similar way to the GFT approach
by removing the missing entries and extracting time segments which have reported data
available, the agreement increases to about 0.9 (p-value of 4E-11) .

Within the entire nation, the flu incidence peaked around the time of Oct-Nov 2009,
which is reflected in all the three data streams examined. The percentage ILI-incidence is
significantly less within CDC ILINet and GFT. We believe that this may be a consequence
of the nature of data collection techniques used in each case. GFT data relies on a statistical
model to identify search queries related to influenza. The ILINet data is primarily collected
from outpatient visits and covers a small portion of the primary care facilities within the
entire country. The claims data is, however, dependent on the primary care physician’s
reporting of transactions, which can vary across the nation (see next subsection). Further-
more, the reported number of cases within the claims data can be regarded as upper-bound
estimates of the true infection (since not all diagnosed cases of the flu are true positives).

Even across different HHS regions, we observe that the claims data consistently presents
higher number of ILI cases compared to the CDC ILInet and GFT. In particular, we note
that except for HHS-I and HHS-II, which show the presence of two distinct peaks in ILI-
incidence (reflected in all the three data streams), all the other regions consistently show
that the peak of the pandemic occurred around the Oct-Nov 2009 time-frame. As is well
documented from previous studies [37, 36, 38], HHS-I and II correspond to the northeast
(states including NY, NJ, CT, ME, MA, NH, RI, VT) that exhibited a distinct early onset
of the flu pandemic followed by the peak observed in Oct-Nov 2009. Although we observe
that the ILINet data shows the presence of early onset within HHS-III as well as HHS-
V, both claims and GFT do not show such a pronounced outbreak in these regions. The
data from ILINet does not fully cover the time-span examined, especially since there are
a number of weeks with missing data. Excluding those missing time-segments across the
entire nation, the overall Pearson correlation between ILINet and claims data is about 0.86
(p-value=5.43E-11) indicating that there is significant similarity between the two datasets.
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The coverage of the claims data is not uniform throughout the country. Although within
the different HHS regions the total ILI-incidence rates are higher on average within the
claims data, the coverage of ILI incidence within individual HHS regions can vary. As
summarized in Table 1, the total number of zip codes within each HHS region for which
claims data is available varies from a minimum of 28.4% to a maximum of 58.4%. The
reporting from the claims data is fairly consistent across these regions for any given year,
as reflected by the total number of diagnostic records available at these regions. Through
these observations, we can conclude that the claims data provides similar insights into
public health surveillance as traditional sources such as CDC ILINet.

Non-negative Matrix Factorization (NMF) identifies distinct spatial and temporal
patterns from the 2009-2010 pandemic H1N1 flu season

We defined a zip code as having statistically significant data if it reported at least 10 cases
of the flu in any given week of the year. This simple threshold based filtering allowed us
to remove any zip codes that had very few cases reported throughout the year. Based on
this simple filtering, the total number of zip codes with reported flu cases (V) was 14,098
and we used NV, to be 365 days. Instead of examining weekly reports as discussed above,
we used a daily resolution to fully leverage the claims data. Further, we also wanted to test
the hypothesis that a daily resolution of the pandemic flu season will provide fine-grained
insights into distinct patterns of how the flu spread. As summarized in Figure 2, only a
small number of dimensions are sufficient to describe the pandemic flu outbreak through-
out the US. To select the number of dimensions, we plotted the reconstruction error (i.e.,
fraction of unexplained variance) versus the subspace for the 250 repetitions of NMF (Fig-
ure 2A), and compared this with the reconstruction error obtained with PCA performed on
the original data (PCA,¢) and the scrambled data (PCAgcram; Figure 2B). As observed, the
slope of PCAgcram is quite small and relatively constant for increasing subspace sizes. This
provides a means to estimate the subspace size beyond which a given model is explain-
ing noise rather than correlations in the data [39]. To visualize this cut-off, in Figure 2C
we plot the change in variance for each added dimension (differences between successive
points in Figure 2B). The reconstruction error rates of both PCA;; with PCAcram at sub-
space around s = 12. Although it is possible to choose s = 12 and describe the spatial
and temporal patterns, we use a smaller subspace (s = 5) to describe the 2009 HIN1 pan-
demic. This is mainly due to the fact that we wanted a simpler representation of this high
dimensional space and traded the interpretability of a lower dimensional representation for
the complexity of patterns when s = 12. Further, lower number of dimensions (s < 5) do
not provide a clear separation of the temporal/spatial patterns and hence we have chosen to
detail our analysis with a subspace size of 5.

NMEF identifies multi-scale ILI-breakout patterns within the US. A summary of the five
temporal patterns as extracted from NMF using H is depicted in Figure 3. There are dis-
tinct peaks for each of the five patterns, indicating a unique phase for the 2009-2010 pan-
demic flu. Interestingly, the peak of ILI-incidence across each of the temporal patterns is
left shifted - indicating a lag period in the ILI incidence rates observed across the differ-
ent geographic regions (see next subsection). Notably, H; shows a peak in ILI incidence
around day 206-210, corresponding to a time period of Oct 24, 2009; Hy shows peak
about a week earlier (Oct 18, 2009) followed by H3 peaking around Sep 28, 2009 and H,
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showing a peak of Aug 19, 2009. H5 corresponds to an early flu outbreak observed in the
early-middle spring time (May 31-Jun 5, 2009), which was distinctly observed across the
North east HHS regions in Figure 1. Another notable aspect of Hj is that the early peak
of the ILI-incidence is followed by a secondary peak in and around the same time of Hy,
indicating that the likely presence of an early flu season (in the spring season) also influ-
enced the late peaks observed in the fall season (see below for explanation of the spatial
patterns observed). Thus, these ILI-breakout patterns provide a succinct summary of how
the 2009-2010 flu season affected the entire country.

As shown in Figure 4, each of the W vectors provides a specific spatial (geographic)
pattern during the 2009-2010 pandemic flu season. The advantage of this representation is
that NMF allows us to interpret and visualize the pandemic flu season as a multi-scale spa-
tial model that captures nation-wide, state-wide and zip code specific behaviors observed
during the pandemic flu season. Specifically, each W, depicts how the flu encompassed
the entire nation. The matrix representation of W provides a succinct summary of the flu
prevalence across the individual zip codes, which can be visualized on a geographic map of
the US shown in Figure 4 (labeled National). In this map, darker colors of red correspond
to a higher flu prevalence in the region, whereas lighter colors (orange, yellow, green and
blue) represent a lower flu prevalence pertaining to a specific spatial pattern.

One of the notable observations from our analysis is that the flu prevalence patterns reveal
distinct areas were affected by each W ;. For example, while W occurs throughout the US
encompassing both the northeast and northwest regions of the country, Wy is primarily
observed in the southeast and western regions (California) of the country. The pattern W
is exclusively observed within larger metropolitan areas (large cities with at least 1 million
people during the 2010 census period). It is also interesting to point out that all the five
patterns are observed within metropolitan areas, perhaps reflecting the dynamics of people
moving between these large cities. (It is also important to point out here that additional data
would be required to validate this observation, which we are not pursuing as part of this
paper.)

Our analysis reveals that the flu prevalence patterns show how distinct areas affected by
each spatial pattern, W. For example, while W occurs throughout the US encompassing
both the northeast and northwest regions of the country, W, is primarily observed in the
southeast and western regions (California) of the country. The pattern W3 is exclusively
observed within larger metropolitan areas (large cities with at least 1 million people dur-
ing the 2010 census period). It is also interesting to point out that all the five patterns are
observed within metropolitan areas, perhaps reflecting the dynamics of people moving be-
tween these large cities. (It is also important to point out here that additional data would be
required to validate this observation, which we are not pursuing as part of this paper.)

At the state level, we can describe how the flu patterns uniquely affected different coun-
ties/regions, as shown in Figure 4 (State-wide panel). Here we have highlighted the state
of Tennessee (TN; for which the coverage of the claims data was about 47%). As a south-
eastern state, TN was widely affected by the HIN1 pandemic. While the major cities of TN
including Mempbhis, Nashville, Knoxville and Chattanooga - all exhibit the five patterns,
the individual county areas around the major cities have unique spatial patterns within each
W, depicting that the flu prevalence pattern was indeed unique to different areas within the
state (as highlighted by the yellow rectangles in the figure). Such an argument can also be
extended to the city/zip code resolution (right most panel), whereby each pattern captures
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how neighborhoods or suburb regions show unique prevalence patterns as one navigates
the different spatial patterns from W to Wj.

Identifying “bridge regions” within break-out patterns in the US. It is interesting to note
that between the different W; a small subset of the zip codes act as bridge regions. We
define these bridge regions to be zip codes that exhibit more than one W; at the same
time-period. These zip codes, not surprisingly, are concentrated towards the different sub-
urb regions of the different metropolitan cities in the state. For example, in the city of
Memphis, there are distinct bridge regions where we observe that a cluster of three zip
codes in the area corresponding to Bartlett (highlighted by a red rounded rectangle in Fig-
ure 4 across all the three spatial patterns) that exhibit Wy, W3 and W4 patterns. Notably,
this region showed very little flu during the early half of the season. Another example of a
bridge region is highlighted by a purple circle in Figure 4 where W, W3 and W patterns
dominated in the suburbs of East Memphis. Only the area of Bartlett and Collierville show
the presence of the early and late fly patterns (corresponding with the spatial pattern W).

Based on this initial analysis, we can identify bridge regions at the state- and national-
level by aggregating the spatial patterns to the respective scales. Instead of examining spe-
cific spatial patterns, we examine the most dominant spatial pattern (W) in a given state
or HHS region. A dominant pattern is defined as a spatial pattern that is prevalent in a
specific zip code based on the maximum W, value(s) within the zip codes that constitute
the state (or HHS region). For this study, we decided to use a simple threshold of 50% to
determine if a spatial pattern was dominant in that state/region. As summarized in Figure 5,
the individual pie charts within each state captures the percentage contribution of each W
that was dominant in that region, which provides an intuitive visual analysis of the regions
impacted by the 2009 HIN1 pandemic.

For the different states, one can identify the most dominant pattern just by examining
how prevalent these flu patterns were across the different zip codes across a particular
state. While states like Wyoming, North Dakota, Pennsylvania and others show a domi-
nant, single spatial pattern, states such as Georgia, California, Nevada and Tennessee ex-
hibit typically two patterns that dominate these regions. Thus, states such as Kentucky and
Tennessee act as bridge regions in the spread of the pandemic.

Extending this analysis further for each of the HHS regions, we observe that HHS-IV and
HHS-VIII are dominated by two patterns (completely different in these regions), where as
other HHS regions including HHS-I-IIT and HHS-V-VII have a single dominant spatial
pattern that is prevalent in at least 50% of the zip codes in these regions. Interestingly,
the entire southeast acts as a bridge region showing the presence of two or more patterns
simultaneously occurring within 50% of the zip codes. Similar observations can be made
also within HHS-IX and HHS-X, where W, and W5 dominate. We also observe that the
northeast part of the country exhibits only W; and W3, confirming further that the early
flu peaks were prevalent only in these regions (apart from other major metropolitan areas).
It is also interesting to note that the very same regions that show W also exhibit a temporal
coupling between the early and late part of the flu. These regions, especially in the northeast
(HHS-II) were affected by an early peak of the HIN1 pandemic followed by a sustained
incidence of the flu even after the entire nation had more or less recovered from the major
outbreaks.
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Discussion and conclusion

In this paper, we examined the use of the diagnostic data to reveal spatial and temporal
patterns of how the 2009 HIN1 pandemic affected the entire country. To our knowledge,
the use of NMF in the context of extracting spatio-temporal patterns of disease spread is
novel and the break out patterns extracted from the claims data provide specific insights
into the 2009 pandemic. The break out patterns show how different parts of the US were
vulnerable and highlight regions that may have needed additional attention as the pandemic
was spreading through the nation. The patterns also describe the multi-scale nature of flu
outbreaks beginning with the individual zip code resolution all the way to the entire nation,
capturing the complex dependencies that may have had an impact in spreading the pan-
demic. Our analysis also reveals specific features of the flu outbreak patterns that highlight
the differences between both urban (metropolitan) and rural areas. The patterns extracted
are categorical in that they describe the overall dynamics of the pandemic in distinct phases
through out the nation. While the patterns have intuitive interpretative power, more quanti-
tative measures of the distinct spatial and temporal coupling patterns are required.

At this time, because we have not integrated socio-economic/census data into our analy-
sis, it is difficult for us to speculate whether particular demographic factors (e.g., age-group,
socio-economic background or other factors), population density or other environmental
and climatic factors within these regions lead to the observed patterns. We also note the
relatively sparse coverage of the claims data across the country and these regions also con-
stitute large parts of the US where the population density is quite low. A more systematic
analysis of the variation in population of these regions, followed by a statistical comparison
with the flu diagnostic data would be necessary to draw additional conclusions regarding
the epidemiological significance of these spatial and temporal patterns.

Although in this paper, we do not describe the many confounding factors (e.g., environ-
mental factors/ climate factors that have a strong influence on the occurrence of asthma)
that may play a role in the co-occurrence of asthma and flu, the ability to discover such
complex associations from claims provides an added capability for public health surveil-
lance systems to monitor and quickly identify vulnerable geographic areas/population for
preemptive intervention. We must note here that a more detailed analysis of the spatio-
temporal patterns is required. Additionally, within the scope of this paper, we have not ex-
amined whether these patterns correspond to other well known algorithms such as Google
Flu. Finally, we must also note that the predictive aspects of our algorithm have also not
been fully explored for two reasons: (1) the data available to us is only from the 2009-2010
flu season and (2) it is difficult to obtain a baseline behavior based on a year that showed
highly anomalous behavior in terms of the overall flu incidence across the entire country.
We will explore these questions in greater detail in a following publication.

While diagnostic information (from claims data) can be helpful for public health surveil-
lance, additional analyses of the prescription datasets (Rx) from IMS Health is necessary
to obtain precise insights regarding the pandemic spread. The prescription transactions, in
addition to providing counts of patients that were prescribed anti-viral medications, also
record the dosage of these drugs and hence can provide tighter bounds on the number of
estimated people infected and measure the intensity of spread. Such a collective integration
of claims and Rx datasets can provide novel insights not only in the context of understand-
ing the flu, but can have a wide impact in general for more complex disease etiologies and
chronic disease conditions.



Ramanathan* et al. Page 12 of 17

Incorporating HINI molecular evolutionary information into ORBiT. The spatial and
temporal patterns discovered from the claims data and NMF can be considered as approx-
imate representations of epidemiological curves obtained from traditional disease spread
(either compartmental or agent-based) models. The temporal patterns shown in Figure 3
indicate different phases of the HIN1 flu epidemic. The multi-scale representation of the
HIN1 epidemiological spread can be used as starting points for other complex types of
analysis. For example, one extension would be to include evolutionary history of differ-
ent HINI viral strains. The recent availability of large-scale sequence databases such as
GISAID [40] can provide insights into specific viral strains that are prevalent within a geo-
graphic region. Tracing the phylogenetic relationship between different strains of the virus,
we can then estimate parameters for disease spread models [41]. We can also incorporate
the evolutionary information into statistical models [42, 29] to understand the how viral
evolution affects the disease spread process. Further, these patterns can be examined to
identify regions that are vulnerable to specific strains and target them for early interven-

tion. Such enhancements will be evaluated in forthcoming publications from our group.

Other capabilities within ORBIT. ORBIT is designed as a toolbox for developing ma-
chine learning tools that can aid public health surveillance. Within the scope of this paper,
we have demonstrated the use of novel diagnostic (claims) datasets to discover a small
set of spatial and temporal patterns that characterize the 2009-2010 pandemic HINI1 flu.
However, we have not described all the capabilities within ORBiT. Apart from supporting
machine learning algorithms from direct sources for public health surveillance, ORBiT can
be used in other contexts including (1) extracting and analyzing emerging, indirect datasets
for public health surveillance, e.g., Twitter [33]; and (2) integrating datasets such as claims
to estimate parameters for disease spread models so that one can turn the analytical power
from the aforementioned application into predictive models that can aid decision makers
with more accurate insights [43]. We hope to examine these applications in greater detail
in future studies.
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Figure Legends

Figure 1 Temporal trends of ILI incidence from IMS Health claims, CDC ILINet and Google
Flu Trends (GFT) during the 2009-2010 pandemic flu show significant similarities. The total
incidence of HIN1 pandemic as provided by GFT (blue line) and CDC (red dots) are plotted
together with IMS claims data (black line). Note here that we used the strict definition of the flu
(ICD9 codes: 486XX and 488XX). The temporal trends for the entire US are plotted in the center,
followed by the 10 Human and Health Services (HHS) Regions shown around the US (HHS-I to
HHS-X). In all the cases, the agreement between IMS claims data, GFT and CDC ILINet data is
quantified by the correlation coefficient, depicted on the side of each panel. The numbers at the
right hand side of every panel represent the correlation coefficient between the IMS claims and
GFT data (top) and the IMS claims with ILINet data (bottom) respectively. These numbers
represent all the data from the 52 weeks collected instead of measuring across the time segments
for which CDC ILINet data was available. Note that CDC ILINet data has some missing values,
removing these segments from our analysis actually improves the correlations (see Main Text for
discussion). For HHS-IX and HHS-X, the CDC ILINet data was not fully available at the time of
download and hence we have not shown the correlation values.

Figure 2 Summary of non-negative matrix factorization (NMF) applied to ILI diagnostic
claims claims data. (A) Reconstruction error or the fraction of unexplained variance for PCA (red)
and NMF (black) versus the subspace s selected. (B) Change in reconstruction error for PCA and
NMF as compared to the change in reconstruction error for PCA performed on a scrambled version
of the input matrix A. PCAscram shown in gray line is used to estimate the cut-off number of
dimensions, beyond which the dimensionality reduction method explains only noise within the
dataset. For our analysis, s beyond 12 is only explaining noise in the data, as is evident from the
intersection between the gray and black/red lines.

Figure 3 Five distinct temporal patterns govern how the pandemic flu spread throughout
the US. The normalized temporal amplitude is plotted against the total number of days (Apr 1,
2009-Mar 31, 2010). Observe the distinct lag in each of the five patterns, with successive H;
indicating the peak shift occurring towards the left (indicted by a gray arrow). These patterns
summarize the different peaks during the H1N1 pandemic. Notably, H;, H4 and Hs capture the
late, middle and early HI1N1 pandemic peaks occurring within the entire country.

Figure 4 Multi-scale spatial patterns of HIN1 influenza occurrence in the US. Each of the
spatial pattern W discovered from NMF can examine how the flu spread throughout the US (left
hand panels). The nation wide panels depict how W pattern is widespread throughout the US
followed by progressively moving down south (W4). The spatial pattern W5 depicts flu prevalence
only within large metropolitan areas and southern Florida. One can focus further into state-wide
patterns (middle panel) and examine how ILI-patterns affect the state of Tennessee and towards
specific metropolitan areas (e.g., Memphis in Tennessee, right most panels) and capture minor
variations in the ILI-patterns according to different zip-codes. These differences also allow one to
identify bridge regions (highlighted by red and magenta circles) that show more than two
ILI-patterns in the same zip code. These analyses can be further extended out towards the state
and nation-wide areas.
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Figure 5 A small number of regions within the US act as bridge regions for the 2009-2010
H1N1-flu season. Within every state, we quantify the extent to which the individual spatial patterns
are dominant using a pie-chart representation. The colors represent respective spatial patterns
(W1...5), as highlighted in the legend. In the pie-chart, a line in the middle points out the 50%
cut-off for a particular flu pattern and is used as a guide to identify dominant patterns. For the
individual HHS regions shown below, we can see a dominant pattern, within the individual states,
(for e.g., MA, CT, MT, CO, MS) more than one pattern dominates indicating the complexity of how
the H1N1 flu spread within these regions. Note that the patterns also correspond to the time when
the flu peaked in these individual regions and hence such patterns are instructive in visually
interpreting how the different spread patterns affected an individual state.
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Tables
Region States Zcrs Zoiaims % coverage
HHS-I CT, ME, MA, NH, RI, VT 1781 813 457
HHS-II NJ, NY 2279 1242 54.5
HHS-III DE, DC, MD, PA, VA, WV 4019 1623 404
HHS-IV AL, FL, GA, KY, MS, NC, SC, TN 5470 2836 51.8
HHS-V IL, IN, MI, MN, OH, WI 6012 2647 44.0
HHS-VI AR, LA, NM, OK, TX 4134 1744 422
HHS-VII IA, KS, MO, NE 3315 996 30.0
HHS-VIII CO, MT, ND, SD, UT, WY 2105 597 284
HHS-IX AZ, CA, HI, NV 2382 1391 58.4
HHS-X AK, ID, OR, WA 1551 585 37.7

Table 1 Summary of coverage in IMS claims data.



